
CCO
Commun. Comb. Optim.

c© 2023 Azarbaijan Shahid Madani University

Communications in Combinatorics and Optimization

Vol. 8, No. 1 (2023), pp. 261-270

DOI: 10.22049/CCO.2022.27641.1305

Research Article

A new upper bound on the independent 2-rainbow domination

number in trees

Elham Gholami1,†, Nader Jafari Rad2,∗, Abolfazl Tehranian1,‡,
Hamid Rasouli1,§

1
Department of Mathematics, Science and Research branch, Islamic Azad University, Tehran, Iran

†gholamiel1363@gmail.com
‡tehranian@srbiau.ac.ir
§hrasouli@srbiau.ac.ir

2
Department of Mathematics, Shahed University, Tehran, Iran

n.jafarirad@gmail.com

Received: 18 November 2021; Accepted: 4 February 2022

Published Online: 6 February 2022

Abstract: A 2-rainbow dominating function on a graph G is a function g that assigns
to each vertex a set of colors chosen from the subsets of {1, 2} so that for each vertex

with g(v) = ∅ we have
⋃

u∈N(v) g(u) = {1, 2}. The weight of a 2-rainbow dominating

function g is the value w(g) =
∑

v∈V (G) |f(v)|. A 2-rainbow dominating function g is

an independent 2-rainbow dominating function if no pair of vertices assigned nonempty
sets are adjacent. The 2-rainbow domination number γr2(G) (respectively, the inde-

pendent 2-rainbow domination number ir2(G)) is the minimum weight of a 2-rainbow

dominating function (respectively, independent 2-rainbow dominating function) on G.
We prove that for any tree T of order n ≥ 3, with l leaves and s support vertices,

ir2(T ) ≤ (14n+ `+ s)/20, thus improving the bound given in [Independent 2-rainbow

domination in trees, Asian-Eur. J. Math. 8 (2015) 1550035] under certain conditions.
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1. Introduction

In this paper, we continue the study of a variant of 2-rainbow dominating functions,

namely, independent 2-rainbow dominating function. We first present some necessary

definitions and notations. For notation and graph theory terminology not given here,
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we follow [12]. We consider finite, undirected, and simple graphs G with vertex set

V = V (G) and edge set E = E(G). The number of vertices of a graph G is called the

order of G and is denoted by n = n(G). The open neighborhood of a vertex v ∈ V
is N(v) = NG(v) = {u ∈ V | uv ∈ E}, and the degree of v, denoted by degG(v), is

the cardinality of its open neighborhood. A leaf of a tree T is a vertex of degree one,

while a support vertex of T is a vertex adjacent to a leaf. A strong support vertex is a

support vertex adjacent to at least two leaves, while weak support vertex is a support

vertex adjacent to precisely one leaf. In this paper, we denote the set of all support

vertices of T by S(T ) and the set of leaves by L(T ). We denote `(T ) = |L(T )| and

s(T ) = |S(T )|. We also denote by L(x) the set of leaves adjacent to a support vertex

x, and denote `x = |L(x)|. A star is the graph K1,k, where k ≥ 1. For a star with

k > 1 leaves, the central vertex is the unique vertex of degree greater than one. For

r, s ≥ 1, the double star S(r, s) is the tree with exactly two vertices that are not leaves,

one of which has r leaf neighbors and the other s leaf neighbors. We denote a path

on n vertices by Pn. A rooted tree T distinguishes one vertex r called the root. For

each vertex v 6= r of T , the parent of v is the neighbor of v on the unique (r, v)-path,

while a child of v is any other neighbor of v. The set of children of v is denoted by

C(v). A descendant of v is a vertex u 6= v such that the unique (r, u)-path contains

v, while an ancestor of v is a vertex u 6= v that belongs to the (r, v)-path in T . The

maximal subtree of T rooted at v is denoted by Tv. The distance d(u, v) between two

vertices u and v in a connected graph G is the length of a shortest (u, v)-path in G.

The maximum distance among all pairs of vertices of G is the diameter of G, denoted

by diam(G).

A 2-rainbow dominating function (2RDF ) of a graph G is a function g that assigns to

each vertex a set of colors chosen from the subsets of {1, 2} so that for each vertex v

with g(v) = ∅ we have
⋃

u∈N(v) g(u) = {1, 2}. The weight of a 2-rainbow dominating

function g is the value w(g) =
∑

v∈V (G) |f(v)|. The 2-rainbow domination number

γr2(G) is the minimum weight of a 2-rainbow dominating function on G. The concept

of 2-rainbow domination was introduced by Brešar, Henning, and Rall [7] and has been

studied by several authors (see for example [1–3, 8, 11, 13, 14]).

