Research Article

Signed total Italian *k*-domatic number of a graph

Lutz Volkmann

Lehrstuhl II für Mathematik, RWTH Aachen University, 52056 Aachen, Germany volkm@math2.rwth-aachen.de

Received: 4 March 2021; Accepted: 18 August 2021 Published Online: 20 August 2021

Abstract: Let $k \geq 1$ be an integer, and let G be a finite and simple graph with vertex set V(G). A signed total Italian k-dominating function on a graph G is a function $f: V(G) \to \{-1, 1, 2\}$ such that $\sum_{u \in N(v)} f(u) \geq k$ for every $v \in V(G)$, where N(v) is the neighborhood of v, and each vertex u with f(u) = -1 is adjacent to a vertex v with f(v) = 2 or to two vertices w and z with f(w) = f(z) = 1. A set $\{f_1, f_2, \ldots, f_d\}$ of distinct signed total Italian k-dominating functions on G with the property that $\sum_{i=1}^d f_i(v) \leq k$ for each $v \in V(G)$, is called a signed total Italian k-dominating family (of functions) on G. The maximum number of functions in a signed total Italian k-dominating family on G is the signed total Italian k-domatic number of G, denoted by $d_{stI}^k(G)$. In this paper we initiate the study of signed total Italian k-domatic numbers in graphs, and we present sharp bounds for $d_{stI}^k(G)$. In addition, we determine the signed total Italian k-domatic number of some graphs.

Keywords: Signed total Italian k-dominating function, Signed total Italian k-domination number, Signed total Italian k-domatic number

AMS Subject classification: 05C69

1. Terminology and introduction

For notation and graph theory terminology, we in general follow Haynes, Hedetniemi and Slater [3]. Specifically, let G be a simple graph with vertex set V = V(G) and edge set E = E(G). The order |V| of G is denoted by n = n(G). For every vertex $v \in V$, the open neighborhood N(v) is the set $\{u \in V(G) \mid uv \in E(G)\}$ and the closed neighborhood of v is the set $N[v] = N(v) \cup \{v\}$. The degree of a vertex $v \in V$ is d(v) = |N(v)|. The minimum and maximum degree of a graph G are denoted by $\delta = \delta(G)$ and $\Delta = \Delta(G)$, respectively. A graph G is regular or r-regular if d(v) = rfor each vertex v of G. The complement of a graph G is denoted by \overline{G} . We write K_n for the complete graph of order n, $K_{p,q}$ for the complete bipartite graph with partite sets X and Y, where |X| = p and |Y| = q, C_n for the cycle of length n and P_n for the path of order n.

© 2023 Azarbaijan Shahid Madani University

In this paper we continue the study of Roman and Italian dominating functions in graphs and digraphs. If $k \ge 1$ is an integer, then the signed total Roman k-dominating function (STRkDF) on a graph G is defined in [9] as a function $f: V(G) \longrightarrow \{-1, 1, 2\}$ such that $\sum_{u \in N(v)} f(u) \ge k$ for each $v \in V(G)$, and such that every vertex $u \in V(G)$ for which f(u) = -1 is adjacent to at least one vertex w for which f(w) = 2. The weight of an STRkDF f is the value $\omega(f) = \sum_{v \in V} f(v)$. The signed total Roman k-domination number of a graph G, denoted by $\gamma_{stR}^k(G)$, equals the minimum weight of an STRkDF on G. A $\gamma_{stR}^k(G)$ -function is a signed total Roman k-dominating function of G with weight $\gamma_{stR}^k(G)$. The special case k = 1, was introduced and studied in [7] and [6].

A signed total Italian k-dominating function (STIkDF) on a graph G is defined in [11] as a function $f: V(G) \longrightarrow \{-1, 1, 2\}$ such that $\sum_{u \in N(v)} f(u) \ge k$ for each $v \in V(G)$, and every vertex u for which f(u) = -1 is adjacent to a vertex v with f(v) = 2 or to two vertices w and z with f(w) = f(z) = 1. Note that in the case $k \ge 2$ the second condition is superfluous. The weight of an STIkDF f is the value $\omega(f) = \sum_{v \in V} f(v)$. The signed total Italian k-domination number of a graph G, denoted by $\gamma_{stI}^k(G)$, equals the minimum weight of an STIkDF on G. The case k = 1 was introduced and studied in [10]. A $\gamma_{stI}^k(G)$ -function is a signed total Italian k-dominating function of G with weight $\gamma_{stI}^k(G)$.

The signed total Roman and signed total Italian k-domination numbers exist when $\delta(G) \geq \frac{k}{2}$, and the definitions lead to $\gamma_{stI}^k(G) \leq \gamma_{stR}^k(G)$.

A concept dual in a certain sense to the domination number is the domatic number, introduced by Cockayne and Hedetniemi [2]. They have defined the domatic number d(G) of a graph G by means of sets. A partition of V(G), all of whose classes are dominating sets in G, is called a domatic partition. The maximum number of classes of a domatic partition of G is the domatic number d(G) of G. But Rall has defined a variant of the domatic number of G, namely the fractional domatic number of G, using functions on V(G). (This was mentioned by Slater and Trees in [5].) Analogous to the fractional domatic number we may define the signed total Roman and signed total Italian k-domatic numbers.

A set $\{f_1, f_2, \ldots, f_d\}$ of distinct signed total Italian (Roman) k-dominating functions on G with the property that $\sum_{i=1}^d f_i(v) \leq k$ for each $v \in V(G)$, is called a signed total Italian (Roman) k-dominating family (of functions) on G. The maximum number of functions in a signed total Italian (Roman) k-dominating family (STIkD family (STRkD) family) on G is the signed total Italian (Roman) k-domatic number of G, denoted by $d_{stI}^k(G)$ ($d_{stR}^k(G)$). The signed total Italian (Roman) k-domatic number of G, denoted by $d_{stI}^k(G) = d_{stR}^k(G) \geq d_{stR}^k(G) \geq 1$ for all graphs G with $\delta(G) \geq \frac{k}{2}$. The signed total Roman k-domatic number was introduced and studied in [8]. For more information on the Roman and Italian domatic problem, we refer the reader to the survey article [1]. If k = 1, then we also write $\gamma_{stR}^1(G) = \gamma_{stR}(G)$, $\gamma_{stI}^1(G) = \gamma_{stI}(G)$, $d_{stR}^1(G) = d_{stR}(G)$ and $d_{stI}^1(G) = d_{stI}(G)$.

