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Abstract: The paired domination subdivision number of a graph G is the minimum

number of edges that must be subdivided (where each edge in G can be subdivided
at most once) in order to increase the paired domination number of G. In this note,

we show that the problem of computing the paired domination subdivision number is

NP-hard for bipartite graphs.
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1. Terminology and introduction

Paired domination in graphs was introduced by Haynes and Slater [5], and is now

well studied. For more details on paired domination, we refer the reader to the

recent book chapter [1]. Let G = (V,E) be a graph with vertex set V = V (G)

and edge set E = E(G). If v is a vertex in V, then open neighborhood of v is

N(v) = {u ∈ V (G)|uv ∈ E(G)}. A paired dominating set, abbreviated PD-set, of a

graph G is a set S of vertices such that every vertex is adjacent to some vertex in

S and the subgraph G[S] induced by S contains a perfect matching (not necessarily

induced). If S is a PD-set of G with a perfect matching M , then two vertices u, v ∈ S
are said to be partners or paired in S if the edge uv ∈ M . Since the end vertices of

any maximal matching in G form a PD-set, every graph G without isolated vertices

has a PD-set.
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In [3], Favaron et al. introduced the paired domination subdivision number sdγpr (G) of

a graph G defined as the minimum number of edges that must be subdivided (where

each edge in G can be subdivided at most once) in order to increase the paired

domination number of G. Many results have been established on this parameter (see

[2–4, 7–9]). But the question of the complexity of the paired domination subdivision

problem has not been addressed and therefore remained open.

The paired domination subdivision problem, to which we shall refer as PD-Subdivision

problem, is the following:

PD-Subdivision

Instance: A nonempty graph G and a positive integer k.

Question: Is sdγpr (G) ≤ k ?

Our aim in this paper is to show the NP-hardness of the PD-Subdivision problem

even for bipartite graphs.

2. NP-hardness result

Following Garey and Johnson,s techniques for proving NP -completeness given in [6],

we prove our result by providing a polynomial transformation from the well-known

NP-complete 3-satisfiability problem, 3-SAT, (see Theorem 3.1 in [6]). Before stating

the 3-SAT problem, we recall some terms.

Let U be a set of Boolean variables. A truth assignment for U is a mapping t : U −→
{T, F}. If t(u) = T , then u is said to be “true” under t; if t(u) = F , then u is said

to be “false” under t. If u is a variable in U , then u and ū are literals over U . The

literal u is true under t if and only if, the variable ū is false under t; the literal ū is

true if and only if, the variable u is false.

A clause over U is a set of literals over U . It represents the disjunction of these literals

and is satisfied by a truth assignment if and only if, at least one of its members is true

under that assignment. A collection C of clauses over U is satisfiable if and only if,

there exists some truth assignment for U that simultaneously satisfies all the clauses

in C . Such a truth assignment is called a satisfying truth assignment for C . The

3-SAT problem is specified as follows.

3-SAT

Instance: A collection C = {C1, C2, . . . , Cm} of clauses over a finite set U of

variables such that |Cj | = 3 for j = 1, 2, . . . ,m.

Question: Is there a truth assignment for U that satisfies all the clauses in C ?

Now we are ready to state our main result.

Theorem 1. PD-Subdivision problem is NP-hard for bipartite graphs.

Proof. The transformation is from 3-SAT to PD-Subdivision. Let U =

{u1, u2, . . . , un} and C = {C1, C2, . . . , Cm} be an arbitrary instance of 3SAT. We
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will construct a bipartite graph G and choose an integer k such that C is satisfiable

if and only if sdγpr (G) ≤ k. The graph G is constructed as follows.

x1 y1 z1

v1 u1 w1 u1 r1

x2 y2 z2

v2 u2 w2 u2 r2

x3 y3 z3

v3 u3 w3 u3 r3

x4 y4 z4

r4v4 u4 w4 u4

c1 c2 c3

s1

s3

s5

s7

s4

s6

s8

s2

Figure 1. An instance of the paired domination subdivision problem resulting from an instance of 3SAT.
Here γpr(G) = 12, where S = {y1, y2, y3, y4, w1, u2, u3, w4, s3, s4, s5, s6} is a paired dominat-
ing set of G and |S| = γpr(G).

For each i = 1, 2, . . . , n, corresponding to the variable ui ∈ U , we associate

a complete bipartite graph Hi = K3,5 with bipartite sets X = {xi, yi, zi} and

Y = {vi, ui, wi, ui, ri}. For each j = 1, 2, . . . ,m, corresponding to the clause

Cj = {pj , qj , rj} ∈ C , we associate a single vertex cj by adding the edge cjui if

ui ∈ Cj and the edge cj ūi if ūi ∈ Cj . Finally, add a graph H with vertex set V (H) =

{s1, s2, s3, s4, s5, s6, s7, s8} and edge set E(H) = {s1s3, s3s5, s5s7, s2s4, s4s6, s6s8},
by joining s1 and s2 to each vertex cj with 1 ≤ j ≤ m. Set k = 1. Figure 1

shows an example of the graph obtained from the instance U = {u1, u2, u3, u4} and

C = {C1, C2, C3}, where C1 = {u1, u2, ū3}, C2 = {ū1, u2, u4}, C3 = {ū2, u3, u4}.
To prove that this is indeed a transformation, we only need to show that sdγpr (G) = 1

if and only if, there is a truth assignment for U that satisfies all clauses in C . For

this purpose, we need to prove the following four claims.

