COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION CCO
Vol. 8, No. 1 (2023), pp. 39-52
DOI: 10.22049/CC0.2021.27165.1207 COoMMUN. ComB. OpTin.

Research Article

Signed total Italian k-domatic number of a graph

Lutz Volkmann

Lehrstuhl II fiir Mathematik, RWTH Aachen University, 52056 Aachen, Germany
volkm@math2.rwth-aachen.de

Received: 4 March 2021; Accepted: 18 August 2021
Published Online: 20 August 2021

Abstract: Let k > 1 be an integer, and let G be a finite and simple graph with
vertex set V(G). A signed total Italian k-dominating function on a graph G is a
function f : V(G) — {—1,1,2} such that 3y, f(u) = k for every v € V(G),
where N (v) is the neighborhood of v, and each vertex u with f(u) = —1 is adjacent
to a vertex v with f(v) = 2 or to two vertices w and z with f(w) = f(z) = 1. A set
{f1, f2,-.., fa} of distinct signed total Italian k-dominating functions on G with the
property that Z?:1 fi(v) < k for each v € V(G), is called a signed total Italian k-
dominating family (of functions) on G. The maximum number of functions in a signed
total Italian k-dominating family on G is the signed total Italian k-domatic number
of G, denoted by d’;“ (G). In this paper we initiate the study of signed total Italian
k-domatic numbers in graphs, and we present sharp bounds for dftI(G). In addition,
we determine the signed total Italian k-domatic number of some graphs.

Keywords: Signed total Italian k-dominating function, Signed total Italian k-
domination number, Signed total Italian k-domatic number
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1. Terminology and introduction

For notation and graph theory terminology, we in general follow Haynes, Hedetniemi
and Slater [3]. Specifically, let G be a simple graph with vertex set V = V(G) and
edge set E = E(G). The order |V| of G is denoted by n = n(G). For every vertex
v € V, the open neighborhood N(v) is the set {u € V(G) | wv € E(G)} and the
closed neighborhood of v is the set N[v] = N(v) U {v}. The degree of a vertex v € V
is d(v) = |N(v)|. The minimum and mazimum degree of a graph G are denoted by
0 = 0(G) and A = A(G), respectively. A graph G is regular or r-regular if d(v) = r
for each vertex v of G. The complement of a graph G is denoted by G. We write K,
for the complete graph of order n, K, ; for the complete bipartite graph with partite
sets X and Y, where | X| = p and |Y| = ¢q, C, for the cycle of length n and P, for
the path of order n.
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40 Signed total Italian k-domatic number of a graph

In this paper we continue the study of Roman and Italian dominating functions in
graphs and digraphs. If £ > 1 is an integer, then the signed total Roman k-dominating
function (STRKDF) on a graph G is defined in [9] as a function f : V(G) — {-1,1, 2}
such that 3, c v, f(u) = k for each v € V(G), and such that every vertex u € V/(G)
for which f(u) = —1 is adjacent to at least one vertex w for which f(w) = 2. The
weight of an STRKDF f is the value w(f) = >, oy f(v). The signed total Roman k-
domination number of a graph G, denoted by %, r(G), equals the minimum weight of
an STRKDF on G. A X, (G)-function is a signed total Roman k-dominating function
of G with weight v* (G). The special case k = 1, was introduced and studied in [7]
and [6].

A signed total Italian k-dominating function (STIKDF) on a graph G is defined in [11]
as a function f: V/(G) — {—1,1,2} such that }_ . v, f(u) = k for each v € V(G),
and every vertex u for which f(u) = —1 is adjacent to a vertex v with f(v) =2 or to
two vertices w and z with f(w) = f(z) = 1. Note that in the case k > 2 the second
condition is superfluous. The weight of an STIKDF f is the value w(f) = > oy f(v).
The signed total Italian k-domination mnumber of a graph G, denoted by ~% (G),
equals the minimum weight of an STIKDF on G. The case kK = 1 was introduced and
studied in [10]. A 4% ;(G)-function is a signed total Italian k-dominating function of
G with weight 7%, (G).

The signed total Roman and signed total Italian k-domination numbers exist when
§(G) > %, and the definitions lead to 7%, (G) < % (G).

