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Abstract: Let k ≥ 1 be an integer, and let G be a finite and simple graph with

vertex set V (G). A signed total Italian k-dominating function on a graph G is a
function f : V (G) → {−1, 1, 2} such that

∑
u∈N(v) f(u) ≥ k for every v ∈ V (G),

where N(v) is the neighborhood of v, and each vertex u with f(u) = −1 is adjacent

to a vertex v with f(v) = 2 or to two vertices w and z with f(w) = f(z) = 1. A set
{f1, f2, . . . , fd} of distinct signed total Italian k-dominating functions on G with the

property that
∑d

i=1 fi(v) ≤ k for each v ∈ V (G), is called a signed total Italian k-

dominating family (of functions) on G. The maximum number of functions in a signed
total Italian k-dominating family on G is the signed total Italian k-domatic number

of G, denoted by dkstI(G). In this paper we initiate the study of signed total Italian

k-domatic numbers in graphs, and we present sharp bounds for dkstI(G). In addition,
we determine the signed total Italian k-domatic number of some graphs.
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1. Terminology and introduction

For notation and graph theory terminology, we in general follow Haynes, Hedetniemi

and Slater [3]. Specifically, let G be a simple graph with vertex set V = V (G) and

edge set E = E(G). The order |V | of G is denoted by n = n(G). For every vertex

v ∈ V , the open neighborhood N(v) is the set {u ∈ V (G) | uv ∈ E(G)} and the

closed neighborhood of v is the set N [v] = N(v) ∪ {v}. The degree of a vertex v ∈ V
is d(v) = |N(v)|. The minimum and maximum degree of a graph G are denoted by

δ = δ(G) and ∆ = ∆(G), respectively. A graph G is regular or r-regular if d(v) = r

for each vertex v of G. The complement of a graph G is denoted by G. We write Kn

for the complete graph of order n, Kp,q for the complete bipartite graph with partite

sets X and Y , where |X| = p and |Y | = q, Cn for the cycle of length n and Pn for

the path of order n.
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In this paper we continue the study of Roman and Italian dominating functions in

graphs and digraphs. If k ≥ 1 is an integer, then the signed total Roman k-dominating

function (STRkDF) on a graph G is defined in [9] as a function f : V (G) −→ {−1, 1, 2}
such that

∑
u∈N(v) f(u) ≥ k for each v ∈ V (G), and such that every vertex u ∈ V (G)

for which f(u) = −1 is adjacent to at least one vertex w for which f(w) = 2. The

weight of an STRkDF f is the value ω(f) =
∑

v∈V f(v). The signed total Roman k-

domination number of a graph G, denoted by γkstR(G), equals the minimum weight of

an STRkDF on G. A γkstR(G)-function is a signed total Roman k-dominating function

of G with weight γkstR(G). The special case k = 1, was introduced and studied in [7]

and [6].

A signed total Italian k-dominating function (STIkDF) on a graph G is defined in [11]

as a function f : V (G) −→ {−1, 1, 2} such that
∑

u∈N(v) f(u) ≥ k for each v ∈ V (G),

and every vertex u for which f(u) = −1 is adjacent to a vertex v with f(v) = 2 or to

two vertices w and z with f(w) = f(z) = 1. Note that in the case k ≥ 2 the second

condition is superfluous. The weight of an STIkDF f is the value ω(f) =
∑

v∈V f(v).

The signed total Italian k-domination number of a graph G, denoted by γkstI(G),

equals the minimum weight of an STIkDF on G. The case k = 1 was introduced and

studied in [10]. A γkstI(G)-function is a signed total Italian k-dominating function of

G with weight γkstI(G).

The signed total Roman and signed total Italian k-domination numbers exist when

δ(G) ≥ k
2 , and the definitions lead to γkstI(G) ≤ γkstR(G).

A concept dual in a certain sense to the domination number is the domatic number,

introduced by Cockayne and Hedetniemi [2]. They have defined the domatic number

d(G) of a graph G by means of sets. A partition of V (G), all of whose classes are

dominating sets in G, is called a domatic partition. The maximum number of classes

of a domatic partition of G is the domatic number d(G) of G. But Rall has defined

a variant of the domatic number of G, namely the fractional domatic number of G,

using functions on V (G). (This was mentioned by Slater and Trees in [5].) Analogous

to the fractional domatic number we may define the signed total Roman and signed

total Italian k-domatic numbers.

A set {f1, f2, . . . , fd} of distinct signed total Italian (Roman) k-dominating functions

on G with the property that
∑d

i=1 fi(v) ≤ k for each v ∈ V (G), is called a signed total

Italian (Roman) k-dominating family (of functions) on G. The maximum number

of functions in a signed total Italian (Roman) k-dominating family (STIkD family

(STRkD) family) on G is the signed total Italian (Roman) k-domatic number of G,

denoted by dkstI(G) (dkstR(G)). The signed total Italian (Roman) k-domatic numbers

are well-defined and dkstI(G) ≥ dkstR(G) ≥ 1 for all graphs G with δ(G) ≥ k
2 . The

signed total Roman k-domatic number was introduced and studied in [8]. For more

information on the Roman and Italian domatic problem, we refer the reader to the

survey article [1]. If k = 1, then we also write γ1stR(G) = γstR(G), γ1stI(G) = γstI(G),

d1stR(G) = dstR(G) and d1stI(G) = dstI(G).