Our purpose in this paper is to initiate the study of the signed total Italian k-domatic number in graphs. We first derive basic properties and sharp bounds for the signed total Italian k-domatic number of a graph. Then we present upper bounds on $\gamma_{stI}^k(G) + d_{stI}^k(G)$ and $d_{stI}^k(G) + d_{stI}^k(\overline{G})$. In addition, we determine the signed total Italian k-domatic number of some classes of graphs.

We make use of the following known results in this paper.

Proposition A. ([11]) If G is an r-regular graph of order n with $r \geq \frac{k}{2}$, then

$$\gamma_{stI}^k(G) \ge \frac{kn}{r}$$

Proposition B. ([11]) If G is a graph of order n with $\delta(G) \ge k$, then $\gamma_{stI}^k(G) \le \gamma_{stR}^k(G) \le n$.

Proposition C. ([11]) Let G be a graph of order n with $\delta(G) \ge \lceil \frac{k}{2} \rceil$. Then $\gamma_{stI}^k(G) \le 2n$, with equality if and only if k is even, $\delta(G) = \frac{k}{2}$, and each vertex of G is adjacent to a vertex of minimum degree.

Proposition D. ([11]) If $k \ge 1$ and $n \ge 2$ are integers such that $2n-2 \ge k$, then it holds:

- (i) If $k \ge n$, then $\gamma_{stI}^k(K_n) = k + 2$.
- (ii) If $k \leq n-1$ and n-k is odd, then $\gamma_{stI}^k(K_n) = k+1$.
- (iii) If $k \leq n-1$ and n-k is even, then $\gamma_{stI}^k(K_n) = k+2$.

Proposition E. ([7]) If $n \ge 3$ is an integer, then $\gamma_{stR}(K_n) = 3$.

Proposition F. ([6]) If G is a graph of order n with $\delta(G) \ge 1$, then $\gamma_{stR}(G) \cdot d_{stR}(G) \le n$.

Proposition G. ([11],) If $p, k \ge 1$ are integers such that $p \ge \frac{k}{2}$, then $\gamma_{stI}^k(K_{p,p}) = 2k$.

Proposition H. ([8]) If $k \geq 3$ is an integer, then $d_{stR}^k(K_{k,k}) = k$. In addition, $d_{stR}^1(K_{1,1}) = d_{stR}^2(K_{2,2}) = 1$.

Proposition I. ([8]) If k, p are integers such that $p \ge k + 1 \ge 2$, then $d_{stR}^k(K_{p,p}) = p$, with exception of the case k = 1 and p = 3, in which case $d_{stR}^1(K_{3,3}) = 1$.

Proposition J. ([11]) If C_n is a cycle of length n, then $\gamma_{stI}^3(C_n) = \lceil \frac{3n}{2} \rceil + 1$ when $n \equiv 2 \pmod{4}$ and $\gamma_{stI}^3(C_n) = \lceil \frac{3n}{2} \rceil$ otherwise.

Proposition K. ([6]) Let G be a graph of order n with $\delta(G) \ge 1$. Then $\gamma_{stR}(G) = n$ if and only if the components of G are K_2 , K_3 , P_3 or C_6 .

Since $\gamma_{stI}(K_2) = 2$, $\gamma_{stI}(K_3) = 3$, $\gamma_{stI}(P_3) = 3$, $\gamma_{stI}(C_6) = 6$ (see also [10]) and $\gamma_{stI}(G) \leq \gamma_{stR}(G)$, Proposition K leads to the next result immediately.

Proposition L. Let G be a graph of order n with $\delta(G) \ge 1$. Then $\gamma_{stI}(G) = n$ if and only if the components of G are K_2 , K_3 , P_3 or C_6 .

2. Bounds on the signed total Italian k-domatic number

In this section we present basic properties of $d_{stI}^k(G)$ and sharp bounds on the signed total Italian k-domatic number of a graph.

Theorem 1. If G is a graph with $\delta(G) \geq \frac{k}{2}$, then $d_{stI}^k(G) \leq \delta(G)$. Moreover, if $d_{stI}^k(G) = \delta(G)$, then for each STIkD family $\{f_1, f_2, \ldots, f_d\}$ on G with $d = d_{stI}^k(G)$ and each vertex v of minimum degree, $\sum_{x \in N(v)} f_i(x) = k$ for each function f_i and $\sum_{i=1}^d f_i(x) = k$ for all $x \in N(v)$.

Proof. Let $\{f_1, f_2, \ldots, f_d\}$ be an STIkD family on G such that $d = d_{stI}^k(G)$. If v is a vertex of minimum degree $\delta(G)$, then we deduce that

$$kd \le \sum_{i=1}^{d} \sum_{x \in N(v)} f_i(x) = \sum_{x \in N(v)} \sum_{i=1}^{d} f_i(x) \le \sum_{x \in N(v)} k = k\delta(G)$$

and thus $d_{stI}^k(G) \leq \delta(G)$.

If $d_{stI}^k(G) = \delta(G)$, then the two inequalities occurring in the proof become equalities. Hence for the STIkD family $\{f_1, f_2, \ldots, f_d\}$ on G and for each vertex v of minimum degree, $\sum_{x \in N(v)} f_i(x) = k$ for each function f_i and $\sum_{i=1}^d f_i(x) = k$ for all $x \in N(v)$.

Theorem 2. If G is a graph of order n with $\delta(G) \geq \frac{k}{2}$, then

$$\gamma_{stI}^k(G) \cdot d_{stI}^k(G) \le kn.$$

Moreover, if $\gamma_{stI}^k(G) \cdot d_{stI}^k(G) = kn$, then for each STIkD family $\{f_1, f_2, \ldots, f_d\}$ on G with $d = d_{stI}^k(G)$, each function f_i is a $\gamma_{stI}^k(G)$ -function and $\sum_{i=1}^d f_i(v) = k$ for all $v \in V(G)$.