A concept dual in a certain sense to the domination number is the domatic number,
introduced by Cockayne and Hedetniemi [2]. They have defined the domatic number
d(Q) of a graph G by means of sets. A partition of V(G), all of whose classes are
dominating sets in G, is called a domatic partition. The maximum number of classes
of a domatic partition of G is the domatic number d(G) of G. But Rall has defined
a variant of the domatic number of G, namely the fractional domatic number of G,
using functions on V' (G). (This was mentioned by Slater and Trees in [5].) Analogous
to the fractional domatic number we may define the signed total Roman and signed
total Italian k-domatic numbers.

A set {f1, fa,..., fa} of distinct signed total Italian (Roman) k-dominating functions
on G with the property that Z?Zl fi(v) < k for each v € V(G), is called a signed total
Italian (Roman) k-dominating family (of functions) on G. The maximum number
of functions in a signed total Italian (Roman) k-dominating family (STIKD family
(STRKD) family) on G is the signed total Italian (Roman) k-domatic number of G,
denoted by d*,;(G) (d*,5(G)). The signed total Italian (Roman) k-domatic numbers
are well-defined and d¥,;(G) > d¥ ,(G) > 1 for all graphs G with §(G) > £. The
signed total Roman k-domatic number was introduced and studied in [8]. For more
information on the Roman and Italian domatic problem, we refer the reader to the
survey article [1]. If £ = 1, then we also write v}, (G) = Vs:tr(G), 71 (G) = Y51 (G),
dyyr(G) = dstr(G) and dyy (G) = dutr (G).

Our purpose in this paper is to initiate the study of the signed total Italian k-domatic
number in graphs. We first derive basic properties and sharp bounds for the signed
total Italian k-domatic number of a graph. Then we presemt upper bounds on
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7k (G) + dF;(G) and d¥,;(G) + d¥,;(G). In addition, we determine the signed total
Italian k-domatic number of some classes of graphs.

We make use of the following known results in this paper.
Proposition A. ([11])) If G is an r-regular graph of order n with r > £, then

kn

r .

V1 (G) >

Proposition B. ([11]) If G is a graph of order n with §(G) > k, then v%;(G) < v%r(G) <
n.

Proposition C. ([11]) Let G be a graph of order n with §(G) > [£]. Then v%;(G) < 2n,
with equality if and only if k is even, §(G) = g, and each vertex of G is adjacent to a vertexr
of minimum degree.

Proposition D. ([11]) Ifk > 1 and n > 2 are integers such that 2n—2 > k, then it holds:
(i) If k > n, then v%;(K,) = k + 2.
(ii) If k <n—1 and n — k is odd, then v%;(K,) =k + 1.

(iii)) If k <n —1 and n — k is even, then v%;(K,) =k + 2.
Proposition E. ([7]) If n > 3 is an integer, then ystr(Ky) = 3.
Proposition F. ([6]) If G is a graph of order n with §(G) > 1, then vs:r(G) -dsir(G) < n.
Proposition G. ([11],) If p,k > 1 are integers such that p > %, then 7% (Kpp) = 2k.

Proposition H. ([8]) If k > 3 is an integer, then d%z(Kir) = k. In addition,
d;tR(Kl,l) = d?tR(KQ,EY) =1L

Proposition 1. ([8]) If k,p are integers such that p > k + 1 > 2, then d*,5(Kpp) = p,
with exception of the case k=1 and p = 3, in which case diyg(K33) = 1.

Proposition J. ([11]) If Cn is a cycle of length n, then v3,;(Cn) = [2] + 1 when
n = 2(mod4) and v3;(Cn) = [22] otherwise.

Proposition K. ([6]) Let G be a graph of order n with 6(G) > 1. Then vstr(G) = n if
and only if the components of G are K2, K3, Ps or Cs.

Since V511 (K2) = 2, vsir(K3) = 3, vser(Ps) = 3, v511(Cs) = 6 (see also [10]) and
Yst1(G) < vstr(G), Proposition K leads to the next result immediately.
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Proposition L. Let G be a graph of order n with §(G) > 1. Then vs:1(G) = n if and
only if the components of G are K2, K3, P3 or Cs.

2. Bounds on the signed total Italian k-domatic number

In this section we present basic properties of d’:t ;(G) and sharp bounds on the signed
total Italian k-domatic number of a graph.

Theorem 1. If G is a graph with §(G) > £, then d%;(G) < 6(G). Moreover, if

2
d* 1 (G) = §(@), then for each STIkD family {f1, f2,..., fa} on G with d = dstl (@) and each
vertex v of minimum degree, > v, fi(z) = k for each function f; and Z _, fi(z) =k for

all z € N(v).