Our purpose in this paper is to initiate the study of the signed total Italian k-domatic

number in graphs. We first derive basic properties and sharp bounds for the signed

total Italian k-domatic number of a graph. Then we presemt upper bounds on
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γkstI(G) + dkstI(G) and dkstI(G) + dkstI(G). In addition, we determine the signed total

Italian k-domatic number of some classes of graphs.

We make use of the following known results in this paper.

Proposition A. ([11]) If G is an r-regular graph of order n with r ≥ k
2
, then

γk
stI(G) ≥ kn

r
.

Proposition B. ([11]) If G is a graph of order n with δ(G) ≥ k, then γk
stI(G) ≤ γk

stR(G) ≤
n.

Proposition C. ([11]) Let G be a graph of order n with δ(G) ≥ d k
2
e. Then γk

stI(G) ≤ 2n,
with equality if and only if k is even, δ(G) = k

2
, and each vertex of G is adjacent to a vertex

of minimum degree.

Proposition D. ([11]) If k ≥ 1 and n ≥ 2 are integers such that 2n−2 ≥ k, then it holds:

(i) If k ≥ n, then γk
stI(Kn) = k + 2.

(ii) If k ≤ n− 1 and n− k is odd, then γk
stI(Kn) = k + 1.

(iii) If k ≤ n− 1 and n− k is even, then γk
stI(Kn) = k + 2.

Proposition E. ([7]) If n ≥ 3 is an integer, then γstR(Kn) = 3.

Proposition F. ([6]) If G is a graph of order n with δ(G) ≥ 1, then γstR(G) ·dstR(G) ≤ n.

Proposition G. ([11],) If p, k ≥ 1 are integers such that p ≥ k
2
, then γk

stI(Kp,p) = 2k.

Proposition H. ([8]) If k ≥ 3 is an integer, then dkstR(Kk,k) = k. In addition,
d1stR(K1,1) = d2stR(K2,2) = 1.

Proposition I. ([8]) If k, p are integers such that p ≥ k + 1 ≥ 2, then dkstR(Kp,p) = p,
with exception of the case k = 1 and p = 3, in which case d1stR(K3,3) = 1.

Proposition J. ([11]) If Cn is a cycle of length n, then γ3
stI(Cn) = d 3n

2
e + 1 when

n ≡ 2 (mod 4) and γ3
stI(Cn) = d 3n2 e otherwise.

Proposition K. ([6]) Let G be a graph of order n with δ(G) ≥ 1. Then γstR(G) = n if
and only if the components of G are K2, K3, P3 or C6.

Since γstI(K2) = 2, γstI(K3) = 3, γstI(P3) = 3, γstI(C6) = 6 (see also [10]) and

γstI(G) ≤ γstR(G), Proposition K leads to the next result immediately.
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Proposition L. Let G be a graph of order n with δ(G) ≥ 1. Then γstI(G) = n if and
only if the components of G are K2, K3, P3 or C6.

2. Bounds on the signed total Italian k-domatic number

In this section we present basic properties of dkstI(G) and sharp bounds on the signed

total Italian k-domatic number of a graph.

Theorem 1. If G is a graph with δ(G) ≥ k
2
, then dkstI(G) ≤ δ(G). Moreover, if

dkstI(G) = δ(G), then for each STIkD family {f1, f2, . . . , fd} on G with d = dkstI(G) and each
vertex v of minimum degree,

∑
x∈N(v) fi(x) = k for each function fi and

∑d
i=1 fi(x) = k for

all x ∈ N(v).

Proof. Let {f1, f2, . . . , fd} be an STIkD family on G such that d = dkstI(G). If v is

a vertex of minimum degree δ(G), then we deduce that

kd ≤
d∑

i=1

∑
x∈N(v)

fi(x) =
∑

x∈N(v)

d∑
i=1

fi(x) ≤
∑

x∈N(v)

k = kδ(G)

and thus dkstI(G) ≤ δ(G).

If dkstI(G) = δ(G), then the two inequalities occurring in the proof become equalities.

Hence for the STIkD family {f1, f2, . . . , fd} on G and for each vertex v of minimum

degree,
∑

x∈N(v) fi(x) = k for each function fi and
∑d

i=1 fi(x) = k for all x ∈
N(v).

Theorem 2. If G is a graph of order n with δ(G) ≥ k
2
, then

γk
stI(G) · dkstI(G) ≤ kn.

Moreover, if γk
stI(G) · dkstI(G) = kn, then for each STIkD family {f1, f2, . . . , fd} on G with

d = dkstI(G), each function fi is a γ
k
stI(G)-function and

∑d
i=1 fi(v) = k for all v ∈ V (G).

