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Abstract: In this paper, we present a second-order corrector infeasible interior-point
method for linear optimization in a large neighborhood of the central path. The in-

novation of our method is to calculate the predictor directions using a specific kernel

function instead of the logarithmic barrier function. We decompose the predictor direc-
tion induced by the kernel function to two orthogonal directions of the corresponding

to the negative and positive component of the right-hand side vector of the centering

equation. The method then considers the new point as a linear combination of these
directions along with a second-order corrector direction. The convergence analysis of

the proposed method is investigated and it is proved that the complexity bound is

O(n
5
4 log ε−1).
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1. Introduction

Interior point methods (IPMs) which started by Karmakar’s paper in 1984 [7] have

attracted much attention because of their power for solving linear optimization (LO).

These methods were extensively used to obtain strong theoretical complexity results

for LO. Among them, the primal-dual IPMs gain much more attention and the central

pathway independently proposed by Megiddo [18] and Sonnevend [24] plays a crucial

role in these methods. Actually, the goal of primal-dual IPMs is to follow the central
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path and to compute an interior point as an ε-approximate of the optimal solution.

For more details we refer the interested reader to the monographs of [23, 28, 29]. As

can be seen from the literature, one classification of the primal-dual path-following

IPMs can be based on step length; e.g., short update (small neighborhood) and large

update (wide neighborhood) methods. From the point of view of theory, the small

neighborhood methods give the complexity results better, while the large-step versions

perform better in practice. This suggests that there is a gap between theory and

practice. To reduce gap mentioned, Peng et al. [21] the first introduced the interior-

point algorithms based on the idea of the self-regular functions. Wang et al. [27]

presented a full-Newton step feasible IPM for P∗(κ)-LCP and obtained the currently

best known iteration bound for small-update methods. Wang et al. [26] proposed

an interior point algorithm and improved the complexity bound of IPMs for SDO

using the Nesterov and Todd (NT) direction. Another classification is related to

the feasibility of the iterates. In this case, we can talk about feasible and infeasible

interior-point algorithms [23, 28, 29]. We can also meet with predictor-corrector IPMs

which seems to be, in the theory and practice, the most powerful among these types of

algorithms [19, 20]. Darvay [4] published a predictor-corrector interior-point algorithm

for LO based on the algebraic equivalent transformation of the central path and used

the function ψ(t) =
√
t, t > 0 in order to determine of the transformed central path.

Some variants and extensions of this algorithm can be found in [8–10, 25].

In 2004, Ai [1] proposed a new neighborhood of the central path for LO that was

wider from the existing neighborhoods. Based on this neighborhood, Ai and Zhang

[2] introduced a new path-following interior-point algorithm for LCP and proved that

their algorithm has the O(
√
nL) iteration complexity bound. later on, this work

attracted the attention of a number of researchers; e.g., Li and Terlaky [15], Feng

and Fang [6] and Potra [22] generalized the Ai-Zhang idea to SDO and P∗(κ)-LCP,

respectively. Feng [5] extended the Ai-Zhang technique for solving LCP to second-

order cone optimization (SOCO). Liu and Liu [16] proposed the first wide neighbor-

hood second-order corrector IPM with the same complexity as small neighborhood

IPMs for SDO. Kheirfam and Chitsaz [12] proposed a second-order corrector interior-

point algorithm for solving P∗(κ)-LCP based on the Ai-Zhang’s idea [2] and proved

that the algorithm meets the best known theoretical complexity bound. Kheirfam

and Mohammadi-Sangachin [14] proposed a new predictor-corrector IPM for SDO in

which their algorithm computes two corrector directions in addition to the Ai-Zhang

directions.

All the algorithms mentioned so far require a strictly feasible starting point. For

most problems such a starting point is difficult to find. In this case, an infeasible IPM

(IIPM) is suggested. Liu et al. [17] devised a new infeasible-interior-point algorithm

based on a wide neighborhood for symmetric optimization (SO). Based on the wide

neighborhood and a commutative class of search directions, Kheirfam [11] investigated

a predictor-corrector infeasible interior-point algorithm for SDO and proved that the

complexity of the proposed algorithm is O(n5/4 log ε−1).