Proof. Let $\{f_1, f_2, \ldots, f_d\}$ be an STIkD family on G such that $d = d_{stI}^k(G)$ and let $v \in V(G)$. Then

$$\begin{aligned} d \cdot \gamma_{stI}^k(G) &= \sum_{i=1}^d \gamma_{stI}^k(G) \le \sum_{i=1}^d \sum_{v \in V(G)} f_i(v) \\ &= \sum_{v \in V(G)} \sum_{i=1}^d f_i(v) \le \sum_{v \in V(G)} k = kn. \end{aligned}$$

If $\gamma_{stI}^k(G) \cdot d_{stI}^k(G) = kn$, then the two inequalities occurring in the proof become equalities. Hence for the STIkD family $\{f_1, f_2, \ldots, f_d\}$ on G and for each $i, \sum_{v \in V(G)} f_i(v) = \gamma_{stI}^k(G)$. Thus each function f_i is a $\gamma_{stI}^k(G)$ -function, and $\sum_{i=1}^d f_i(v) = k$ for all $v \in V(G)$.

Example 1. If n = 4p + 2 with an integer $p \ge 1$, then $d_{stI}(K_n) = \frac{n}{2}$.

Proof. Proposition D and Theorem 2 imply $d_{stI}(K_n) \leq n/\gamma_{stI}(K_n) = n/2$. Now let $x_1, x_2, \ldots x_n$ be the vertices of K_n . Define the function f_1 by $f_1(x_i) = -1$ for $1 \leq i \leq 2p$ and $f_1(x_i) = 1$ for $2p+1 \leq i \leq 4p+2$. For $2 \leq j \leq 2p+1$ define $f_j(x_i) = -1$ for $2j-1 \leq i \leq 2p+2j-2$ and $f_j(x_i) = 1$ for $2p+2j-1 \leq i \leq 4p+2j$, where the indices are taken modulo n = 4p+2. It is straightforwad to verify that f_i is a signed total Italian dominating function of K_n for $1 \leq i \leq 2p+1$ and $\{f_1, f_2, \ldots, f_{2p+1}\}$ is a signed total Italian dominating family on K_n . Hence $d_{stI}(K_n) \geq n/2$ and thus $d_{stI}(K_n) = n/2$.

It follows from Propositions E and F that $d_{stR}(K_n) \leq n/\gamma_{stR}(K_n) = n/3$. Therefore we deduce from Example 1 for n = 4p + 2 that

$$d_{stI}(K_n) - d_{stR}(K_n) \ge \frac{n}{2} - \frac{n}{3} = \frac{n}{6}$$

Thus the difference $d_{stI}(G) - d_{stR}(G)$ can be arbitrarily large.

Example 2. If n = 6p + 3 with an integer $p \ge 1$, then $d_{stI}(K_n) = \frac{n}{3}$.

Proof. Proposition D and Theorem 2 imply $d_{stI}(K_n) \leq n/\gamma_{stI}(K_n) = n/3$. Now let $x_1, x_2, \ldots x_n$ be the vertices of K_n . Define the function f_1 by $f_1(x_i) = -1$ for $1 \leq i \leq 3p$ and $f_1(x_i) = 1$ for $3p+1 \leq i \leq 6p+3$. For $2 \leq j \leq 2p+1$ define $f_j(x_i) = -1$ for $3j-2 \leq i \leq 3p+3j-3$ and $f_j(x_i) = 1$ for $3p+3j-2 \leq i \leq 6p+3j$, where the indices are taken modulo n = 6p+3. It is straightforwad to verify that f_i is a signed total Italian dominating function of K_n for $1 \leq i \leq 2p+1$ and $\{f_1, f_2, \ldots, f_{2p+1}\}$ is a signed total Italian dominating family on K_n . Hence $d_{stI}(K_n) \geq n/3$ and thus $d_{stI}(K_n) = n/3$.

Example 3. Let $k \ge 1$ and $p \ge \frac{k}{2}$ be integers. Then $d_{stI}^k(K_{p,p}) = p$, with exception of the cases $p = \frac{k}{2}$, in which case $d_{stI}^k(K_{\frac{k}{2},\frac{k}{2}}) = 1$, or p = k = 2, in which case $d_{stI}^2(K_{2,2}) = 1$.

Proof. Theorem 1 implies $d_{stI}^k(K_{p,p}) \leq p$. If $p = \frac{k}{2}$, then the function f with f(x) = 2 for each vertex x is the unique STIkDF and thus $d_{stI}^k(K_{\frac{k}{2},\frac{k}{2}}) = 1$. If p = k = 2, then le f be an STI2DF on $K_{2,2}$. Then $f(x) \geq 1$ for each vertex x. If we suppose that $\{f_1, f_2\}$ is a STI2D family on $K_{2,2}$, then the condition $f_1(x) + f_2(x) \leq 2$ leads to $f_1(x) = f_2(x) = 1$ for each vertex x, a contradiction. Therefore $d_{stI}^2(K_{2,2}) = 1$.

In the remaining cases we now show that $d_{stI}^k(K_{p,p}) \ge p$. Let $A = \{a_1, a_2, \ldots, a_p\}$ and $B = \{b_1, b_2, \ldots, b_p\}$ be a bipartition of $K_{p,p}$.