Proof.  Let {f1, fa, ..., fa} be an STIKD family on G such that d = d*,;(G). If v is
a vertex of minimum degree 6(G), then we deduce that

d
<Y Y A= Y YA Y k=kiG
i=1 z€N(v) z€N (v) i=1 €N (v)

and thus d*,; (@) < §(G).

If d*,;(G) = §(G), then the two inequalities occurring in the proof become equalities.
Hence for the STIKD family {f1, fo,..., fa} on G and for each vertex v of minimum
degree, > () fi(z) = k for each function f; and Z?:l filx) = k for all x €
N(v). O
Theorem 2. If G is a graph of order n with §(G) > £, then

V51 (G) - 5y (G) < kn.

Moreover, if 4%, (G) - d¥,;(G) = kn, then for each STIKD family {f1, f2,..., fa} on G with
d = d*; (@), each function f; is a 7%, (G)-function and 37| fi(v) = k for all v € V(G).

Proof.  Let {f1, f2,..., fa} be an STIKD family on G such that d = d¥,;(G) and let
v € V(G). Then

d- ’yftl(G) = Z'VftI(G) <

I
g
(]
=
=
A
g
™
I
g
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If v%,(G) - d%;(G) = kn, then the two inequalities occurring in the proof be-
come equalities. Hence for the STIKD family {f1, f2,...,fa} on G and for each
i D peva) filv) = 7k (G). Thus each function f; is a ~*;(G)-function, and

S fi(v) = K for all v € V(G). O
Example 1. Ifn=4p+ 2 with an integer p > 1, then dstr(Kn) = §.

Proof. Proposition D and Theorem 2 imply dg;7(K,) < n/vs(K,) = n/2. Now
let x1,x9,...x, be the vertices of K,,. Define the function f; by fi(z;) = —1 for
1 <i<2pand fi(x;) = 1for 2p+1 <4 < 4p+2. For 2 < j < 2p+1 define f;(z;) = —1
for 25 —1<i<2p+2j—2and fj(z;) =1for 2p+2j — 1 <i < 4dp+ 2j, where the
indices are taken modulo n = 4p + 2. It is straightforwad to verify that f; is a signed
total Italian dominating function of K,, for 1 < i < 2p + 1 and {fi, fo,..., fop+1}
is a signed total Italian dominating family on K,. Hence dg(K,) > n/2 and thus
dst1(Ky) =n/2. O

It follows from Propositions E and F that dgr(K,) < n/vsr(K,) = n/3. Therefore
we deduce from Example 1 for n = 4p + 2 that

n
dstl(Kn) - dstR(Kn) Z g

w3

n
2
Thus the difference dgi1(G) — dstr(G) can be arbitrarily large.

Example 2. Ifn = 6p+ 3 with an integer p > 1, then dser(Kn) = .

Proof. Proposition D and Theorem 2 imply dg:7(K,) < n/vs(K,) = n/3. Now
let xq,x9,...x, be the vertices of K. Define the function f; by fi(z;) = —1 for
1 <i<3pand fi(x;) = 1for 3p+1 < i < 6p+3. For 2 < j < 2p+1 define f;(z;) = —1
for 35 —2<i<3p+3j—3and fj(z;) =1 for 3p+3j —2 < i < 6p+ 3j, where the
indices are taken modulo n = 6p + 3. It is straightforwad to verify that f; is a signed
total Italian dominating function of K,, for 1 < i < 2p + 1 and {f1, fo,..., fop+1}
is a signed total Italian dominating family on K. Hence dg(K,) > n/3 and thus
dst1(Ky) =n/3. O

Example 3. Letk>1 andp > g be integers. Then d¥,;(K,,) = p, with exception of the

k

cases p = 3, in which case dfu(K%g) =1, orp=k =2, in which case d,;(K22) = 1.

Proof. Theorem 1 implies d¥,; (K, ,) < p. If p= %, then the function f with f(z) =
2 for each vertex z is the unique STIKDF and thus d’;tl(K%%) =1 Ifp=Fk =2,
then le f be an STI2DF on Kj32. Then f(x) > 1 for each vertex z. If we suppose
that {f1, fo} is a STI2D family on Kj o, then the condition fi(z) + fo(x) < 2 leads
to fi(x) = fo(z) =1 for each vertex z, a contradiction. Therefore d2,;(K22) = 1.
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In the remaining cases we now show that d*,,(K,,) > p. Let A = {a1,a2,...,0a,}
and B = {b1,ba,...,by} be a bipartition of K, ,.