A 2-rainbow dominating function g is an independent 2-rainbow dominating function

(I2RDF ) if no two vertices assigned nonempty sets are adjacent. The weight of a 2-

rainbow dominating function g is the value w(g) =
∑

v∈V (G) |f(v)|. The independent

2-rainbow domination number ir2(G) is the minimum weight of an independent 2-

rainbow dominating function on G. We refer to an independent 2-rainbow dominating

function on G of minimum weight as an ir2-function. The independent 2-rainbow

domination number was investigated in [4, 6, 9, 10].

Chellali et al. [10] posed the following problem: Find a sharp bound for ir2(T ) in

terms of the order of a tree T . Amjadi et al. [5] answered the above problem and

proved the following bound for the independent 2-rainbow domination number of a

tree.

Theorem 1 (Amjadi et al. [5]). If T is a tree of order n ≥ 3, then ir2(T ) ≤ 3n
4
.

Furthermore, this bound is sharp.
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In this paper we present a new bound for the independent 2-rainbow domination

number of a tree of order n ≥ 3 with l leaves and s support vertices. Our bound

improves the bound given in Theorem 1 for trees when `+ s < n.

2. Main Result

Theorem 2. For any tree T of order n ≥ 3, with l leaves and s support vertices,
ir2(T ) ≤ (14n+ `+ s)/20.

Proof. We use induction on the order n = n(T ) of a tree T . According to [4] for

stars and double stars, the base step is correct for n ≤ 4. Assume that for any tree T ′

of order n′ < n, with `′ leaves and s′ support vertices, ir2(T ′) ≤ (14n′ + `′ + s′)/20.

Now consider the tree T of order n ≥ 5, with l leaves and s support vertices. If T is a

star, then the function that assigns {1, 2} to the central vertex and ∅ to every leaf of

the star is an I2RDF of T of weight 2, and so ir2(T ) = 2 < (14n+ `+ s)/20. Hence,

we may assume that diam(T ) ≥ 3. Suppose that diam(T ) = 3, and so T is a double

star T ∼= S(r, k), where r ≥ k ≥ 1. Let u and v be the two vertices of T that are not

leaves, where u has r leaf neighbors and v has k leaf neighbors. The function that

assigns {1, 2} to u, {1} to the leaf neighbors of v, and ∅ to the remaining vertices of

T is a an I2RDF of T of weight 2 + k, and so ir2(T ) ≤ 2 + k ≤ (14n + ` + s)/20.

Hence, we may assume that diam(T ) ≥ 4, for otherwise the desired result follows.

We root T at a leaf x0 of a diametrical path x0x1 . . . xd from x0 to a leaf xd farthest

from x0 such that deg(xd−1) = max{deg(u) : d(x0, u) = d− 1}. The remainder of the

proof proceeds by establishing eight claims and then deducing from those claims that

the statement of the theorem is true.

Claim 1. If u and v are two strong support vertices of T such that N(u)∩(V (T )−L(T )) =
{v}, then ir2(T ) < (14n+ `+ s)/20.

Proof of Claim 1. Let u′ be a leaf neighbor of u and v′ be a leaf neighbor of v. Let

T ′ = T − {u′, v′}. Then n(T ′) = n′ = n − 2, `(T ′) = `′ = ` − 2 and s(T ′) = s′ = s.

Among all ir2-functions on T ′, let f ′ be chosen so that the weight assigned to leaves

is as small as possible. We first assume that f ′(u) = ∅. If f ′(v) = ∅, then deg(u) ≥ 3.

Then re-assigning {1, 2} to u and ∅ to all leaf neighbors of u produces a new I2RDF

g′ of T ′ such that w(g′) ≤ w(f ′) and the sum of the values assigned to all leaves under

g′ is less than the sum of the values assigned to all leaves under f ′, a contradiction.