It is worth noting that all the aforementioned wide neighborhood interior point algo-

rithms use the classical logarithmic barrier function to obtain the search directions.
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Kheirfam and Haghighi [13] for the first time introduced a wide neighborhood interior-

point algorithm based on the kernel function for LO. In fact, the search direction is

based on the kernel function. Motivated by these observations, we propose a second-

order corrector wide neighborhood infeasible interior-point algorithm for LO. Our

algorithm decomposes the predictor directions induced by the kernel function to two

orthogonal directions corresponded to the negative and positive parts of the right-

hand side vector of the centering equation. Using the information of the negative

directions, the algorithm computes a second-order corrector direction. The correc-

tor is multiplied by the square of the twice the step size of the negative directions

in the expression of the new iterate. We establish polynomial-time convergence of

the proposed algorithm and derive the iteration complexity bound. Notably, this is

the first second-order corrector wide neighborhood infeasible interior-point algorithm

based on the kernel function for LO.

The outline of the paper is as follows. In Section 2, we introduce the LO, the concept

of its central path and the search directions based on the kernel function. In Section

3, we give the systems defining the negative and positive search directions and the

second-order corrector direction. Then, we present our new algorithm. Section 4

is devoted to the analysis of the proposed algorithm and we compute the iteration

complexity for the algorithm. Finally, some concluding remarks are given in Section

5.

Notations. The following notations are used throughout the paper. Rm×n denotes

the set of all m× n matrices, whereas Rn is the n-dimensional Euclidean space. The

Euclidean norm of v ∈ Rn is denoted by ‖v‖. Let e = [1, . . . , 1]T denotes the n-

dimensional all-one vector and let Rn+ = {x ∈ Rn : x ≥ 0} and Rn++ = {x ∈ Rn :

x > 0}. If x, s ∈ Rn, then xs denotes Hadamard product of two vector x and s, i.e.

xs = [x1s1, , . . . , xnsn]T . Moreover, diag(x) is a diagonal matrix, which contains on

his main diagonal the element of x in the original order. Let x+ = [x+1 , . . . , x
+
n ]T

and x− = [x−1 , . . . , x
−
n ]T , where x+i = max{xi, 0} and x−i = min{xi, 0}, for each

i = 1, . . . , n, respectively.

2. Preliminaries

Consider the problem pair (P) and (D) as follows:

min{cTx : Ax = b, x ≥ 0}, (P )

and

max{bT y : AT y + s = c, s ≥ 0}, (D)

where b ∈ Rm, c ∈ Rn, A ∈ Rm×n. It is assumed that rank(A) = m. By F(F0) we

denote the set of all feasible solutions (strictly feasible solutions) of the primal-dual

pair of problems (P) and (D). Without loss of generality, we may assume that F0 6= ∅.
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The optimal conditions for the problem pair (P) and (D) are

Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0,

xs = 0.

(1)

The key idea of primal-dual IPMs is to use the parameterized equation xs = µe

instead the complementarity condition xs = 0, where µ > 0. Thus, the system (1)

becomes

Ax = b, x > 0,

AT y + s = c, s > 0,

xs = µe.

(2)

By assumption F0 6= ∅, it is proved that the system (2) has a unique solu-

tion (x(µ), y(µ), s(µ)) for each µ > 0. The set of all such solutions, denoted by

C := {(x(µ), y(µ), s(µ)) : µ > 0}, is called the central path (see [18, 24]). The central

path converges for µ ↓ 0 to the optimal solution of the initial problem.

Applying Newton’s method to system (2) gives the following system for search direc-

tion (∆x,∆y,∆s):

A∆x = rp,

AT∆y + ∆s = rd,

x∆s+ s∆x = τµe− xs,
(3)

where τ ∈ (0, 1) is called centering parameter, rp = b−Ax and rd = c− s−AT y are

the residual vectors at (x, y, s). One easy finds

x∆s+ s∆x = −√τµxs
(√ xs

τµ
−
√
τµe

xs

)
= −√τµxs∇Ψ

(√ xs

τµ

)
, (4)

where Ψ(t) =
∑n
i=1 ψ(ti), ψ(ti) =

t2i−1
2 − log(ti) with ti =

√
xisi
τµ and t ∈ Rn.

ψ is so-called a kernel function, i.e., ψ(1) = ψ
′
(1) = 0, ψ

′′
(ti) > 0,∀ti > 0 and

limti→0+ ψ(ti) = limti→+∞ ψ(ti) = +∞.
Here, we take the ψ(ti) = (ti − 1

ti
)2 kernel function [3]. In this way, by invoking (4),

the system (3) becomes

A∆x = rp,

AT∆y + ∆s = rd,

x∆s+ s∆x = (xs)−1
(
τ2µ2e− (xs)2

)
.

(5)
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3. An infeasible-interior-point algorithm

We propose a second-order corrector infeasible-interior-point algorithm for solving the

problem pair (P) and (D). The algorithm solve the following two systems

A∆x− = rp,

AT∆y− + ∆s− = rd,

x∆s− + s∆x− = (xs)−1(τ2µ2e− (xs)2)−,

(6)

and

A∆x+ = 0,

AT∆y+ + ∆s+ = 0,

x∆s+ + s∆x+ = (xs)−1(τ2µ2e− (xs)2)+.