If p =1, then d¥, (K1) = 1 is immediate for 1 < k < 2. If p=2 and k = 1, then
define f1 and fa by fi(a1) = fi(b1) = =1, fi(a2) = fi(b2) = 2, fa(a1) = fo(b1) = 2
and fa(ag) = fa(be) = —1. Then {f1, fo} is a signed total Italian 1-dominating family
on Ky o and thus dg(Ka2) > 2. If p = 2 and k = 3, then define f1 and f2 by fi(a1) =
fi(b1) =1, fi(az) = fi(b2) = 2, fa(a1) = fa(b1) = 2 and fa(az) = fa(b2) = 1. Then
{f1, f2} is a signed total Italian 3-dominating family on K» » and thus d2,;(Ka2) > 2.
Let now p > 3. If p = 3 and k = 1, then define the functions fi, fo and f3 by
filar) = fi(b1) = =1, fi(az) = fi(b2) = fi(az) = f1(bs) =1, fa(az) = f(b2) = —
falar) = fo(b1) = falas) = fa(b3) = 1, fs(az) = f(bs) = —1 and f3(a1) = f3(b1) =
fa(az) = f5(b2) = 1. Then {f1, f2, f3} is a signed total Italian 1-dominating family
on Ks3 and thus dg(Ks3) > 3. If p # 3, and p > k > 1, then it follows from
Propositions H amd I that d¥, 5 (K, ,) = p and therefore d*,; (K, ) > d* (K, ,) = p.
Finally, let % <p< k-1 Deﬁne the function fi by fi(a;) = fi(b;)) = 1 for
1<i<2p—Fkand fi(a;) = fi(b;) =2for 2p—k+1<i<p. For2<j<pand
1 < i < p define f;(a;) = f;(b;) = fi(ai+j—1), where the indices are taken modulo
p. It is easy to see that f; is a signed total Italian k-dominating function of K, ,
and {fi, f2,..., fp} is a signed total Italian k-dominating family on K, ,. Hence
d*,;(K,,) > p also in this case, and the proof is complete. O

Example 3 and Proposition G demonstrate that Theorems 1 and 2 are both sharp.
For some regular graphs we will improve the upper bound d*,;(G) < §(G), given in
Theorem 1.

Theorem 3. Let G be a J-regular graph of order n with § > g such that n = pd 4+ r

with integers p > 0and 1 <r <46 —1 and kr = t§ + s with integers t > 0 and 1 < s < —1.
Then d*;(G) <6 —1.

Proof.  Let {f1, f2, ..., fa} be a STIKD family on G such that d = d¥,;(G). It follows

that
=3 Z i) = 3 Zfz < D k=kn

i=1 i=1veV (G veV (G veV(Q)

M-

Proposition A implies

G() 2 e > [ 5] - [

k to
kp + {;-‘ =kp+ [;—S-‘ =kp+t+1

V

for each i € {1,2,...,d}. If we suppose to the contrary that d = §, then the above
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inequality chains lead to the contradiction

d
kn > Z (fi) >dkp+t+1)=5kp+t+1)

k:p6+6t+6—kp5+kr—s+6>k:p(5+kr:k(p(5+r):kn.

Thus d < § — 1, and the proof is complete. O

Example 3 demonstrates that Theorem 3 is not valid in general.

Corollary 1. If C, is a cycle of odd length n, then d2,;(C,) = 1.

Proof. Let n = 2p+ 1 for an integer p > 1. Withd =2, r =1, k=3, t =1
and s = 1, we deduce from Theorem 3 that d,;(C,) < § —1 = 1 and therefore
d3,.(Cp) = 1. O

Example 4. If C, is a cycle of even length n, then d3,;(Cn) = 1 if n = 2 (mod4) and
d3,;(Cn) =2 if n=0(mod4).

Proof. First assume that n = 4p + 2 for an integer p > 1. Proposition J implies
V3. (Cn) = [W} +1 = 6p+4. So it follows from Theorem 2 that d3,,(C,) <
3%‘?’&” < 2 and therefore d,;(C,,) = 1 in this case.