If p = 1, then $d_{stI}^k(K_{1,1}) = 1$ is immediate for $1 \le k \le 2$. If p = 2 and k = 1, then define f_1 and f_2 by $f_1(a_1) = f_1(b_1) = -1$, $f_1(a_2) = f_1(b_2) = 2$, $f_2(a_1) = f_2(b_1) = 2$ and $f_2(a_2) = f_2(b_2) = -1$. Then $\{f_1, f_2\}$ is a signed total Italian 1-dominating family on $K_{2,2}$ and thus $d_{stI}(K_{2,2}) \ge 2$. If p = 2 and k = 3, then define f_1 and f_2 by $f_1(a_1) =$ $f_1(b_1) = 1, f_1(a_2) = f_1(b_2) = 2, f_2(a_1) = f_2(b_1) = 2$ and $f_2(a_2) = f_2(b_2) = 1$. Then $\{f_1, f_2\}$ is a signed total Italian 3-dominating family on $K_{2,2}$ and thus $d_{stI}^3(K_{2,2}) \ge 2$. Let now $p \ge 3$. If p = 3 and k = 1, then define the functions f_1, f_2 and f_3 by $f_1(a_1) = f_1(b_1) = -1, \ f_1(a_2) = f_1(b_2) = f_1(a_3) = f_1(b_3) = 1, \ f_2(a_2) = f(b_2) = -1,$ $f_2(a_1) = f_2(b_1) = f_2(a_3) = f_2(b_3) = 1, f_3(a_3) = f(b_3) = -1 \text{ and } f_3(a_1) = f_3(b_1) = -1$ $f_3(a_2) = f_3(b_2) = 1$. Then $\{f_1, f_2, f_3\}$ is a signed total Italian 1-dominating family on $K_{3,3}$ and thus $d_{stI}(K_{3,3}) \geq 3$. If $p \neq 3$, and $p \geq k \geq 1$, then it follows from Propositions H and I that $d_{stR}^k(K_{p,p}) = p$ and therefore $d_{stI}^k(K_{p,p}) \ge d_{stR}^k(K_{p,p}) = p$. Finally, let $\frac{k}{2} . Define the function <math>f_1$ by $f_1(a_i) = f_1(b_i) = 1$ for $1 \le i \le 2p - k$ and $f_1(a_i) = f_1(b_i) = 2$ for $2p - k + 1 \le i \le p$. For $2 \le j \le p$ and $1 \leq i \leq p$ define $f_j(a_i) = f_j(b_i) = f_1(a_{i+j-1})$, where the indices are taken modulo p. It is easy to see that f_i is a signed total Italian k-dominating function of $K_{p,p}$ and $\{f_1, f_2, \ldots, f_p\}$ is a signed total Italian k-dominating family on $K_{p,p}$. Hence $d_{stI}^k(K_{p,p}) \ge p$ also in this case, and the proof is complete.

Example 3 and Proposition G demonstrate that Theorems 1 and 2 are both sharp. For some regular graphs we will improve the upper bound $d_{stI}^k(G) \leq \delta(G)$, given in Theorem 1.

Theorem 3. Let G be a δ -regular graph of order n with $\delta \geq \frac{k}{2}$ such that $n = p\delta + r$ with integers $p \geq 0$ and $1 \leq r \leq \delta - 1$ and $kr = t\delta + s$ with integers $t \geq 0$ and $1 \leq s \leq \delta - 1$. Then $d_{stI}^k(G) \leq \delta - 1$.

Proof. Let $\{f_1, f_2, \ldots, f_d\}$ be a STIkD family on G such that $d = d_{stI}^k(G)$. It follows that

$$\sum_{i=1}^{d} \omega(f_i) = \sum_{i=1}^{d} \sum_{v \in V(G)} f_i(v) = \sum_{v \in V(G)} \sum_{i=1}^{d} f_i(v) \le \sum_{v \in V(G)} k = kn.$$

Proposition A implies

$$\begin{split} \omega(f_i) &\geq \gamma_{stI}^k(G) \geq \left\lceil \frac{kn}{\delta} \right\rceil = \left\lceil \frac{kp\delta + kr}{\delta} \right\rceil \\ &= kp + \left\lceil \frac{kr}{\delta} \right\rceil = kp + \left\lceil \frac{t\delta + s}{\delta} \right\rceil = kp + t + 1 \end{split}$$

for each $i \in \{1, 2, ..., d\}$. If we suppose to the contrary that $d = \delta$, then the above

inequality chains lead to the contradiction

$$\begin{split} kn &\geq \sum_{i=1}^{d} \omega(f_i) \geq d(kp+t+1) = \delta(kp+t+1) \\ &= kp\delta + \delta t + \delta = kp\delta + kr - s + \delta > kp\delta + kr = k(p\delta + r) = kn. \end{split}$$

Thus $d \leq \delta - 1$, and the proof is complete.

Example 3 demonstrates that Theorem 3 is not valid in general.

Corollary 1. If C_n is a cycle of odd length n, then $d_{stI}^3(C_n) = 1$.

Proof. Let n = 2p + 1 for an integer $p \ge 1$. With $\delta = 2$, r = 1, k = 3, t = 1 and s = 1, we deduce from Theorem 3 that $d_{stI}^3(C_n) \le \delta - 1 = 1$ and therefore $d_{stI}^3(C_n) = 1$.

Example 4. If C_n is a cycle of even length n, then $d_{stI}^3(C_n) = 1$ if $n \equiv 2 \pmod{4}$ and $d_{stI}^3(C_n) = 2$ if $n \equiv 0 \pmod{4}$.

Proof. First assume that n = 4p + 2 for an integer $p \ge 1$. Proposition J implies $\gamma_{stI}^3(C_n) = \lceil \frac{3(4p+2)}{2} \rceil + 1 = 6p + 4$. So it follows from Theorem 2 that $d_{stI}^3(C_n) \le \frac{3(4p+2)}{6p+4} < 2$ and therefore $d_{stI}^3(C_n) = 1$ in this case.

Second assume that n = 4p for an integer $p \ge 1$. Let $C_n = (x_1, x_2, \ldots, x_n, x_1)$. Define the function f_1 by $f_1(x_{4i+1}) = f_1(x_{4i+2}) = 1$ and $f_1(x_{4i+3}) = f_1(x_{4i+4}) = 2$ and the function f_2 by $f_2(x_{4i+1}) = f_2(x_{4i+2}) = 2$ and $f_2(x_{4i+3}) = f_2(x_{4i+4}) = 1$ for $0 \le i \le p - 1$. Then f_1 and f_2 are signed total Italian 3-dominating functions of C_n and $\{f_1, f_2\}$ is a signed total Italian 3-dominating family on C_n . Hence $d_{stI}^3(C_n) \ge 2$ and thus $d_{stI}^3(C_n) = 2$ according to Theorem 1.

Theorem 4. Let $k \ge 4$ be an integer, and let G be a graph of order n with $\delta(G) \ge \lceil \frac{k}{2} \rceil$. If $\gamma_{stI}^k(G) \le 2n - 1$, then $d_{stI}^k(G) \ge 2$. If $\gamma_{stI}^k(G) \le 2n - 1$ and $\delta(G) = 2$, then $d_{stI}^4(G) = \delta(G) = 2$.