Claim 1. γpr(G) ≥ 2n+ 4. Moreover, if γpr(G) = 2n+ 4, then for every γpr(G)-set S of
G, |Hi ∩ S| = 2 and

(
V (H) ∪ {c1, c2, . . . , cm}

)
∩ S = {s3, s4, s5, s6}.

Proof of Claim. Let S be a γpr-set of G. For each i ∈ {1, 2, . . . , n}, it is clear that

|V (Hi) ∩ S| ≥ 2 and |H ∩ S| ≥ 4, implying that γpr(G) ≥ 2n+ 4.

Suppose that γpr(G) = 2n+4. SinceHi := Km,n with m,n ≥ 3, |V (Hi)∩S| = 2 and so

|
(
V (H)∪{c1, c2, . . . , cm}

)
∩S| = 4 . Now we show that

(
V (H)∪{c1, c2, . . . , cm}

)
∩S =

{s3, s4, s5, s6}. Suppose for the sake of contradiction that s3 /∈ S. Then to paired
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dominate s3 we must have either s1 ∈ S paired in S with some cj or s5 ∈ S paired in

S with s7. In the former case, we must have in addition in S, s5 and s7 as partners.

But then |S ∩
(
V (H) ∪ {c1, c2, . . . , cm}

)
| ≥ 6 implying that |S| ≥ 2n + 6, which is

a contradiction. In the later case, we need that S contains some vertex cj to paired

dominate s1. But then |S∩
(
V (H)∪{c1, c2, . . . , cm}

)
| ≥ 5 implying that |S| ≥ 2n+5,

which is a contradiction too. Therefore s3 ∈ S and to paired dominate s7, we must

have s5 ∈ S as a partner with s3. Hence s1 /∈ S. Likewise, s4, s6 ∈ S and are partners

and thus s2 /∈ S. From this, we deduce that S ∩ {c1, c2, . . . , cm} = ∅. Therefore

|Hi ∩ S| = 2 and
(
V (H) ∪ {c1, c2, . . . , cm}

)
∩ S = {s3, s4, s5, s6} as desired.�

Claim 2. C is satisfiable if and only if γpr(G) = 2n+ 4.

Proof of Claim. Suppose that γpr(G) = 2n+ 4 and let S be a γpr-set of G. By Claim

1, {s3, s4, s5, s6} ⊂ S and |V (Hi) ∩ S| = 2 for each i ∈ {1, 2, . . . , n}. Moreover, since

N(cj)∩ {s3, s4, s5, s6} = ∅ for every j and Hi is a complete bipartite graph, only one

of ui and ūi is in S and is paired with one vertex of {xi, yi, zi}, for each i. Define a

mapping t : U −→ {T, F} by

t(ui) =

{
T if ui ∈ S,

F if ūi ∈ S,
(1)

for i ∈ {1, . . . , n}. We now show that t is a satisfying truth assignment for C . It is

sufficient to show that every clause in C is satisfied by t. To this end, we arbitrarily

choose a clause Cj ∈ C for j ∈ {1, . . . ,m}. By Claim 1, since |Hi ∩ S| = 2, and(
{s1, s2} ∪ {c1, c2, . . . , cm}

)
∩ S = ∅, there exists some i ∈ {1, . . . , n} such that cj is

adjacent to ui or ūi. Suppose that cj is adjacent to ui where ui ∈ S. Since ui is

adjacent to cj in G, the literal ui is in the clause Cj by the construction of G. Since

ui ∈ S, it follows that t(ui) = T by (1), which implies that the clause Cj is satisfied

by t. Suppose that cj is adjacent to ūi where ūi ∈ S. Since ūi is adjacent to cj in G,

the literal ūi is in the clause Cj . Since ūi ∈ S, it follows that t(ui) = F by (1). Thus,

t assigns ūi the truth value T , that is, t satisfies the clause Cj . By the arbitrariness

of j, with 1 ≤ j ≤ m, it follows that t satisfies all the clauses in C , so C is satisfiable.

Conversely, suppose that C is satisfiable, and let t : U −→ {T, F} be a satisfying

truth assignment for C . Create a subset S of V (G) as follows: if t(ui) = T , then let

ui ∈ S, and if t(ui) = F , then let ūi ∈ S. Let {y1, y2, . . . , yn, s3, s4, s5, s6} ⊆ S and

the intersection of the set of the remaining vertices of G with S is empty. Clearly,

|S| = 2n+ 4. Since t is a satisfying truth assignment for C , for each j ∈ {1, . . . ,m},
at least one of literals in Cj is true under the assignment t. It follows that the

corresponding vertex cj in G is adjacent to at least one vertex p of S. Since cj is

adjacent to each literal in Cj by the construction of G, thus S is a paired dominating

set of G, and so γpr(G) ≤ |S| = 2n + 4. By Claim 1, γpr(G) ≥ 2n + 4, and thus

γpr(G) = 2n+ 4. �
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Claim 3. Let G′ be obtained from G by subdividing any edge e of E(G), then γpr(G
′) ≤

2n+ 6.