Second assume that n = 4p for an integer p > 1. Let C, = (x1,x2,...,Zy,T1).
Define the function f1 by fi1(z4i+1) = f1(zait2) = 1 and f1(24i+3) = f1(Taita) = 2
and the function fo by fo(zgir1) = fo(2ai12) = 2 and fo(x4i13) = fo(Taira) = 1 for
0<i<p-—1. Then f; and f5 are signed total Italian 3-dominating functions of C,
and {fi, fo} is a signed total Italian 3-dominating family on C,,. Hence d3,,(C,,) > 2
and thus d3,;(C,,) = 2 according to Theorem 1. O

Theorem 4. Let k > 4 be an integer, and let G be a graph of order n with §(G) > [£].
If v%5;(G) < 2n — 1, then d¥;(G) > 2. If v5,;(G) < 2n — 1 and §(G) = 2, then d%,;(G) =
0(G) =2.

Proof.  Since 7%, (G) < 2n — 1, there exists an STIKDF f; with fi(v) < 1 for at
least one vertex v € V(G). Note that fy : V(G) — {—1,1,2} with fa(z) = 2 for
each vertex © € V(G) is another STIKDF on G. As fi1(z) + fa(x) < 4 < k for each
vertex x € V(G), {f1, f2} is a signed total Italian k-dominating family on G and thus
5 (G) > 2.

If 6(G) = 2, then Theorem 1 implies d%,;(G) < §(G) = 2 and thus d,,(G) = §(G) =
2. O
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Corollary 1 demonstrates that Theorem 4 is not valid for £ = 3 in general. In addition,
if H is a graph with 6(H) = 1, then it follows from Theorem 1 that ¥, ,(H) = 1 for
k=1 or k = 2. Thus Theorem 4 is also not valid for k =1 or k = 2 in general.

Corollary 2. Let G be a graph of order n with 6(G) > 2. If 2n — 1 > 7%,,(G) > £
then d2,; (G) = 2.

Proof.  Theorem 4 implies d?,;(G) > 2.
Conversely, it follows from Theorem 2 that

Thus d%,;(G) < 2, and the proof is complete. O

Theorem 5. If G is a graph of order n > 3 with §(G) > £, then d%,;(G) < n —2. In the
case k = 1, we have ds:1(G) =n — 2 if and only if G € {K3, P3,Ca}.

Proof. Let § = 6(G). If § < n — 2, then Theorem 1 implies d¥,;(G) <J§ <n —2. If
§ =n—1, then G = K, and we deduce from Proposition D that v*,(K,) = k + 2
if Kk >nork <n-—1andn—%kis even and’yfﬂ(Kn) =k+1ifk <n-1
and n — k is odd. If k = 2n — 2, then d*;(K,) = 1 < n — 2. Assume next that
k < 2n — 3. In the case v ;(K,) = k + 2, it follows from Theorem 2 and k < 2n — 3
that d*,;(K,) < kn/y%(K,) = kn/(k+2) <n—1. Thus d*;(K,) <n—2. Assume
next that 4% ,(K,) = k+ 1. If & < n — 1, then Theorem 2 implies d¥,;(K,) <
kn/vk(Ky,) = kn/(k+1) <n—1 and so d¥;(K,) < n — 2. Finally, assume that
k = n—1. Then v%,(K,) = k+ 1 = n. Suppose that d*;(K,) = n—1 = k,
and let {f1, fa,..., fx} be an STIKD family on K,,. As 7%, (K,) - d*;(K,) = kn, it
follows from Theorem 2 that each function f; is a ”yi?t 1 (K,,)-function. If there exists a
function f; and a vertex w such that f;(w) = 2, then w(f;) = fi(w)+ fi(N(w)) > 2+k.
Consequently, f; is not a v¥,;(K,,)-function. Thus f;(z) € {—1,1} for 1 <i < d and
x € V(K,). However, only the function f with f(z) = 1 for each vertex x € V(K,)
has weight n if f(z) € {—1,1}. Therefore d¥,;(K,) =n — 1 is not possible.

If G € {K3, P3,Cy}, then it is easy to verify that ds(G) =n — 2.

Conversely, assume that dg;(G) = n — 2. If §(G) < n — 3, then Theorem 1 leads to
the contradiction n — 2 = dg(G) < n — 3. Thus there remain the cases § = n — 1
and § =n —2. If § = n — 1, then we observe as above that n — 2 = dg(G) = n/2
when n is even and n — 2 = dg7(G) = n/3 when n is odd. This yields to n = 4 or
n = 3. Since dg;(K4) =1 < 2=n—2, we obtain G = K3. In the case § =n — 2, we
distinguish two cases.