Proof. Let {f1, f2, . . . , fd} be an STIkD family on G such that d = dkstI(G) and let

v ∈ V (G). Then

d · γkstI(G) =

d∑
i=1

γkstI(G) ≤
d∑

i=1

∑
v∈V (G)

fi(v)

=
∑

v∈V (G)

d∑
i=1

fi(v) ≤
∑

v∈V (G)

k = kn.
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If γkstI(G) · dkstI(G) = kn, then the two inequalities occurring in the proof be-

come equalities. Hence for the STIkD family {f1, f2, . . . , fd} on G and for each

i,
∑

v∈V (G) fi(v) = γkstI(G). Thus each function fi is a γkstI(G)-function, and∑d
i=1 fi(v) = k for all v ∈ V (G).

Example 1. If n = 4p+ 2 with an integer p ≥ 1, then dstI(Kn) =
n
2
.

Proof. Proposition D and Theorem 2 imply dstI(Kn) ≤ n/γstI(Kn) = n/2. Now

let x1, x2, . . . xn be the vertices of Kn. Define the function f1 by f1(xi) = −1 for

1 ≤ i ≤ 2p and f1(xi) = 1 for 2p+1 ≤ i ≤ 4p+2. For 2 ≤ j ≤ 2p+1 define fj(xi) = −1

for 2j − 1 ≤ i ≤ 2p+ 2j − 2 and fj(xi) = 1 for 2p+ 2j − 1 ≤ i ≤ 4p+ 2j, where the

indices are taken modulo n = 4p+ 2. It is straightforwad to verify that fi is a signed

total Italian dominating function of Kn for 1 ≤ i ≤ 2p + 1 and {f1, f2, . . . , f2p+1}
is a signed total Italian dominating family on Kn. Hence dstI(Kn) ≥ n/2 and thus

dstI(Kn) = n/2.

It follows from Propositions E and F that dstR(Kn) ≤ n/γstR(Kn) = n/3. Therefore

we deduce from Example 1 for n = 4p+ 2 that

dstI(Kn)− dstR(Kn) ≥ n

2
− n

3
=
n

6
.

Thus the difference dstI(G)− dstR(G) can be arbitrarily large.

Example 2. If n = 6p+ 3 with an integer p ≥ 1, then dstI(Kn) =
n
3
.

Proof. Proposition D and Theorem 2 imply dstI(Kn) ≤ n/γstI(Kn) = n/3. Now

let x1, x2, . . . xn be the vertices of Kn. Define the function f1 by f1(xi) = −1 for

1 ≤ i ≤ 3p and f1(xi) = 1 for 3p+1 ≤ i ≤ 6p+3. For 2 ≤ j ≤ 2p+1 define fj(xi) = −1

for 3j − 2 ≤ i ≤ 3p+ 3j − 3 and fj(xi) = 1 for 3p+ 3j − 2 ≤ i ≤ 6p+ 3j, where the

indices are taken modulo n = 6p+ 3. It is straightforwad to verify that fi is a signed

total Italian dominating function of Kn for 1 ≤ i ≤ 2p + 1 and {f1, f2, . . . , f2p+1}
is a signed total Italian dominating family on Kn. Hence dstI(Kn) ≥ n/3 and thus

dstI(Kn) = n/3.

Example 3. Let k ≥ 1 and p ≥ k
2
be integers. Then dkstI(Kp,p) = p, with exception of the

cases p = k
2
, in which case dkstI(K k

2
, k
2
) = 1, or p = k = 2, in which case d2stI(K2,2) = 1.

Proof. Theorem 1 implies dkstI(Kp,p) ≤ p. If p = k
2 , then the function f with f(x) =

2 for each vertex x is the unique STIkDF and thus dkstI(K k
2 ,

k
2
) = 1. If p = k = 2,

then le f be an STI2DF on K2,2. Then f(x) ≥ 1 for each vertex x. If we suppose

that {f1, f2} is a STI2D family on K2,2, then the condition f1(x) + f2(x) ≤ 2 leads

to f1(x) = f2(x) = 1 for each vertex x, a contradiction. Therefore d2stI(K2,2) = 1.
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In the remaining cases we now show that dkstI(Kp,p) ≥ p. Let A = {a1, a2, . . . , ap}
and B = {b1, b2, . . . , bp} be a bipartition of Kp,p.

If p = 1, then dkstI(K1,1) = 1 is immediate for 1 ≤ k ≤ 2. If p = 2 and k = 1, then

define f1 and f2 by f1(a1) = f1(b1) = −1, f1(a2) = f1(b2) = 2, f2(a1) = f2(b1) = 2

and f2(a2) = f2(b2) = −1. Then {f1, f2} is a signed total Italian 1-dominating family

on K2,2 and thus dstI(K2,2) ≥ 2. If p = 2 and k = 3, then define f1 and f2 by f1(a1) =

f1(b1) = 1, f1(a2) = f1(b2) = 2, f2(a1) = f2(b1) = 2 and f2(a2) = f2(b2) = 1. Then

{f1, f2} is a signed total Italian 3-dominating family on K2,2 and thus d3stI(K2,2) ≥ 2.