(7)

to obtain the predictor directions (∆x−,∆y−,∆s−) and (∆x+,∆y+,∆s+), while the

corrector direction (∆xc,∆yc,∆sc) is computed by the following system:

A∆xc = 0,

AT∆yc + ∆sc = 0,

x∆sc + s∆xc = −∆x−∆s−.

(8)

Finally, the new iterate is considered as follows

x(α) := x+ ∆x(α) = x+
α1

2
∆x− + α2∆x+ + α2

1∆xc,

s(α) := s+ ∆s(α) = s+
α1

2
∆s− + α2∆s+ + α2

1∆sc.

Using the above two equations and invoking the systems (6), (7) and (8), we can write

x(α)s(α) = xs+
α1

2
((xs)−1(τ2µ2e− (xs)2)+)

+α2((xs)−1(τ2µ2e− (xs)2)+) +
α3
1

2
(∆s−∆xc + ∆x−∆sc)

+
α1α2

2
(∆x+∆s− + ∆s+∆x−) + α2α

2
1(∆s+∆xc + ∆sc∆x+)

+α2
2(∆x+∆s+) + α4

1(∆xc∆sc). (9)

Inspired by Ai and Zhang [2], we define the following wide neighborhood of the infea-

sible central path for LO:

N (τ, β) =
{

(x, y, s) ∈ Rn++ ×Rm ×Rn++ :
∥∥(τµe− xs)+

∥∥ ≤ βτµ},
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where β, τ ∈ (0, 1) are given constants. One has (xs)i ≥ (1 − β)τµ for (x, y, s) ∈
N (τ, β). Note that the algorithm will be restrict the iterates to the N (τ, β) wide

neighborhood.

Now, we outline our new second-order corrector infeasible-interior-point algorithm as

follows.

Algorithm 1 : second− order corecctor infeasible interior− point algorithm

Input: an accuracy parameter ε > 0, neighborhood parameters 0 < β ≤ 1
2 , 0 < τ ≤ 1

4

and an initial point (x0, y0, s0) ∈ N (τ, β) with µ0 = (x0)T s0

n .

For k = 0, 1, · · · ,

Step 1: If µk ≤ ε, then stop.

Step 2: Compute the predictor directions (∆x−,∆y−,∆s−) and (∆x+,∆y+,∆s+)

by solving (6) and (7), respectively.

Step 3: Compute the corrector directions (∆xc,∆yc,∆sc) by solving (8).

Step 4: Find the largest step size 0 < αk := (αk1 , α
k
2), such that

µ(α) ≤
(

1− αk1
10

)
µ, (10)

x(αk)T s(αk) ≥
(

1− αk1
2

)
(xk)T sk, (11)(

x(αk), y(αk), s(αk)
)
∈ N (τ, β). (12)

Step 4: Let (xk+1, yk+1, sk+1) := (x(αk), y(αk), s(αk)) and µk+1 = (xk+1)T sk+1

n .

Step 5: Set k := k + 1 and go to Step 1 .

Let the iterate (xk, yk, sk) be generated by Algorithm 1, and when the residual vectors

rp and rd are evaluated at the point (x, y, s) = (xk, yk, sk), we denote them by rkp and

rkd . Moreover, we introduce the scalar quantity

νk =
(

1− αk1
2

)
νk−1 =

k−1∏
i=0

(
1− αi1

2

)
, ν0 = 1.

In this way, one easily checks that rkp = νkr
0
p and rkd = νkr

0
d. From this discussion it

concludes that νk =
‖rkp‖
‖r0p‖

=
‖rkd‖
‖r0d‖

. This means that νk shows the relative infeasibility

of (xk, yk, sk). Therefore, at each iteration, we maintain the following condition

(xk)T sk ≥
(

1− αk1
2

)
(xk−1)T sk−1) ≥ νk(x0)T s0, (13)
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which guarantees that the infeasibility tends to zero while xT s approaches to zero.

Suppose ρ∗ be a positive constant such that for some optimal solution (x∗, y∗, s∗), we

have ρ∗ = ‖x∗‖∞ + ‖s∗‖∞. The starting point (x0, y0, s0) is chosen so that

x0 = s0 = ρ∗e > 0. (14)

From the equality (14) and the definition of ρ∗, it follows that x0 − x∗ ≥ 0 and

s0 − s∗ ≥ 0. In addition, by direct calculation we obtain

ρ∗ =
n(‖x∗‖∞ + ‖s∗‖∞)

n
≥ eTx∗ + eT s∗

n
. (15)

4. Analysis of the algorithm

For the sake of simplicity, we define the following notations

v =
√
xs, dx− =

v∆x−
x

, ds− =
v∆s−
s

, dx+ =
v∆x+
x

,

ds+ =
v∆s+
s

, dxc =
v∆xc

x
, dsc =

v∆sc

s
.