Hence we may assume that f ′(v) 6= ∅. Since, v is a support vertex, we can assume

that f ′(v) = {1, 2}. Then we can extend f ′ to a I2RDF f of T by assigning ∅ to v′

and {1} to u′, and so by the inductive hypothesis,

ir2(T ) ≤ ir2(T ′) + 1 ≤ (14(n− 2) + (`− 2) + s)/20 + 1 < (14n+ `+ s)/20.
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Next assume that f ′(u) 6= ∅. Since u is a support vertex, we have f ′(u) = {1, 2}.
Also, f ′(v) = ∅, since f ′ is a ir2-function. Then we can extend f ′ to a I2RDF f of T

by assigning ∅ to u′ and {1} to v′. As above, we get that

ir2(T ) ≤ ir2(T ′) + 1 < (14n+ `+ s)/20. �

If deg(xd−1) ≥ 3, then by Claim 1, we may assume that xd−2 is not a strong support

vertex, for otherwise the desired result follows.

Claim 2. If u is a strong support vertex of T such that N(u) ∩ (V (T ) − L(T )) = {v}
and there exists at least one weak support vertex of degree two in N(v), then ir2(T ) <
(14n+ `+ s)/20.

Proof of Claim 2. Let u′ be the leaf neighbor of u and x be the weak support

vertex adjacent to v with leaf neighbor y. Let T ′ = T − {u′, x, y}. Then n′ = n− 3,

`′ = `− 2 and s′ = s− 1. Among all ir2-functions on T ′, let f ′ be chosen so that the

weight assigned to leaves is as small as possible.

First assume that f ′(u) = ∅. If f ′(v) = ∅, then deg(u) ≥ 3, and we can extend f ′ to a

I2RDF f of T by re-assigning {1, 2} to u and x, and ∅ to u′, y and all leaf neighbors

of u in T ′. Thus

ir2(T ) ≤ ir2(T ′) + 2 ≤ (14(n− 3) + (l − 2) + (s− 1))/20 + 2 < (14n+ l + s)/20.

Now assume that f ′(v) 6= ∅. Without loss of generality, we can assume that 2 ∈ f(v).

Then we can extend f ′ to a I2RDF f of T by assigning ∅ to x and {1} to y, u′, and

so

ir2(T ) ≤ ir2(T ′) + 2 < (14n+ `+ s)/20.

Next assume that f ′(u) 6= ∅. Since u is a support vertex in tree T ′, we have f ′(u) =

{1, 2}. Also, f ′(v) = ∅, since f ′ is a ir2-function. Then we can extend f ′ to a I2RDF

f of T by assigning ∅ to y, u′ and {1, 2} to x. As above,

ir2(T ) ≤ ir2(T ′) + 2 < (14n+ `+ s)/20. �

If deg(xd−1) ≥ 3, then by Claim 2, we may assume that there is no weak support

vertex of degree two as a child of vertex xd−2, for otherwise the desired result follows.

Claim 3. If deg(xd−1) ≥ 3, then ir2(T ) < (14n+ `+ s)/20.

Proof of Claim 3. By Claim 1, we may assume that xd−2 is not a strong support

vertex and by Claim 2 every child support vertex of xd−2 in tree T has degree at

least three. Let r be the number of children of xd−2 that are leaves, and let k be the

number of children support vertex of xd−2. Claim 1, implies that r ≤ 1. Further,
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since xd−1 has degree at least three, we note that k ≥ 1. Let T ′ = T − Txd−2
. Then

n′ = n−
∑

u∈N(xd−2)−(L(T )∪{xd−3}) deg(u)− r− 1 ≤ n− 3k− r− 1, s′ ≤ s− k− r+ 1

and `′ ≤ `− 2k− r+ 1. Assume that f ′ is an ir2-function of T ′. Then we can extend

f ′ to a I2RDF f of T by assigning {1, 2} to all child support vertices of xd−2, {1}
to leaf neighbors of xd−2 in T ′, if any, and ∅ to the remaining vertices in tree Txd−2

.

Hence,

ir2(T ) ≤ ir2(T ′) + 2k + r

≤ (14n′ + `′ + s′)/20 + 2k + r

= (14(n− 3k − r − 1) + (`− 2k − r + 1) + (s− k − r + 1))/20 + 2k + r

< (14n+ `+ s)/20. �

By Claim 3, we may assume that deg(xd−1) = 2, for otherwise the desired result

follows.

Claim 4. If deg(xd−2) = 2 and deg(xd−3) ≥ 3, then ir2(T ) < (14n+ l + s)/20.