Proof. Since $\gamma_{stI}^k(G) \leq 2n-1$, there exists an STIkDF f_1 with $f_1(v) \leq 1$ for at least one vertex $v \in V(G)$. Note that $f_2: V(G) \longrightarrow \{-1, 1, 2\}$ with $f_2(x) = 2$ for each vertex $x \in V(G)$ is another STIkDF on G. As $f_1(x) + f_2(x) \leq 4 \leq k$ for each vertex $x \in V(G)$, $\{f_1, f_2\}$ is a signed total Italian k-dominating family on G and thus $d_{stI}^k(G) \geq 2$.

If $\delta(G) = 2$, then Theorem 1 implies $d_{stI}^4(G) \leq \delta(G) = 2$ and thus $d_{stI}^4(G) = \delta(G) = 2$.

Corollary 1 demonstrates that Theorem 4 is not valid for k = 3 in general. In addition, if H is a graph with $\delta(H) = 1$, then it follows from Theorem 1 that $\gamma_{stI}^k(H) = 1$ for k = 1 or k = 2. Thus Theorem 4 is also not valid for k = 1 or k = 2 in general.

Corollary 2. Let G be a graph of order n with $\delta(G) \ge 2$. If $2n - 1 \ge \gamma_{stI}^4(G) > \frac{4n}{3}$, then $d_{stI}^4(G) = 2$.

Proof. Theorem 4 implies $d_{stI}^4(G) \ge 2$. Conversely, it follows from Theorem 2 that

$$d_{stI}^4(G) \le \frac{4n}{\gamma_{stI}^4(G)} < 3.$$

Thus $d_{stI}^4(G) \leq 2$, and the proof is complete.

Theorem 5. If G is a graph of order $n \ge 3$ with $\delta(G) \ge \frac{k}{2}$, then $d_{stI}^k(G) \le n-2$. In the case k = 1, we have $d_{stI}(G) = n-2$ if and only if $G \in \{K_3, P_3, C_4\}$.

Proof. Let $\delta = \delta(G)$. If $\delta \leq n-2$, then Theorem 1 implies $d_{stI}^k(G) \leq \delta \leq n-2$. If $\delta = n - 1$, then $G = K_n$, and we deduce from Proposition D that $\gamma_{stI}^k(K_n) = k + 2$ if $k \geq n$ or $k \leq n-1$ and n-k is even and $\gamma_{stI}^k(K_n) = k+1$ if $k \leq n-1$ and n-k is odd. If k = 2n-2, then $d_{stI}^k(K_n) = 1 \leq n-2$. Assume next that $k \leq 2n-3$. In the case $\gamma_{stI}^k(K_n) = k+2$, it follows from Theorem 2 and $k \leq 2n-3$ that $d_{stI}^k(K_n) \leq kn/\gamma_{stI}^k(K_n) = kn/(k+2) < n-1$. Thus $d_{stI}^k(K_n) \leq n-2$. Assume next that $\gamma_{stI}^k(K_n) = k+1$. If k < n-1, then Theorem 2 implies $d_{stI}^k(K_n) \leq d_{stI}^k(K_n)$ $kn/\gamma_{stI}^k(K_n) = kn/(k+1) < n-1$ and so $d_{stI}^k(K_n) \leq n-2$. Finally, assume that k = n - 1. Then $\gamma_{stI}^{k}(K_{n}) = k + 1 = n$. Suppose that $d_{stI}^{k}(K_{n}) = n - 1 = k$, and let $\{f_1, f_2, \ldots, f_k\}$ be an STIkD family on K_n . As $\gamma_{stI}^k(K_n) \cdot d_{stI}^k(K_n) = kn$, it follows from Theorem 2 that each function f_i is a $\gamma_{stI}^k(K_n)$ -function. If there exists a function f_i and a vertex w such that $f_i(w) = 2$, then $\omega(f_i) = f_i(w) + f_i(N(w)) \ge 2 + k$. Consequently, f_i is not a $\gamma_{stI}^k(K_n)$ -function. Thus $f_i(x) \in \{-1, 1\}$ for $1 \leq i \leq d$ and $x \in V(K_n)$. However, only the function f with f(x) = 1 for each vertex $x \in V(K_n)$ has weight n if $f(x) \in \{-1, 1\}$. Therefore $d_{stI}^k(K_n) = n - 1$ is not possible. If $G \in \{K_3, P_3, C_4\}$, then it is easy to verify that $d_{stI}(G) = n - 2$.

Conversely, assume that $d_{stI}(G) = n - 2$. If $\delta(G) \leq n - 3$, then Theorem 1 leads to the contradiction $n - 2 = d_{stI}(G) \leq n - 3$. Thus there remain the cases $\delta = n - 1$ and $\delta = n - 2$. If $\delta = n - 1$, then we observe as above that $n - 2 = d_{stI}(G) = n/2$ when n is even and $n - 2 = d_{stI}(G) = n/3$ when n is odd. This yields to n = 4 or n = 3. Since $d_{stI}(K_4) = 1 < 2 = n - 2$, we obtain $G = K_3$. In the case $\delta = n - 2$, we distinguish two cases.

Case 1. Assume that G is δ -regular. If $\delta = 1$, then n = 3, a contradiction. If $\delta = 2$, then n = 4 and so $G = C_4$. Let now $\delta \ge 3$. Then $n = (n - 2) + 2 = \delta + 2$, and thus Theorem 3 leads to the contradiction $n - 2 = d_{stI}(G) \le \delta - 1 = n - 3$.

Case 2. Assume that $\delta = n - 2$ and $\Delta(G) = n - 1$. If n = 3, then $G = P_3$. If n = 4, then $G = K_4 - e$, where e is an arbitrary edge of K_4 . However, since $d_{stI}(K_4 - e) = 1$, this is not possible. Let now $n \ge 5$, and let f be a $\gamma_{stI}(G)$ -function. We will show that $\gamma_{stI}(G) \ge 2$.

If $f(x) \ge 1$ for all $x \in V(G)$, then $\gamma_{stI}(G) \ge n > 2$. Assume next that f(v) = -1 for at least one vertex $v \in V(G)$.