Let now p ≥ 3. If p = 3 and k = 1, then define the functions f1, f2 and f3 by

f1(a1) = f1(b1) = −1, f1(a2) = f1(b2) = f1(a3) = f1(b3) = 1, f2(a2) = f(b2) = −1,

f2(a1) = f2(b1) = f2(a3) = f2(b3) = 1, f3(a3) = f(b3) = −1 and f3(a1) = f3(b1) =

f3(a2) = f3(b2) = 1. Then {f1, f2, f3} is a signed total Italian 1-dominating family

on K3,3 and thus dstI(K3,3) ≥ 3. If p 6= 3, and p ≥ k ≥ 1, then it follows from

Propositions H amd I that dkstR(Kp,p) = p and therefore dkstI(Kp,p) ≥ dkstR(Kp,p) = p.

Finally, let k
2 < p ≤ k − 1. Define the function f1 by f1(ai) = f1(bi) = 1 for

1 ≤ i ≤ 2p − k and f1(ai) = f1(bi) = 2 for 2p − k + 1 ≤ i ≤ p. For 2 ≤ j ≤ p and

1 ≤ i ≤ p define fj(ai) = fj(bi) = f1(ai+j−1), where the indices are taken modulo

p. It is easy to see that fi is a signed total Italian k-dominating function of Kp,p

and {f1, f2, . . . , fp} is a signed total Italian k-dominating family on Kp,p. Hence

dkstI(Kp,p) ≥ p also in this case, and the proof is complete.

Example 3 and Proposition G demonstrate that Theorems 1 and 2 are both sharp.

For some regular graphs we will improve the upper bound dkstI(G) ≤ δ(G), given in

Theorem 1.

Theorem 3. Let G be a δ-regular graph of order n with δ ≥ k
2
such that n = pδ + r

with integers p ≥ 0 and 1 ≤ r ≤ δ− 1 and kr = tδ+ s with integers t ≥ 0 and 1 ≤ s ≤ δ− 1.
Then dkstI(G) ≤ δ − 1.

Proof. Let {f1, f2, . . . , fd} be a STIkD family on G such that d = dkstI(G). It follows

that
d∑

i=1

ω(fi) =

d∑
i=1

∑
v∈V (G)

fi(v) =
∑

v∈V (G)

d∑
i=1

fi(v) ≤
∑

v∈V (G)

k = kn.

Proposition A implies

ω(fi) ≥ γkstI(G) ≥
⌈
kn

δ

⌉
=

⌈
kpδ + kr

δ

⌉
= kp+

⌈
kr

δ

⌉
= kp+

⌈
tδ + s

δ

⌉
= kp+ t+ 1

for each i ∈ {1, 2, . . . , d}. If we suppose to the contrary that d = δ, then the above
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inequality chains lead to the contradiction

kn ≥
d∑

i=1

ω(fi) ≥ d(kp+ t+ 1) = δ(kp+ t+ 1)

= kpδ + δt+ δ = kpδ + kr − s+ δ > kpδ + kr = k(pδ + r) = kn.

Thus d ≤ δ − 1, and the proof is complete.

Example 3 demonstrates that Theorem 3 is not valid in general.

Corollary 1. If Cn is a cycle of odd length n, then d3stI(Cn) = 1.

Proof. Let n = 2p + 1 for an integer p ≥ 1. With δ = 2, r = 1, k = 3, t = 1

and s = 1, we deduce from Theorem 3 that d3stI(Cn) ≤ δ − 1 = 1 and therefore

d3stI(Cn) = 1.

Example 4. If Cn is a cycle of even length n, then d3stI(Cn) = 1 if n ≡ 2 (mod 4) and
d3stI(Cn) = 2 if n ≡ 0 (mod 4).

Proof. First assume that n = 4p + 2 for an integer p ≥ 1. Proposition J implies

γ3stI(Cn) = d 3(4p+2)
2 e + 1 = 6p + 4. So it follows from Theorem 2 that d3stI(Cn) ≤

3(4p+2)
6p+4 < 2 and therefore d3stI(Cn) = 1 in this case.

Second assume that n = 4p for an integer p ≥ 1. Let Cn = (x1, x2, . . . , xn, x1).

Define the function f1 by f1(x4i+1) = f1(x4i+2) = 1 and f1(x4i+3) = f1(x4i+4) = 2

and the function f2 by f2(x4i+1) = f2(x4i+2) = 2 and f2(x4i+3) = f2(x4i+4) = 1 for

0 ≤ i ≤ p− 1. Then f1 and f2 are signed total Italian 3-dominating functions of Cn

and {f1, f2} is a signed total Italian 3-dominating family on Cn. Hence d3stI(Cn) ≥ 2

and thus d3stI(Cn) = 2 according to Theorem 1.