Proof of Claim. Let e = uv ∈ E(G) and let G′ be the graph obtained from G by

subdividing the edge e with new vertex w. Now, consider the following cases:

Case 1. If e = s1s3, then consider the set S = {s1, w, s5, s7, s4, s6} ∪ {vi, xi | 1 ≤ i ≤
n}.

Case 2. If e = s3s5, then consider the set S = {s1, s3, s5, s7, s4, s6} ∪ {vi, xi | 1 ≤ i ≤
n}.

Case 3. If e = s5s7, then consider the set S = {s1, s3, w, s7, s4, s6} ∪ {vi, xi | 1 ≤ i ≤
n}. (The case e ∈ {s2s4, s4s6, s6s8} is similar).

Case 4. If e = s1cj for any j ∈ {1, 2, . . . ,m}, then consider the set S =

{s1, w, s5, s7, s4, s6} ∪ {vi, xi | 1 ≤ i ≤ n}.

Case 5. If e = cjui for some 1 ≤ j ≤ m and 1 ≤ i ≤ n, then consider the set

S = {s1, cj , s5, s7, s4, s6} ∪ {xi, ui | 1 ≤ i ≤ n}. (The case e = cjui is similar).

Case 6. If e = uv such that u ∈ {xi, yi, zi} and v ∈ {ui, ui}, say, without loss of

generality, u = xr, v = ur and ur is adjacent to cj for some 1 ≤ r ≤ n and 1 ≤ j ≤ m,

then consider the set S = {s1, cj , s5, s7, s4, s6} ∪ {xi, vi | 1 ≤ i ≤ n}.

Case 7. If e = uv such that u ∈ {xi, yi, zi} and v ∈
(
{vi, wi, ri}

)
, say, without

loss of generality, u = xr, v = vr for some 1 ≤ r ≤ n, then consider the set S =

{s3, s5, s4, s6, w, xr} ∪ {yi | 1 ≤ i ≤ n} and add, as a partner of yi in S, the vertex ui
if ui ∈ Cj and ui if ui ∈ Cj .
Clearly, in either of the above cases, S is a paired dominating set of G′ with |S| =

2n+ 6, and therefore γpr(G
′) ≤ 2n+ 6. �

Claim 4. γpr(G) = 2n+ 4 if and only if, sdγpr (G) = 1.

Proof of Claim. Assume γpr(G) = 2n + 4. Let G′ be the graph obtained from G by

subdividing the edge e = s3s5 with new vertex w. Suppose, for a contradiction, that

γpr(G) = γpr(G
′), and let S′ be a γpr(G

′)-set whose subgraph has a perfect matching

M.

First assume that w /∈ S′. Then to paired dominate s7, we have {s5, s7} ⊆ S′. Now, if

s3 /∈ S′, then s1 ∈ S′ and is paired in S′ with some vertex cj . Hence S′ is a γpr(G)-set

containing cj , contradicting Claim 1. Assume now that s3 ∈ S′. Then s1 ∈ S′ and

since |S′ ∩ {s2, s4, s6, s8}| ≥ 2 and |V (Hi) ∩ S′| ≥ 2 for each i ∈ {1, ..., n}, we deduce

that |S′| ≥ 2n+ 6, contradicting the fact that |S′| = 2n+ 4.

Secondly, assume that w ∈ S′. Then to paired dominate s7, we must have s5 ∈ S′.

Now, if s1 /∈ S′, then s3 /∈ S′ and to paired dominate s1, we must have cj ∈ S′ for

some j ∈ {1, . . . ,m}. In this case, let S = (S′ \ {w}) ∪ {s3}, where s3 and s5 are

partners in S. Clearly, S is a paired dominating set of G, and since |S| = 2n + 4,
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we obtain a contradiction with Claim 1. Therefore we assume that s1 ∈ S′. Then

S = (S′ \ {w}) ∪ {s7} is a paired dominating set of G yielding a contradiction with

Claim 1, as above. Hence, γpr(G) < γpr(G
′), and therefore sdγPR

(G) = 1.

Conversely, assume that sdγPR
(G) = 1. By Claim 1, we have γpr(G) ≥ 2n+4. Let G′

be the graph obtained from G by subdividing an edge e such that γpr(G) < γpr(G
′).

By Claim 3, we have γpr(G
′) ≤ 2n + 6. Thus, 2n + 4 ≤ γpr(G) < γpr(G

′) ≤ 4n + 6,

which yields γpr(G) = 2n+ 4, as desired.�

By Claims 2 and 4, we prove that sdγPR
(G) = 1 if and only if there is a truth

assignment for U that satisfies all clauses in C . Since the construction of the paired

subdivision number instance is straightforward from a 3-satisfiability instance, the

size of the paired domination subdivision number instance is bounded above by a

polynomial function of the size of 3-satisfiability instance. It follows that this is a

polynomial reduction and the proof is complete. 2
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