Assume first that there exists a vertex w with f(w) = 2. If d(w) = n-1, then it follows that $\gamma_{stI}(G) = f(w) + f(N(w)) \ge 2 + 1 = 3 > 2$. If d(w) = n - 2, then let u be a vertex not adjacent to w. This leads to $\gamma_{stI}(G) = f(w) + f(N(w)) + f(u) \ge 2 + 1 - 1 = 2$. Finally, assume that $f(x) \in \{-1, 1\}$ for all $x \in V(G)$. Assume next that n is even. Let now w be a vertex with f(w) = 1. If d(w) = n - 1, then $\gamma_{stI}(G) = f(w) + f(N(w)) \ge 1$ 1+1=2. If d(w)=n-2, then $f(N(w))\geq 1$ and the condition that n-2 is even shows that $f(N(w)) \geq 2$. If z is the vertex not adjacent to w, then we obtain $\gamma_{stI}(G) = f(w) + f(N(w)) + f(u) \ge 2 + 1 - 1 = 2$. Assume now that n = 2p + 1 is odd. Clearly, there exist at least p+1 vertices x with f(x) = 1. If there are at least p+2vertices x with f(x) = 1, then $\gamma_{stI}(G) \ge p + 2 - (n - (p + 2)) \ge 3$. Now suppose that there exist exactly p+1 vertices x with f(x) = 1 and p vertices y with f(y) = -1. Let $X = \{x_1, x_2, \dots, x_{p+1}\}$ such that $f(x_i) = 1$ for $1 \le i \le p+1$ and $Y = \{y_1, y_2, \dots, y_p\}$ such that $f(y_i) = -1$ for $1 \le i \le p$. First we observe that $d(x_i) = \delta = 2p - 1$ for $1 \leq i \leq p+1$. Therefore there exists a vertex y_i , say y_1 such $d(y_1) = \Delta(G) = 2p$. The condition $f(N(x_i)) \geq 1$ shows that there are at most (p+1)(p-1) edges from X to Y. In addition, the condition $\delta = 2p - 1$ shows that there are at least $p \cdot p$ edges from Y to X. This leads to the contradiction $p^2 \leq (p+1)(p-1) = p^2 - 1$, and therefore this case is not possible.

Consequently, we have $\gamma_{stI}(G) \geq 2$. Using again Theorem 2, we obtain $n-2 = d_{stI}(G) \leq n/\gamma_{stI}(G) \leq n/2$, a contradiction to $n \geq 5$. This completes the proof. \Box

The inequality $d_{stR}(G) \leq d_{stI}(G)$ leads to the following known result.

Corollary 3. ([6]) Let G be a graph of order $n \ge 3$ with $\delta(G) \ge 1$. Then $d_{stR}(G) \le n-2$, with equality if and only if $G \in \{K_3, P_3, C_4\}$.

3. Upper bounds on the sum $\gamma_{stI}^k(G) + d_{stI}^k(G)$

Theorem 6. If G is a graph of order n with $\delta(G) \ge k$, then

$$\gamma_{stI}^k(G) + d_{stI}^k(G) \le n + k,$$

with equality if and only if $d_{stI}^k(G) = k$ and $\gamma_{stI}^k(G) = n$.

Proof. If $d_{stI}^k(G) \leq k-1$, then Proposition B implies $\gamma_{stI}^k(G) + d_{stI}^k(G) \leq n+k-1$ immediately. If $d_{stI}^k(G) = k$, then Proposition B implies $\gamma_{stI}^k(G) + d_{stI}^k(G) \leq n+k$, with equality if and only if $\gamma_{stI}^k(G) = n$. Let now $d_{stI}^k(G) \geq k+1$. Then Theorem 1

leads to $n-1 \ge \delta(G) \ge d_{stI}^k(G) \ge k+1$ and thus $n \ge k+2$. It follows from Theorem 2 that

$$\gamma^k_{stI}(G) + d^k_{stI}(G) \leq \frac{kn}{d^k_{stI}(G)} + d^k_{stI}(G).$$

According to Theorem 1, we have $k + 1 \le d_{stI}^k(G) \le n - 1$. Using these bounds, and the fact that the function g(x) = x + (kn)/x is decreasing for $k + 1 \le x \le \sqrt{kn}$ and increasing for $\sqrt{kn} \le x \le n - 1$, we obtain

$$\gamma_{stI}^k(G) + d_{stI}^k(G) \le \frac{kn}{d_{stI}^k(G)} + d_{stI}^k(G) \le \max\left\{\frac{kn}{k+1} + k + 1, \frac{kn}{n-1} + n - 1\right\}.$$

Since $n \ge k+2$, we observe that

$$\left\{\frac{kn}{k+1} + k + 1, \frac{kn}{n-1} + n - 1\right\} < n + k,$$

and therefore $\gamma_{stI}^k(G) + d_{stI}^k(G) \le n + k - 1$ in this case.

If $p = k \ge 3$ in Example 3, then $d_{stI}^k(K_{p,p}) = p$ and $\gamma_{stI}^k(K_{p,p}) = 2k$ by Proposition G and n = 2p = 2k. It follows that $d_{stI}^k(K_{p,p}) + \gamma_{stI}^k(K_{p,p}) = p + 2k = 2p + k = n + k$ and thus equality in Theorem 6 holds.

For k = 1 we have the following more precise version of Theorem 6.

Corollary 4. If G is a graph of order n with $\delta(G) \ge 1$, then $\gamma_{stI}(G) + d_{stI}(G) \le n+1$, with equality if and only if the components of G are K_2 , K_3 , P_3 or C_6 .

Proof. Theorem 6 implies $\gamma_{stI}(G) + d_{stI}(G) \leq n+1$, with equality if and only if $d_{stI}(G) = 1$ and $\gamma_{stI}(G) = n$. Since $\gamma_{stI}(G) = n$, Theorem 2 leads to $d_{stI}(G) = 1$, and it follows from Proposition L that the components of G are K_2, K_3, P_3 or C_6 . \Box

Theorem 7. Let G be a graph of order n and $\delta(G) \ge \lceil \frac{k}{2} \rceil$. Then

$$\gamma_{stI}^k(G) + d_{stI}^k(G) \le 2n + k - 1,$$

with equality if and only if k = 2, n is even and $G = \frac{n}{2}K_2$.