Theorem 4. Let k ≥ 4 be an integer, and let G be a graph of order n with δ(G) ≥ d k
2
e.

If γk
stI(G) ≤ 2n − 1, then dkstI(G) ≥ 2. If γk

stI(G) ≤ 2n − 1 and δ(G) = 2, then d4stI(G) =
δ(G) = 2.

Proof. Since γkstI(G) ≤ 2n − 1, there exists an STIkDF f1 with f1(v) ≤ 1 for at

least one vertex v ∈ V (G). Note that f2 : V (G) −→ {−1, 1, 2} with f2(x) = 2 for

each vertex x ∈ V (G) is another STIkDF on G. As f1(x) + f2(x) ≤ 4 ≤ k for each

vertex x ∈ V (G), {f1, f2} is a signed total Italian k-dominating family on G and thus

dkstI(G) ≥ 2.

If δ(G) = 2, then Theorem 1 implies d4stI(G) ≤ δ(G) = 2 and thus d4stI(G) = δ(G) =

2.
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Corollary 1 demonstrates that Theorem 4 is not valid for k = 3 in general. In addition,

if H is a graph with δ(H) = 1, then it follows from Theorem 1 that γkstI(H) = 1 for

k = 1 or k = 2. Thus Theorem 4 is also not valid for k = 1 or k = 2 in general.

Corollary 2. Let G be a graph of order n with δ(G) ≥ 2. If 2n − 1 ≥ γ4
stI(G) > 4n

3
,

then d4stI(G) = 2.

Proof. Theorem 4 implies d4stI(G) ≥ 2.

Conversely, it follows from Theorem 2 that

d4stI(G) ≤ 4n

γ4stI(G)
< 3.

Thus d4stI(G) ≤ 2, and the proof is complete.

Theorem 5. If G is a graph of order n ≥ 3 with δ(G) ≥ k
2
, then dkstI(G) ≤ n− 2. In the

case k = 1, we have dstI(G) = n− 2 if and only if G ∈ {K3, P3, C4}.

Proof. Let δ = δ(G). If δ ≤ n− 2, then Theorem 1 implies dkstI(G) ≤ δ ≤ n− 2. If

δ = n − 1, then G = Kn, and we deduce from Proposition D that γkstI(Kn) = k + 2

if k ≥ n or k ≤ n − 1 and n − k is even and γkstI(Kn) = k + 1 if k ≤ n − 1

and n − k is odd. If k = 2n − 2, then dkstI(Kn) = 1 ≤ n − 2. Assume next that

k ≤ 2n− 3. In the case γkstI(Kn) = k + 2, it follows from Theorem 2 and k ≤ 2n− 3

that dkstI(Kn) ≤ kn/γkstI(Kn) = kn/(k+ 2) < n− 1. Thus dkstI(Kn) ≤ n− 2. Assume

next that γkstI(Kn) = k + 1. If k < n − 1, then Theorem 2 implies dkstI(Kn) ≤
kn/γkstI(Kn) = kn/(k + 1) < n − 1 and so dkstI(Kn) ≤ n − 2. Finally, assume that

k = n − 1. Then γkstI(Kn) = k + 1 = n. Suppose that dkstI(Kn) = n − 1 = k,

and let {f1, f2, . . . , fk} be an STIkD family on Kn. As γkstI(Kn) · dkstI(Kn) = kn, it

follows from Theorem 2 that each function fi is a γkstI(Kn)-function. If there exists a

function fi and a vertex w such that fi(w) = 2, then ω(fi) = fi(w)+fi(N(w)) ≥ 2+k.

Consequently, fi is not a γkstI(Kn)-function. Thus fi(x) ∈ {−1, 1} for 1 ≤ i ≤ d and

x ∈ V (Kn). However, only the function f with f(x) = 1 for each vertex x ∈ V (Kn)

has weight n if f(x) ∈ {−1, 1}. Therefore dkstI(Kn) = n− 1 is not possible.

If G ∈ {K3, P3, C4}, then it is easy to verify that dstI(G) = n− 2.

Conversely, assume that dstI(G) = n − 2. If δ(G) ≤ n − 3, then Theorem 1 leads to

the contradiction n − 2 = dstI(G) ≤ n − 3. Thus there remain the cases δ = n − 1

and δ = n − 2. If δ = n − 1, then we observe as above that n − 2 = dstI(G) = n/2

when n is even and n − 2 = dstI(G) = n/3 when n is odd. This yields to n = 4 or

n = 3. Since dstI(K4) = 1 < 2 = n− 2, we obtain G = K3. In the case δ = n− 2, we

distinguish two cases.