Case 1. Assume that G is §-regular. If 6 = 1, then n = 3, a contradiction. If § = 2,
then n =4 and so G = Cy. Let now § > 3. Then n = (n — 2) + 2 = 6 + 2, and thus
Theorem 3 leads to the contradiction n — 2 = dg;(G) <6 —1=n—3.
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Case 2. Assume that  =n —2 and A(G) =n—1. If n =3, then G = P5. If n =4,
then G = K4 —e, where e is an arbitrary edge of K4. However, since dgj(Kq4—e€) =1,
this is not possible. Let now n > 5, and let f be a 74 ;(G)-function. We will show
that 7r(G) > 2.

If f(z) > 1 for all z € V(G), then v5:1(G) > n > 2. Assume next that f(v) = —1 for
at least one vertex v € V(G).

Assume first that there exists a vertex w with f(w) = 2. If d(w) = n—1, then it follows
that y:7(G) = f(w)+ f(N(w)) > 241 =3 > 2. If d(w) = n—2, then let u be a vertex
not adjacent to w. This leads to V51 (G) = f(w) + f(N(w)) + f(u) >2+1—-1=2.
Finally, assume that f(z) € {—1,1} for all z € V(G). Assume next that n is even. Let
now w be a vertex with f(w) = 1. If d(w) = n—1, then v4(G) = f(w) + f(N(w)) >
141 =2 Ifdw)=mn-—2, then f(N(w)) > 1 and the condition that n — 2 is
even shows that f(N(w)) > 2. If z is the vertex not adjacent to w, then we obtain
Yst1(G) = f(w)+ f(N(w))+ f(u) > 24+1—1 = 2. Assume now that n = 2p+1 is odd.
Clearly, there exist at least p + 1 vertices x with f(z) = 1. If there are at least p + 2
vertices  with f(z) = 1, then 757 (G) > p+2—(n— (p+2)) > 3. Now suppose that
there exist exactly p+1 vertices « with f(x) = 1 and p vertices y with f(y) = —1. Let
X ={z1,22,...,2ps1} such that f(z;) =1for 1 <i<p+land¥ ={y1,y2,...,¥p}
such that f(y;) = —1 for 1 < i < p. First we observe that d(z;) = § = 2p — 1 for
1 <4 < p+1. Therefore there exists a vertex y;, say y; such d(y;1) = A(G) = 2p. The
condition f(N(x;)) > 1 shows that there are at most (p + 1)(p — 1) edges from X to
Y. In addition, the condition § = 2p — 1 shows that there are at least p-p edges from
Y to X. This leads to the contradiction p? < (p+ 1)(p — 1) = p? — 1, and therefore
this case is not possible.

Consequently, we have v5;(G) > 2. Using again Theorem 2, we obtain n — 2 =
dst1(G) < n/vs1(G) < n/2, a contradiction to n > 5. This completes the proof. [

The inequality ds:r(G) < dst1(G) leads to the following known result.

Corollary 3. (/6]) Let G be a graph of order n > 3 with §(G) > 1. Then dotr(G) < n—2,
with equality if and only if G € {K3, P3,C4}.

3. Upper bounds on the sum +*;(G) + d*;(G)
Theorem 6. If G is a graph of order n with §(G) > k, then
Yerr(G) + d5ir (G) < m+ k,
with equality if and only if d¥,;(G) = k and v%;(G) = n.
Proof. 1f d*,;(G) < k — 1, then Proposition B implies 7%, ;(G) +d*,;(G) <n+k—1

immediately. If d¥,,(G) = k, then Proposition B implies v%,;(G) + d%,,(G) < n + k,
with equality if and only if v%,;(G) = n. Let now d*,;(G) > k + 1. Then Theorem 1
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leads ton—12>6(G) > d’;tI(G) > k+1 and thus n > k+ 2. It follows from Theorem

2 that L
n
Yar(G) + 5 (G) < & (@) + 5 ().
According to Theorem 1, we have k + 1 < d*,;(G) < n — 1. Using these bounds, and
the fact that the function g(z) = z + (kn)/x is decreasing for k +1 < z < vkn and

increasing for vVkn <z <n — 1, we obtain

k k
Vi1 (@) + b (G) <~ () < max{kfl

kn
+k+1,—+n-1;.
= d5,(G) n—1 " }

Since n > k + 2, we observe that

kn kn
k+1, —— -1 k
{kz—l—1+ +,n_1+n }<n+ ’

and therefore 7%, (G) 4+ d¥,;(G) < n+k — 1 in this case. O

If p=k > 3 in Example 3, then d*, (K, ,) = p and 7% (K, ,) = 2k by Proposition
G and n = 2p = 2k. It follows that d*,; (K, ,) +7%;(K,p) =p+2k=2p+k=n+k
and thus equality in Theorem 6 holds.