Proof. If $\delta = \delta(G) \ge k$, then Theorem 6 implies

$$\gamma_{stI}^{k}(G) + d_{stI}^{k}(G) \le n + k < 2n + k - 1.$$

Assume next that $\lceil \frac{k}{2} \rceil \leq \delta \leq k - 1$. Then $k \geq 2$ and according to Proposition C and Theorem 1, we obtain

$$\gamma_{stI}^k(G) + d_{stI}^k(G) \le 2n + \delta \le 2n + k - 1.$$
 (1)

If we have equality in (1), then $\gamma_{stI}^k(G) = 2n$ and $d_{stI}^k(G) = k-1$. Therefore Theorem 2 leads to $2n(k-1) = \gamma_{stI}^k(G) \cdot d_{stI}^k(G) \leq kn$ and so k = 2. Thus Proposition C yields to $\delta = 1$ and each vertex is adjacent to a vertex of degree 1. Hence $G = \frac{n}{2}K_2$. Clearly, if n is even and $G = \frac{n}{2}K_2$, then $\gamma_{stI}^2(G) = 2n$ and $d_{stI}^2(G) = 1$ and thus $\gamma_{stI}^2(G) + d_{stI}^2(G) = 2n + 1 = 2n + 2 - 1$.

Theorem 8. Let $k \geq 3$ be an integer, and let G be a graph of order n with $\delta(G) \geq \lceil \frac{k}{2} \rceil$. If $\gamma_{stI}^k(G) = 2n$, then $\gamma_{stI}^k(G) + d_{stI}^k(G) = 2n + 1$. If $\gamma_{stI}^k(G) \leq 2n - 1$, then

$$\gamma_{stI}^k(G) + d_{stI}^k(G) \le 2n + \left\lceil \frac{k}{2} \right\rceil - 1,$$

with equality if and only if k is even, $\gamma_{stI}^k(G) = 2n - 1$ and $d_{stI}^k(G) = \frac{k}{2}$.

Proof. If $\gamma_{stI}^k(G) = 2n$, then $d_{stI}^k(G) = 1$ and thus $\gamma_{stI}^k(G) + d_{stI}^k(G) = 2n + 1$. Let now $\gamma_{stI}^k(G) \leq 2n - 1$. Since $n \geq \delta(G) + 1 \geq \lceil \frac{k}{2} \rceil + 1 \geq \frac{k}{2} + 1$, we observe that $k \leq 2n - 2$. If k = 2n - 2, then $\gamma_{stI}^k(G) = 2n$, a contradiction. Therefore $k \leq 2n - 3$. If $\delta = \delta(G) \geq k$, then Theorem 6 and $k \leq 2n - 3$ lead to

$$\gamma_{stI}^k(G) + d_{stI}^k(G) \le n + k < 2n + \left\lceil \frac{k}{2} \right\rceil - 1$$

and hence $\gamma_{stI}^k(G) + d_{stI}^k(G) \leq 2n + \lceil \frac{k}{2} \rceil - 2$. Assume next that $\lceil \frac{k}{2} \rceil \leq \delta \leq k - 1$. If $d_{stI}^k(G) \leq \lceil \frac{k}{2} \rceil - 1$, then we deduce that $\gamma_{stI}^k(G) + d_{stI}^k(G) \leq 2n - 1 + \lceil \frac{k}{2} \rceil - 1 = 2n + \lceil \frac{k}{2} \rceil - 2$. If $d_{stI}^k(G) = \lceil \frac{k}{2} \rceil$, then we deduce that

$$\gamma_{stI}^k(G) + d_{stI}^k(G) \le 2n + \left\lceil \frac{k}{2} \right\rceil - 1,$$

with equality if and only $\gamma_{stI}^k(G) = 2n - 1$. However, if k is odd, then $d_{stI}^k(G) = \lceil \frac{k}{2} \rceil = \frac{k+1}{2}$, and Theorem 2 leads to the contradiction

$$2n - 1 = \gamma_{stI}^k(G) \le \frac{kn}{d_{stI}^k(G)} = \frac{2kn}{k+1}$$

Finally, let $\lceil \frac{k}{2} \rceil + 1 \le d_{stI}^k(G) \le k - 1$. Then $k \ge 4$ and so $n \ge 4$. We deduce from Theorem 2 that

$$\gamma_{stI}^k(G) + d_{stI}^k(G) \le \frac{kn}{d_{stI}^k(G)} + d_{stI}^k(G).$$

Using these bounds, we obtain analogously to the proof of Theorem 6 that

$$\gamma_{stI}^k(G) + d_{stI}^k(G) \le \max\left\{\frac{kn}{\lceil k/2\rceil + 1} + \left\lceil \frac{k}{2} \right\rceil + 1, \frac{kn}{k-1} + k - 1\right\}.$$

Now we show that

$$\max\left\{\frac{kn}{\lceil k/2\rceil+1} + \left\lceil \frac{k}{2} \right\rceil + 1, \frac{kn}{k-1} + k - 1\right\} < 2n + \left\lceil \frac{k}{2} \right\rceil - 1.$$

The inequality

$$\frac{kn}{\lceil k/2\rceil + 1} + \left\lceil \frac{k}{2} \right\rceil + 1 < 2n + \left\lceil \frac{k}{2} \right\rceil - 1$$

is equivalent with $kn < (2n-2)(\lceil \frac{k}{2} \rceil + 1)$. If k is even, then the last inequality is equivalent with k < 2n - 2, and if k is odd then this inequality is equivalent with k < 3n - 3. Since k < 2n - 2 < 3n - 3, the desired inequality is valid. If k is even, then the inequality

$$\frac{kn}{k-1} + k - 1 < 2n + \left\lceil \frac{k}{2} \right\rceil - 1$$

is equivalent with $k^2 - (2n+1)k + 4n < 0$ for $4 \le k \le 2n-3$. Using the fact that the function $g(x) = x^2 - (2n+1)x + 4n$ is decreasing for $4 \le x \le n + \frac{1}{2}$ and increasing for $n + \frac{1}{2} \le x \le 2n - 3$, we obtain

$$k^{2} - (2n+1)k + 4n \le \max\{g(4), g(2n-3)\} = \max\{12 - 4n, 12 - 4n\} < 0,$$

and the desired bound is proved. If k is odd, then the proof is similar and is therefore omitted.