Proof of Claim 4. Let T ′ = T − {xd, xd−1, xd−2}. Then n′ = n− 3, `′ = `− 1 and

s′ = s− 1. Assume that f ′ is a ir2-function. Then we can extend f ′ to a I2RDF f of

T by assigning {1, 2} to xd−1 and ∅ to xd and xd−2. Hence,

ir2(T ) ≤ ir2(T ′) + 2

≤ (14n′ + l′ + s′)/20 + 2

= (14(n− 3) + (`− 1) + (s− 1))/20 + 2

< (14n+ l + s)/20. �

Claim 5. If deg(xd−2) = 2 and deg(xd−3) = 2, then ir2(T ) < (14n+ `+ s)/20.

Proof of Claim 5. Let T ′ = T − {xd, xd−1}. Then n′ = n − 2, `′ = ` and s′ = s.

Assume that f ′ is an ir2-function. We first assume that f ′(xd−2) 6= ∅. Without loss

of generality, we assume that 2 ∈ f ′(xd−2). Then we can extend f ′ to a I2RDF f of

T by assigning {1} to xd and ∅ to xd−1, and so we deduce that

ir2(T ) ≤ ir2(T ′) + 1

≤ (14n′ + l′ + s′)/20 + 2

= (14(n− 2) + `+ s)/20 + 1

< (14n+ `+ s)/20.

Next assume that f ′(xd−2) = ∅. Then f ′(xd−3) = {1, 2}. If for every vertex u ∈
N(xd−4) other than xd−3, f ′(u) = ∅, then re-assigning {1} to xd−4 and {2} to xd−2 the
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set, produces a new I2RDF g′ of T ′ such that g′(xd−2) 6= ∅ and so as before the desired

result follows. Thus we may assume that there exists a vertex w ∈ N(xd−4)−{xd−3}
such that f ′(w) 6= ∅. Without loss of generality, we may assume that 2 ∈ f ′(w). Then

we can extend f ′ to a I2RDF f of T by re-assigning {1} to xd−3, {1, 2} to xd−1, and

∅ to xd. Hence,

ir2(T ) ≤ ir2(T ′) + 1

≤ (14n′ + l′ + s′)/20 + 2

= (14(n− 2) + `+ s)/20 + 1

< (14n+ `+ s)/20. �

By Claims 4 and 5, we can assume that deg(xd−2) ≥ 3, for otherwise the desired

result follows.

Claim 6. If deg(xd−3) = 2, then ir2(T ) < (14n+ `+ s)/20.

Proof of Claim 6. Let T ′ = T − Txd−3
. Then we can assume that every children

of xd−2 is a leaf or a weak support vertex. Let r be the number of children of

xd−2 of degree 2 and k be the number of leaf neighbors of xd−2. Then r + k ≥ 2,

n′ = n− 2r − k − 2, `′ ≤ `− r − k + 1 and s′ ≤ s− r − k′ + 1, where k′ = 1 if k 6= 0

and k′ = 0 otherwise. Assume that f ′ is a ir2(T ′)-function. Then we can extend f ′

to a I2RDF f of T by assigning {1, 2} to xd−2, ∅ to every vertex in N(xd−2) and {1}
to the remaining vertices of T . Hence,

ir2(T ) ≤ ir2(T ′) + r + 2

≤ (14n′ + `′ + s′)/20 + r + 2

= (14(n− 2r − k − 2) + (`− r − k + 1) + (s− r − k′ + 1))/20 + r + 2

< (14n+ `+ s)/20. �

By Claim 6, we can assume that deg(xd−3) ≥ 3, for otherwise the desired result

follows.

Claim 7. If xd−3 is a strong support vertex, then ir2(T ) < (14n+ l + s)/20.

Proof of Claim 7. Let u ∈ L(xd−3) and T ′ = T − {xd, xd−1, u}. Then, n′ = n− 3,

`′ = ` − 2 and s′ = s − 1. Among all ir2(T ′)-functions, let f ′ be chosen so that the

weight assigned to leaves is as small as possible. We first assume that f ′(xd−2) 6= ∅.
Without loss of generality, we assume that 2 ∈ f ′(xd−2). Then we can extend f ′ to a
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I2RDF f of T by assigning {1} to xd and u and assigning ∅ to xd−1.So,

ir2(T ) ≤ ir2(T ′) + 2

≤ (14n′ + `′ + s′)/20 + 2

= (14(n− 3) + (`− 2) + (s− 1))/20 + 2

< (14n+ `+ s)/20.