For k = 1 we have the following more precise version of Theorem 6.

Corollary 4. If G is a graph of order n with §(G) > 1, then vs:1(G) + dot1 (G) < n + 1,
with equality if and only if the components of G are K2, K3, P3 or Cg.

Proof. Theorem 6 implies 747 (G) + dst7(G) < n+ 1, with equality if and only if
dst1(G) = 1 and 57 (G) = n. Since v4¢7(G) = n, Theorem 2 leads to dgr(G) = 1,
and it follows from Proposition L that the components of G are Ky, K3, P3 or Cg. [

Theorem 7. Let G be a graph of order n and §(G) > [%]. Then
Yerr (G) + dir (G) < 2n+ k= 1,

with equality if and only if £ =2, n is even and G = 7 K>.

Proof. 1f § = 6(G) > k, then Theorem 6 implies
VEN(G)+dE (G <n+k<2n+k—1.

Assume next that [%1 <6 <k —1. Then k > 2 and according to Proposition C and
Theorem 1, we obtain

VR G +dE (G <2n+8<2n+k— 1. (1)
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If we have equality in (1), then 7% ;(G) = 2n and d¥,;(G) = k—1. Therefore Theorem
2 leads to 2n(k—1) = 7% (G)-d*,;(G) < kn and so k = 2. Thus Proposition C yields
to 0 = 1 and each vertex is adjacent to a vertex of degree 1. Hence G = 5 K.

Clearly, if n is even and G = 2Kj, then v%,;(G) = 2n and d?,;(G) = 1 and thus
V(G +d%,(G)=2n+1=2n+2—1. O

Theorem 8. Let k > 3 be an integer, and let G be a graph of order n with §(G) > [£].
If 5, (G) = 2n, then 4%, (G) + d¥,;(G) = 2n + 1. If 45, (G) < 2n — 1, then

k
() + (@) < 20+ §] -1

with equality if and only if k is even, ’yft] (G)=2n—1and dv., (G) = g
Proof.  1If v%,(G) = 2n, then d*,;(G) = 1 and thus V%, (G) + d*,;(G) = 2n + 1. Let
now 7%,(G) < 2n—1. Sincen > §(G)+1 > [E]+1 > £ + 1, we observe that
k <2n—2. If k =2n — 2, then 7% ;(G) = 2n, a contradiction. Therefore k < 2n — 3.
If 6 = 6(G) > k, then Theorem 6 and k < 2n — 3 lead to

k

and hence v% (G) + d¥,;(G) < 2n + [5] — 2.

Assume next that [5] < § < k—1. If d¥,;(G) < [5] — 1, then we deduce that
V(G +dE(G) <2m—1+ 8] —1=2n+[5] -2

If d*,;(G) = [%], then we deduce that

k
al6) + di(@) <2t ] -1

with equality if and only 7% ;(G) = 2n — 1. However, if k is odd, then d¥,;(G) =
k1

(4] = £ and Theorem 2 leads to the contradiction

kn 2kn
on—1=~5,(G)< —— = .
i () R

Finally, let [%] +1< dfﬂ(G) <k —1. Then k > 4 and so n > 4. We deduce from

Theorem 2 that

kn
k k k

Yar1(G) +dgi 1 (G) € —— + dey 1 (G).
tI( ) tl( ) d];tI(G) tI( )

Using these bounds, we obtain analogously to the proof of Theorem 6 that

kn k kn
k k < - _ o _
Ysr1(G) + dgy 1 (G) _maX{ DEES + {J +1 gtk 1}.
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Now we show that

kn k kn k
M Y L k1Y <2 i Y
max{[k/2]+l+[2-‘+ ’k—1+k }< n-i-h-‘
The inequality

[k/;"ﬂ+[ﬂ+1<2n+[ﬂ1

is equivalent with kn < (2n — 2)([£] +1). If k is even, then the last inequality is
equivalent with k£ < 2n — 2, and if k£ is odd then this inequality is equivalent with
k < 3n — 3. Since k < 2n — 2 < 3n — 3, the desired inequality is valid.