Example 5. Let $C_n = x_1 x_2 \dots x_n x_1$ be a cycle of order $n \ge 4$. If we add the edge $x_1 x_3$, then we denote the resulting graph by H. The function f with $f(x_2) = 1$, $f(x_1) = 2$ and $f(x_i) = 2$ for $3 \le i \le n$ is a $\gamma_{stI}^4(H)$ -function of weight 2n - 1. According to Corollary 2, we have $d_{stI}^4(H) = 2$ and thus $\gamma_{stI}^4(H) + d_{stI}^4(H) = 2n + 1 = 2n + \lceil \frac{k}{2} \rceil - 1$ for k = 4. Thus equality in the bound of Theorem 8 is possible, at least for k = 4.

4. Nordhaus-Gaddum type results

Results of Nordhaus-Gaddum type study the extreme values of the sum or the product of a parameter on a graph and its complement. In their current classical paper [4], Nordhaus and Gaddum discussed this problem for the chromatic number. We present such inequalities for the signed total Italian k-domatic number.

Theorem 9. If G is a graph of order n with $\delta(G), \delta(\overline{G}) \ge \lceil \frac{k}{2} \rceil$, then $d_{stI}^k(G) + d_{stI}^k(\overline{G}) \le n-1$. Furthermore, if $d_{stI}^k(G) + d_{stI}^k(\overline{G}) = n-1$, then G is regular.

Proof. It follows from Theorem 1 that

$$d_{stI}^k(G) + d_{stI}^k(\overline{G}) \le \delta(G) + \delta(\overline{G}) = \delta(G) + (n - \Delta(G) - 1) \le n - 1.$$

If G is not regular, then $\Delta(G) - \delta(G) \ge 1$, and hence the above inequality chain implies the better bound $d_{stI}^k(G) + d_{stI}^k(\overline{G}) \le n-2$.

For k = 1 we will improve Theorem 9.

Theorem 10. If G is a graph of order n with $\delta(G), \delta(\overline{G}) \ge 1$, then $d_{stI}(G) + d_{stI}(\overline{G}) \le n-1$, with equality if and only if $G = C_4$ or $\overline{G} = C_4$.

Proof. If G is not regular, then Theorem 9 implies $d_{stI}(G) + d_{stI}(\overline{G}) \leq n-2$. If $G = C_4$ or $\overline{G} = C_4$, say $G = C_4$, then it follows from Example 3 that $d_{stI}(G) = 2$ and $d_{stI}(\overline{G}) = 1$ and therefore $d_{stI}(G) + d_{stI}(\overline{G}) = 3 = n - 1$. Conversely, assume that $d_{stI}(G) + d_{stI}(\overline{G}) = n - 1$. Then G is δ -regular and \overline{G} is $(n-\delta-1)$ -regular with $1 \leq \delta \leq n-2$ and $1 \leq n-\delta-1 \leq n-2$. We assume, without loss of generality, that $\delta \leq (n-1)/2$.

If $n \not\equiv 0 \pmod{\delta}$, then we deduce from Theorems 1 and 3 that

$$d_{stI}(G) + d_{stI}(\overline{G}) \le (\delta - 1) + (n - \delta - 1) = n - 2,$$

a contradiction. Next assume that $n \equiv 0 \pmod{\delta}$. Since $\delta \leq (n-1)/2$, we have $n = p\delta$ with an integer $p \geq 3$. If $n \not\equiv 0 \pmod{(n-\delta-1)}$, then Theorems 1 and 3 lead to

$$d_{stI}(G) + d_{stI}(\overline{G}) \le \delta + (n - \delta - 2) = n - 2,$$

a contradiction. Therefore assume that $n \equiv 0 \pmod{(n-\delta-1)}$. Then $n = q(n-\delta-1)$ with an integer $q \geq 2$. However, since $n - \delta - 1 \geq (n-1)/2$, we note that q = 2. Altogether, we have $n = p\delta = 2(n-\delta-1)$ and thus $n = p\delta = 2\delta + 2$. The conditions $p \geq 3$ and $\delta \geq 1$ yield to p = 3 and $\delta = 2$ or p = 4 and $\delta = 1$. If p = 4 and $\delta = 1$, then $G = \overline{C_4}$ and $\overline{G} = C_4$ as desired. If $\delta = 2$ and p = 3, then $G = C_6$ or $G = 2C_3$. Now it is straightforward to verify that $d_{stI}(C_6) = d_{stI}(2C_3) = 1$ and consequently $d_{stI}(C_6) + d_{stI}(\overline{C_6}) \leq 4 = n - 2$ and $d_{stI}(2C_3) + d_{stI}(\overline{2C_3}) \leq 4 = n - 2$.

Since $d_{stR}(G) \leq d_{stI}(G)$, Theorem 10 yields to the next known result.

Corollary 5. ([6]) If G is a graph of order n with $\delta(G), \delta(\overline{G}) \geq 1$, then $d_{stR}(G) + d_{stR}(\overline{G}) \leq n-1$, with equality if and only if $G = C_4$ or $\overline{G} = C_4$.

References

- M. Chellali, N. Jafari Rad, S.M. Sheikholeslami, and L. Volkmann, *The Roman domatic problem in graphs and digraphs: A survey*, Discuss. Math. Graph Theory (to appear).
- [2] E.J. Cockayne and S.T. Hedetniemi, Towards a theory of domination in graphs, Networks 7 (1977), no. 3, 247–261.
- [3] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.
- [4] E.A. Nordhaus and J.W. Gaddum, On complementary graphs, Amer. Math. Monthly 63 (1956), no. 3, 175–177.
- [5] P.J. Slater and E.L. Trees, *Multi-fractional domination*, J. Combin. Math. Combin. Comput. 40 (2002), 171–182.
- [6] L. Volkmann, On the signed total Roman domination and domatic numbers of graphs, Discrete Appl. Math. 214 (2016), 179–186.
- [7] _____, Signed total Roman domination in graphs, J. Comb. Optim. 32 (2016), no. 3, 855–871.
- [8] _____, The signed total Roman k-domatic number of a graph, Discuss. Math. Graph Theory 37 (2017), no. 4, 1027–1038.
- [9] _____, Signed total Roman k-domination in graphs, J. Combin. Math. Combin. Comput. 105 (2018), 105–116.
- [10] _____, Signed total Italian domination in graphs, J. Combin. Math. Combin. Comput. 115 (2020), 291–305.
- [11] _____, Signed total Italian k-domination in graphs, Commun. Comb. Optim. 6 (2021), no. 2, 171–183.