Next assume that f ′(xd−2) = ∅. We know that every child of xd−2 in tree T ′ is a leaf

or a weak support vertex of degree two. Let r be the number of leaf neighbors of xd−2.

Since f ′(xd−2) = ∅, for every leaf v ∈ L(xd−2) we have |f ′(v)| ≥ 1 and for every child

support vertex z with leaf neighbors z′ we have |f ′(z)| + |f ′(z′)| ≥ 2. Assume that

f ′(xd−3) = ∅. If r 6= 0. Then the function f defined by f(xd−2) = {1, 2}, f(w) = ∅ for

w ∈ N(xd−2), f(w) = {2} if w is a leaf in Txd−2
at distance 2 from xd−2, f(u) = {1}

and g′(w) = f ′(w) otherwise, is a I2RDF for T with w(f) ≤ w(f ′) + 2. Also, if r = 0,

then the function f defined by f(xd−2) = {1}, f(w) = ∅ for w ∈ N(xd−2), f(w) = {2}
if w is a leaf in Txd−2

at distance 2 from xd−2, f(u) = {1} and g′(w) = f ′(w) otherwise,

is a I2RDF for tree T with w(f) ≤ w(f ′) + 2. Hence,

ir2(T ) ≤ ir2(T ′) + 2

≤ (14n′ + `′ + s′)/20 + 2

= (14(n− 3) + (`− 2) + (s− 1))/20 + 2

< (14n+ `+ s)/20.

Thus we may assume that f ′(xd−3) 6= ∅. Since xd−3 is a support vertex in the tree

T ′, we can assume that f(xd−3) = {1, 2}. Then we can extend f ′ to a I2RDF f of T

by assigning {1, 2} to xd−1 and assigning ∅ to {u, xd}. Hence,

ir2(T ) ≤ ir2(T ′) + 2

≤ (14n′ + `′ + s′)/20 + 2

= (14(n− 3) + (`− 2) + (s− 1))/20 + 2

< (14n+ `+ s)/20. �

By Claim 7, we can assume that xd−3 is not a strong support vertex.

Claim 8. If xd−3 has a child which is a weak support vertex of degree two, then ir2(T ) <
(14n+ `+ s)/20.

Proof of Claim 8. Assume that xd−3 has a child u that is a weak support vertex

of degree two. Let L(u) = {v} and T ′ = T − {xd, xd−1, u, v}. Then n′ = n − 4,

`′ = ` − 2 and s′ = s − 2. Among all ir2(T ′)-functions, let f ′ be chosen so that the

weight assigned to leaves is as small as possible. We first assume that f ′(xd−2) 6= ∅.
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Without loss of generality, we assume that 2 ∈ f ′(xd−2). Then we can extend f ′ to a

I2RDF f of T by assigning {1} to xd, {1, 2} to u and ∅ to xd−1 and v. So

ir2(T ) ≤ ir2(T ′) + 3

≤ (14n′ + l′ + s′)/20 + 3

= (14(n− 4) + (`− 2) + (s− 2))/20 + 3

= (14n+ `+ s)/20.

Next assume that f ′(xd−2) = ∅. If f ′(xd−3) 6= ∅, then we may assume that 2 ∈
f ′(xd−3). Then we can extend f ′ to a I2RDF f of T by assigning {1} to v, {1, 2} to

xd−1 and ∅ to xd and u. Then

ir2(T ) ≤ ir2(T ′) + 3

≤ (14n′ + l′ + s′)/20 + 3

= (14(n− 4) + (`− 2) + (s− 2))/20 + 3

= (14n+ `+ s)/20.

Now assume that f ′(xd−3) = ∅. Let r = `xd−2
. Since f ′(xd−2) = ∅, for every leaf

v ∈ L(xd−2), |f ′(v)| = 1, and for every child support vertex z with leaf neighbors

z′, |f ′(z)| + |f ′(z′)| = 2. If r 6= 0, then the function f defined by f(xd−2) = {1, 2},
f(w) = ∅ for w ∈ N(xd−2), f(w) = {2} if w is a leaf in Txd−2

at distance 2 from

xd−2, f(u) = {1, 2}, f(v) = ∅ and g′(w) = f ′(w) otherwise, is a I2RDF for T with

w(f) ≤ w(f ′) + 3. Also, if r = 0, then the function f defined by f(xd−2) = {1},
f(w) = ∅ for w ∈ N(xd−2), f(w) = {2} if w is a leaf in Txd−2

at distance 2 from

xd−2, f(u) = {1, 2}, f(v) = ∅ and g′(w) = f ′(w) otherwise, is a I2RDF for T with

w(f) ≤ w(f ′) + 3. Hence,

ir2(T ) ≤ ir2(T ′) + 3

≤ (14n′ + l′ + s′)/20 + 3

= (14(n− 4) + (`− 2) + (s− 2))/20 + 2

= (14n+ `+ s)/20. �

Thus we may assume that xd−3 has no weak support vertex of degree two as a child.