If k£ is even, then the inequality

kn k
—+k-1<2 - -1
1 + <2n+ {2—‘
is equivalent with k? — (2n+ 1)k +4n < 0 for 4 < k < 2n — 3. Using the fact that the
function g(z) = 2% — (2n + 1)z + 4n is decreasing for 4 < z < n+ 1 and increasing
forn—&—% <z < 2n — 3, we obtain

E* — (2n 4 1)k + 4n < max{g(4),g(2n — 3)} = max{12 — 4n,12 — 4n} <0,

and the desired bound is proved. If &k is odd, then the proof is similar and is therefore
omitted. O

Example 5. Let C,, = x122... 2011 be a cycle of order n > 4. If we add the edge x1x3,
then we denote the resulting graph by H. The function [ with f(z2) = 1, f(z1) = 2 and
f(z) =2 for 3 <i < nis a vy (H)-function of weight 2n — 1. According to Corollary 2,
we have di;;(H) = 2 and thus va, (H) + dy(H) =2n+1=2n+ [5] — 1 for k = 4. Thus
equality in the bound of Theorem 8 is possible, at least for k = 4.

4. Nordhaus-Gaddum type results

Results of Nordhaus-Gaddum type study the extreme values of the sum or the product
of a parameter on a graph and its complement. In their current classical paper [4],
Nordhaus and Gaddum discussed this problem for the chromatic number. We present
such inequalities for the signed total Italian k-domatic number.

Theorem 9. If G is a graph of order n with §(G),5(G) > [£7, then d%,;(G) + d%;(G) <
n — 1. Furthermore, if d*,;(G) + d*,;(G) = n — 1, then G is regular.
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Proof. It follows from Theorem 1 that
%1 (G) + d5(G) < 6(G) +6(G) = 6(G) + (n— A(G) = 1) <n — 1.

If G is not regular, then A(G) — 6(G) > 1, and hence the above inequality chain
implies the better bound d*,;(G) + d*,;(G) < n — 2. O

For k = 1 we will improve Theorem 9.

Theorem 10. If G is a graph of order n with §(G),5(G) > 1, then dst1(G) + dstr(G) <
n — 1, with equality if and only if G = C4 or G = C4.

Proof. If G is not regular, then Theorem 9 implies dy7(G) + dsi7(G) < n — 2.

If G = Cy or G = Cy, say G = Oy, then it follows from Example 3 that dgr(G) = 2
and d7(G) = 1 and therefore dg1(G) + dgi1(G) =3 =n — 1.

Conversely, assume that dg7(G) + dst7(G) = n — 1. Then G is é-regular and G is
(n—6—1)-regular with 1 <6 <n—2and 1 <n—-4§—1<n-—2. We assume, without
loss of generality, that 6 < (n —1)/2.

If n 2 0 (mod ), then we deduce from Theorems 1 and 3 that

dst](G) —+ dst[(é) < (5 — 1) + (’Il -0 — 1) =n-2,

a contradiction. Next assume that n = 0 (mod §). Since § < (n—1)/2, we have n = p§
with an integer p > 3. If n 2 0 (mod (n — § — 1)), then Theorems 1 and 3 lead to

dstl(G)'i‘dstI(é) §(5+(n—5—2):n—27

a contradiction. Therefore assume that n = 0 (mod (n—J§—1)). Thenn = g(n—0—1)
with an integer ¢ > 2. However, since n —§ — 1 > (n — 1)/2, we note that ¢ = 2.
Altogether, we have n = pé = 2(n —§ — 1) and thus n = pd = 26 + 2. The conditions
p>3andd >1yleldtop=3andd=2orp=4andd=1. If p=4and d =1,
then G = C4 and G = Cy as desired. If § = 2 and p = 3, then G = Cs or G = 2C5.
Now it is straightforward to verify that dg(Cs) = dsir(2C5) = 1 and consequently
dsi1(Ce) +ds17(Cs) <4 =mn—2 and dy7(2C3) +de7(2C3) <4 =n— 2. O

Since dgir(G) < dgt1(G), Theorem 10 yields to the next known result.

Corollary 5.  (/6]) If G is a graph of order n with §(G),5(G) > 1, then dsr(G) +
dstR(é) < n — 1, with equality if and only if G = C4 or G = Cj.
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