Case 1. Assume that G is δ-regular. If δ = 1, then n = 3, a contradiction. If δ = 2,

then n = 4 and so G = C4. Let now δ ≥ 3. Then n = (n− 2) + 2 = δ + 2, and thus

Theorem 3 leads to the contradiction n− 2 = dstI(G) ≤ δ − 1 = n− 3.
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Case 2. Assume that δ = n− 2 and ∆(G) = n− 1. If n = 3, then G = P3. If n = 4,

then G = K4−e, where e is an arbitrary edge of K4. However, since dstI(K4−e) = 1,

this is not possible. Let now n ≥ 5, and let f be a γstI(G)-function. We will show

that γstI(G) ≥ 2.

If f(x) ≥ 1 for all x ∈ V (G), then γstI(G) ≥ n > 2. Assume next that f(v) = −1 for

at least one vertex v ∈ V (G).

Assume first that there exists a vertex w with f(w) = 2. If d(w) = n−1, then it follows

that γstI(G) = f(w)+f(N(w)) ≥ 2+1 = 3 > 2. If d(w) = n−2, then let u be a vertex

not adjacent to w. This leads to γstI(G) = f(w) + f(N(w)) + f(u) ≥ 2 + 1− 1 = 2.

Finally, assume that f(x) ∈ {−1, 1} for all x ∈ V (G). Assume next that n is even. Let

now w be a vertex with f(w) = 1. If d(w) = n−1, then γstI(G) = f(w) +f(N(w)) ≥
1 + 1 = 2. If d(w) = n − 2, then f(N(w)) ≥ 1 and the condition that n − 2 is

even shows that f(N(w)) ≥ 2. If z is the vertex not adjacent to w, then we obtain

γstI(G) = f(w)+f(N(w))+f(u) ≥ 2+1−1 = 2. Assume now that n = 2p+1 is odd.

Clearly, there exist at least p+ 1 vertices x with f(x) = 1. If there are at least p+ 2

vertices x with f(x) = 1, then γstI(G) ≥ p+ 2− (n− (p+ 2)) ≥ 3. Now suppose that

there exist exactly p+1 vertices x with f(x) = 1 and p vertices y with f(y) = −1. Let

X = {x1, x2, . . . , xp+1} such that f(xi) = 1 for 1 ≤ i ≤ p+ 1 and Y = {y1, y2, . . . , yp}
such that f(yi) = −1 for 1 ≤ i ≤ p. First we observe that d(xi) = δ = 2p − 1 for

1 ≤ i ≤ p+1. Therefore there exists a vertex yi, say y1 such d(y1) = ∆(G) = 2p. The

condition f(N(xi)) ≥ 1 shows that there are at most (p+ 1)(p− 1) edges from X to

Y . In addition, the condition δ = 2p− 1 shows that there are at least p · p edges from

Y to X. This leads to the contradiction p2 ≤ (p + 1)(p − 1) = p2 − 1, and therefore

this case is not possible.

Consequently, we have γstI(G) ≥ 2. Using again Theorem 2, we obtain n − 2 =

dstI(G) ≤ n/γstI(G) ≤ n/2, a contradiction to n ≥ 5. This completes the proof.

The inequality dstR(G) ≤ dstI(G) leads to the following known result.

Corollary 3. ([6]) Let G be a graph of order n ≥ 3 with δ(G) ≥ 1. Then dstR(G) ≤ n−2,
with equality if and only if G ∈ {K3, P3, C4}.

3. Upper bounds on the sum γkstI(G) + dkstI(G)

Theorem 6. If G is a graph of order n with δ(G) ≥ k, then

γk
stI(G) + dkstI(G) ≤ n+ k,

with equality if and only if dkstI(G) = k and γk
stI(G) = n.

Proof. If dkstI(G) ≤ k− 1, then Proposition B implies γkstI(G) + dkstI(G) ≤ n+ k− 1

immediately. If dkstI(G) = k, then Proposition B implies γkstI(G) + dkstI(G) ≤ n + k,

with equality if and only if γkstI(G) = n. Let now dkstI(G) ≥ k + 1. Then Theorem 1
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leads to n− 1 ≥ δ(G) ≥ dkstI(G) ≥ k+ 1 and thus n ≥ k+ 2. It follows from Theorem

2 that

γkstI(G) + dkstI(G) ≤ kn

dkstI(G)
+ dkstI(G).

According to Theorem 1, we have k + 1 ≤ dkstI(G) ≤ n− 1. Using these bounds, and

the fact that the function g(x) = x + (kn)/x is decreasing for k + 1 ≤ x ≤
√
kn and

increasing for
√
kn ≤ x ≤ n− 1, we obtain

γkstI(G) + dkstI(G) ≤ kn

dkstI(G)
+ dkstI(G) ≤ max

{
kn

k + 1
+ k + 1,

kn

n− 1
+ n− 1

}
.

Since n ≥ k + 2, we observe that{
kn

k + 1
+ k + 1,

kn

n− 1
+ n− 1

}
< n+ k,

and therefore γkstI(G) + dkstI(G) ≤ n+ k − 1 in this case.