Let R be the set of all support vertices u ∈ N(xd−3) ∩ V (Txd−3
) such that N(u) −

(L(T ) ∪ {xd−3}) 6= ∅, R0 = L(R), K = (S(T ) ∩ V (Txd−3
)) − N(xd−3), K0 = L(K),

P be the set of all strong support vertices u ∈ N(xd−3)∩ V (Txd−3
) such that N(u)−

(L(T ) ∪ {xd−3}) = ∅, P0 = L(P ) and B = V (Txd−3
) − (S(Txd−3

) ∪ L(Txd−3
)). Also,

let |R| = r, |R0| = r0, |K| = k, |K0| = k0, |P | = p, |P0| = p0 and |B| = b. It is easy

to see that r0 ≥ r, k = k0, p0 ≥ 2p and k ≥ r + 2b.

We first assume that xd−3 is a support vertex and so as before, `xd−3
= 1. Let

T ′ = T − Txd−3
. Then n′ = n − r − r0 − k − k0 − p − p0 − 2, `′ ≤ ` − r0 − k0 − p0,
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s′ ≤ s − r − k − p. Among all ir2(T ′)-functions, let f ′ be chosen so that the weight

assigned to leaves is as small as possible. Then we can extend f ′ to a I2RDF f of T

by assigning {1, 2} to vertices of R∪P , ∅ to vertices of R0∪P0∪{x3}, {2} to vertices

of B, {1} to the vertices of L(xd−3) ∪ K0 and ∅ to the remaining vertices of Txd−3
.

Hence

ir2(T ) ≤ ir2(T ′) + 2r + 2p+ b+ k0 + 1

≤ (14n′ + l′ + s′)/20 + 2r + 2p+ b+ k0 + 1

= (14(n− r − r0 − k − k0 − p− p0 − b− 2)

+ (`− r0 − k0 − p0) + (s− r − k − p))/20 + 2r + 2p+ b+ k0 + 1

≤ (14n+ `+ s)/20 + (25r − 15r0 − 15k + 15k0 + 25p− 15p0 + 6b− 8)/20

≤ (14n+ `+ s)/20 + (10r − 10k − 5p0 + 6b− 8)/20

≤ (14n+ `+ s)/20 + (−14b− 5p0 − 8)/20

< (14n+ `+ s)/20.

Next assume that xd−3 is not a support vertex. Let T ′ = T − Txd−3
. Then n′ =

n − r − r0 − k − k0 − p − p0 − 1, `′ ≤ ` − r0 − k0 − p0 + 1, s′ ≤ s − r − k − p + 1.

Among all ir2(T ′)-functions, let f ′ be chosen so that the weight assigned to leaves is

as small as possible. Then we can extend f ′ to a I2RDF f of T by assigning {1, 2}
to the vertices of R ∪ P , ∅ to the vertices of R0 ∪ P0 ∪ {xd−3}, {2} to the vertices set

B, {1} to the vertices of K0 and ∅ to the remaining vertices of Txd−3
. Hence

ir2(T ) ≤ ir2(T ′) + 2r + 2p+ b+ k0

≤ (14n′ + l′ + s′)/20 + 2r + 2p+ b+ k0

= (14(n− r − r0 − k − k0 − p− p0 − b− 1) + (`− r0 − k0 − p0 + 1)

+ (s− r − k − p+ 1))/20 + 2r + 2p+ b+ k0

≤ (14n+ `+ s)/20 + (25r − 15r0 − 15k + 5k0 + 25p− 15p0 + 6b− 12)/20

≤ (14n+ `+ s)/20 + (10r − 10k − 5p0 + 6b− 12)/20

≤ (14n+ `+ s)/20 + (−14b− 5p0 − 12)/20

< (14n+ `+ s)/20.
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