[1] S. Akbari, A.H. Ghodrati, and M.A. Hosseinzadeh, Some lower bounds for the energy of graphs, Linear Algebra Appl. 591 (2020), 205–214.
2] N. Alawiah, N. Jafari Rad, A. Jahanbani, and H. Kamarulhaili, New upper bounds on the energy of a graph, Match. Commun. Math. Comput. Chem. 79 (2018), 287–301.
[3] D. Babic and I. Gutman, More lower bounds for the total π-electron energy of alternant hydrocarbons, MATCH Commun. Math. Comput. Chem. (1995), no. 32, 7–17.
[4] G. Caporossi, D. Cvetković, I. Gutman, and P. Hansen, Variable neighborhood search for extremal graphs. 2. finding graphs with extremal energy, J. Chem. Inf. Comput. Sci. 39 (1999), no. 6, 984–996.
[5] D. Cvetković, M. Doob, and H. Sachs, Spectra of Graphs Theory and Applications, Academic Press, New York, 1980.
[6] S.S. Dragomir, A survey on Cauchy-Bunyakovsky-Schwarz type discrete inequalities, J. Inequal. Pure Appl. Math. 4 (2003), no. 3, 1–142.
[7] I. Gutman and K.C. Das, Estimating the total π-electron energy, J. Serb. Chem. Soc. 78 (2013), 1925–1933.
[8] I. Gutman, S. Filipovski, and R. Jajcay, Variations on Mcclellands bound for graph energy, Discrete Math. Lett. 3 (2020), 57–60.
[9] I. Gutman and M.R. Oboudi, Bounds on graph energy, Discrete Math. Lett. 4 (2020), 1–4.
[10] I. Gutman and O.E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin, 1986.
[11] I. Gutman and H. Ramane, Research on graph energies in 2019, MATCH Commun. Math. Comput. Chem. 84 (2020), no. 2, 277–292.
[12] I. Gutman, A.V. Teodorović, and L. Nedeljković, Topological properties of benzenoid systems. bounds and approximate formulae for total π-electron energy, Theor. Chim. Acta 65 (1984), no. 1, 23–31.
[13] J.H. Koolen and V. Moulton, Maximal energy graphs, Adv. Appl. Math. 26 (2001), no. 1, 47–52.
[14] X. Li, Y. Shi, and I. Gutman, Graph Energy, Springer Science & Business Media, 2012.
[15] B.J. McClelland, Properties of the latent roots of a matrix: The estimation of π-electron energies, J. Chem. Phys. 54 (1971), no. 2, 640–643.
[16] G.R. Omidi, On a signless Laplacian spectral characterization of T-shape trees, Linear Algebra Appl. 431 (2009), no. 9, 1607–1615.
[17] L. Von Collatz and U. Sinogowitz, Spektren endlicher grafen, Abh. Math. Sem. Univ. Hamburg, vol. 21, Springer, 1957, pp. 63–77.
[18] D.B. . West, Introduction to Graph Theory, Second Edition, Prentice Hall, 2001.
[19] Q. Zhou, D. Wong, and D. Sun, A lower bound for graph energy, Linear Multilinear Algebra 68 (2020), no. 8, 1624–1632.