If p = k ≥ 3 in Example 3, then dkstI(Kp,p) = p and γkstI(Kp,p) = 2k by Proposition

G and n = 2p = 2k. It follows that dkstI(Kp,p) + γkstI(Kp,p) = p+ 2k = 2p+ k = n+ k

and thus equality in Theorem 6 holds.

For k = 1 we have the following more precise version of Theorem 6.

Corollary 4. If G is a graph of order n with δ(G) ≥ 1, then γstI(G) + dstI(G) ≤ n+ 1,
with equality if and only if the components of G are K2, K3, P3 or C6.

Proof. Theorem 6 implies γstI(G) + dstI(G) ≤ n + 1, with equality if and only if

dstI(G) = 1 and γstI(G) = n. Since γstI(G) = n, Theorem 2 leads to dstI(G) = 1,

and it follows from Proposition L that the components of G are K2, K3, P3 or C6.

Theorem 7. Let G be a graph of order n and δ(G) ≥ d k
2
e. Then

γk
stI(G) + dkstI(G) ≤ 2n+ k − 1,

with equality if and only if k = 2, n is even and G = n
2
K2.

Proof. If δ = δ(G) ≥ k, then Theorem 6 implies

γkstI(G) + dkstI(G) ≤ n+ k < 2n+ k − 1.

Assume next that dk2 e ≤ δ ≤ k − 1. Then k ≥ 2 and according to Proposition C and

Theorem 1, we obtain

γkstI(G) + dkstI(G) ≤ 2n+ δ ≤ 2n+ k − 1. (1)
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If we have equality in (1), then γkstI(G) = 2n and dkstI(G) = k−1. Therefore Theorem

2 leads to 2n(k−1) = γkstI(G) ·dkstI(G) ≤ kn and so k = 2. Thus Proposition C yields

to δ = 1 and each vertex is adjacent to a vertex of degree 1. Hence G = n
2K2.

Clearly, if n is even and G = n
2K2, then γ2stI(G) = 2n and d2stI(G) = 1 and thus

γ2stI(G) + d2stI(G) = 2n+ 1 = 2n+ 2− 1.

Theorem 8. Let k ≥ 3 be an integer, and let G be a graph of order n with δ(G) ≥ d k
2
e.

If γk
stI(G) = 2n, then γk

stI(G) + dkstI(G) = 2n+ 1. If γk
stI(G) ≤ 2n− 1, then

γk
stI(G) + dkstI(G) ≤ 2n+

⌈
k

2

⌉
− 1,

with equality if and only if k is even, γk
stI(G) = 2n− 1 and dkstI(G) = k

2
.

Proof. If γkstI(G) = 2n, then dkstI(G) = 1 and thus γkstI(G) + dkstI(G) = 2n+ 1. Let

now γkstI(G) ≤ 2n − 1. Since n ≥ δ(G) + 1 ≥ dk2 e + 1 ≥ k
2 + 1, we observe that

k ≤ 2n− 2. If k = 2n− 2, then γkstI(G) = 2n, a contradiction. Therefore k ≤ 2n− 3.

If δ = δ(G) ≥ k, then Theorem 6 and k ≤ 2n− 3 lead to

γkstI(G) + dkstI(G) ≤ n+ k < 2n+

⌈
k

2

⌉
− 1

and hence γkstI(G) + dkstI(G) ≤ 2n+ dk2 e − 2.

Assume next that dk2 e ≤ δ ≤ k − 1. If dkstI(G) ≤ dk2 e − 1, then we deduce that

γkstI(G) + dkstI(G) ≤ 2n− 1 + dk2 e − 1 = 2n+ dk2 e − 2.

If dkstI(G) = dk2 e, then we deduce that

γkstI(G) + dkstI(G) ≤ 2n+

⌈
k

2

⌉
− 1,

with equality if and only γkstI(G) = 2n − 1. However, if k is odd, then dkstI(G) =

dk2 e = k+1
2 , and Theorem 2 leads to the contradiction

2n− 1 = γkstI(G) ≤ kn

dkstI(G)
=

2kn

k + 1
.

Finally, let dk2 e + 1 ≤ dkstI(G) ≤ k − 1. Then k ≥ 4 and so n ≥ 4. We deduce from

Theorem 2 that

γkstI(G) + dkstI(G) ≤ kn

dkstI(G)
+ dkstI(G).

Using these bounds, we obtain analogously to the proof of Theorem 6 that

γkstI(G) + dkstI(G) ≤ max

{
kn

dk/2e+ 1
+

⌈
k

2

⌉
+ 1,

kn

k − 1
+ k − 1

}
.
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Now we show that

max

{
kn

dk/2e+ 1
+

⌈
k

2

⌉
+ 1,

kn

k − 1
+ k − 1

}
< 2n+

⌈
k

2

⌉
− 1.

The inequality
kn

dk/2e+ 1
+

⌈
k

2

⌉
+ 1 < 2n+

⌈
k

2

⌉
− 1

is equivalent with kn < (2n − 2)(dk2 e + 1). If k is even, then the last inequality is

equivalent with k < 2n − 2, and if k is odd then this inequality is equivalent with

k < 3n− 3. Since k < 2n− 2 < 3n− 3, the desired inequality is valid.

If k is even, then the inequality

kn

k − 1
+ k − 1 < 2n+

⌈
k

2

⌉
− 1

is equivalent with k2− (2n+ 1)k+ 4n < 0 for 4 ≤ k ≤ 2n− 3. Using the fact that the

function g(x) = x2 − (2n + 1)x + 4n is decreasing for 4 ≤ x ≤ n + 1
2 and increasing

for n+ 1
2 ≤ x ≤ 2n− 3, we obtain

k2 − (2n+ 1)k + 4n ≤ max{g(4), g(2n− 3)} = max{12− 4n, 12− 4n} < 0,

and the desired bound is proved. If k is odd, then the proof is similar and is therefore

omitted.

Example 5. Let Cn = x1x2 . . . xnx1 be a cycle of order n ≥ 4. If we add the edge x1x3,
then we denote the resulting graph by H. The function f with f(x2) = 1, f(x1) = 2 and
f(xi) = 2 for 3 ≤ i ≤ n is a γ4

stI(H)-function of weight 2n − 1. According to Corollary 2,
we have d4stI(H) = 2 and thus γ4

stI(H) + d4stI(H) = 2n+ 1 = 2n+ d k
2
e − 1 for k = 4. Thus

equality in the bound of Theorem 8 is possible, at least for k = 4.

4. Nordhaus-Gaddum type results

Results of Nordhaus-Gaddum type study the extreme values of the sum or the product

of a parameter on a graph and its complement. In their current classical paper [4],

Nordhaus and Gaddum discussed this problem for the chromatic number. We present

such inequalities for the signed total Italian k-domatic number.

Theorem 9. If G is a graph of order n with δ(G), δ(G) ≥ d k
2
e, then dkstI(G) + dkstI(G) ≤

n− 1. Furthermore, if dkstI(G) + dkstI(G) = n− 1, then G is regular.
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Proof. It follows from Theorem 1 that

dkstI(G) + dkstI(G) ≤ δ(G) + δ(G) = δ(G) + (n−∆(G)− 1) ≤ n− 1.

If G is not regular, then ∆(G) − δ(G) ≥ 1, and hence the above inequality chain

implies the better bound dkstI(G) + dkstI(G) ≤ n− 2.

For k = 1 we will improve Theorem 9.

Theorem 10. If G is a graph of order n with δ(G), δ(G) ≥ 1, then dstI(G) + dstI(G) ≤
n− 1, with equality if and only if G = C4 or G = C4.

Proof. If G is not regular, then Theorem 9 implies dstI(G) + dstI(G) ≤ n− 2.

If G = C4 or G = C4, say G = C4, then it follows from Example 3 that dstI(G) = 2

and dstI(G) = 1 and therefore dstI(G) + dstI(G) = 3 = n− 1.

Conversely, assume that dstI(G) + dstI(G) = n − 1. Then G is δ-regular and G is

(n− δ−1)-regular with 1 ≤ δ ≤ n−2 and 1 ≤ n− δ−1 ≤ n−2. We assume, without

loss of generality, that δ ≤ (n− 1)/2.

If n 6≡ 0 (mod δ), then we deduce from Theorems 1 and 3 that

dstI(G) + dstI(G) ≤ (δ − 1) + (n− δ − 1) = n− 2,

a contradiction. Next assume that n ≡ 0 (mod δ). Since δ ≤ (n−1)/2, we have n = pδ

with an integer p ≥ 3. If n 6≡ 0 (mod (n− δ − 1)), then Theorems 1 and 3 lead to

dstI(G) + dstI(G) ≤ δ + (n− δ − 2) = n− 2,

a contradiction. Therefore assume that n ≡ 0 (mod (n−δ−1)). Then n = q(n−δ−1)

with an integer q ≥ 2. However, since n − δ − 1 ≥ (n − 1)/2, we note that q = 2.

Altogether, we have n = pδ = 2(n− δ− 1) and thus n = pδ = 2δ + 2. The conditions

p ≥ 3 and δ ≥ 1 yield to p = 3 and δ = 2 or p = 4 and δ = 1. If p = 4 and δ = 1,

then G = C4 and G = C4 as desired. If δ = 2 and p = 3, then G = C6 or G = 2C3.

Now it is straightforward to verify that dstI(C6) = dstI(2C3) = 1 and consequently

dstI(C6) + dstI(C6) ≤ 4 = n− 2 and dstI(2C3) + dstI(2C3) ≤ 4 = n− 2.

Since dstR(G) ≤ dstI(G), Theorem 10 yields to the next known result.

Corollary 5. ([6]) If G is a graph of order n with δ(G), δ(G) ≥ 1, then dstR(G) +
dstR(G) ≤ n− 1, with equality if and only if G = C4 or G = C4.
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