Due to the above notations, we scale the systems (6), (7) and (8) as follows

Ādx− = rp,

ĀT∆y− + ds− = vs−1rd,

dx− + ds− = τµe+v2

v3 (τµe− v2)−,

(16)

Ādx+ = 0,

ĀT∆y+ + ds+ = 0,

dx+ + ds+ = τµe+v2

v3 (τµe− v2)+,

(17)

and

Ādxc = 0,

ĀT∆yc + dsc = 0,

dsc + dxc = −v−1dx−ds−,
(18)

where Ā = AV −1X with V = diag(v) and X = diag(x). From the first two equa-

tions of (17) and (18) one has (dx+)T (ds+) = (dxc)T (dsc) = (dx+)T dsc = 0 and

(dxc)T (ds+) = 0 . Using (9), together with (16) and (17), we can write

µ(α) =
x(α)T s(α)

n
= µ+

α1

2n
eT
(
τµe+ v2

v2
(τµe− v2)−

)
+
α2

n
eT
(
τµe+ v2

v2
(τµe− v2)+

)
+
α3
1

2n

(
(ds−)T (dxc) + (dx−)T (dsc)

)
+
α1α2

2n

(
(dx+)T (ds−) + (ds+)T (dx−)

)
. (19)

The following lemma is key to our analysis.
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Lemma 1. ([30]) Let u, v ∈ Rn and p = (x−1s)
1
2 , then

‖uv‖1 ≤ ‖pu‖‖p−1v‖ ≤ 1

2

(
‖pu‖2 + ‖p−1v‖2

)
.

We now cite the following two lemmas from [13].

Lemma 2. Let (x, y, s) ∈ N (τ, β). Then

(i) eT
(
τµe+v2

v2
(τµe− v2)−

)
≤ −(1− τ)nµ.

(ii) eT
(
τµe+v2

v2
(τµe− v2)+

)
≤ 2−β

1−β
√
nβτµ.

Lemma 3. If (x, y, s) ∈ N (τ, β) and β ≤ 1
2

, then

(i)
∥∥ τµe+v2

v3
(τµe− v2)−

∥∥2 ≤ 4nµ.

(ii)
∥∥ τµe+v2

v3
(τµe− v2)+

∥∥2 ≤ β2(2−β)2
(1−β)3 τµ.

In order to get an upper bound for ‖dx−‖‖ds−‖, we first prove the following lemma.

Lemma 4. Let (dx−, dy−, ds−) be a solution of the system (16) and p = (x−1s)
1
2 .

Moreover, let (x0, y0, s0) be defined as in (14). Then

(dx−)T (ds−) ≥ −ξt− nµ,

where

ξ = ν
(
‖p−1(s0 − s∗)‖+ ‖p(x0 − x∗)‖

)
and t =

(
‖dx−‖2 + ‖ds−‖2

) 1
2 .

Proof. Considering the first two equations of the system (16) and using the fact that

(x∗, y∗, s∗) is an optimal solution, we can write

0 = Ādx− − rp = AXV −1dx− − νr0p = AXV −1dx− − ν(b−Ax0)

= A
(
XV −1dx− − ν(x∗ − x0)

)
.

In a quite similar way, one has

AT
(
XV −1∆y− − vs−1ν(y∗ − y0)

)
+ ds− − vs−1ν(s∗ − s0) = 0.

From the above two equations, it follows that

(XV −1dx− − ν(x∗ − x0))T (ds− − vs−1ν(s∗ − s0)) = 0.
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By rearranging, we have

XV −1dxT−ds− = νxs−1(s∗ − s0)T dx− + ν(x∗ − x0)T ds−

−ν2vs−1(x0 − x∗)T (s0 − s∗),

and then one finds

dxT−ds− = νvs−1(s∗ − s0)T dx− + νx−1v(x∗ − x0)T ds−

−ν2(x∗ − x0)T (s∗ − s0)

= ν(s∗ − s0)T∆x− + ν(x∗ − x0)T∆s− − ν2(x0 − x∗)T (s0 − s∗)
≥ −ν‖p∆x−‖‖p−1(s0 − s∗)‖ − ν‖p−1∆s−‖‖p(x0 − x∗)‖

−ν2(x0 − x∗)T (s0 − s∗)
≥ −ν

(
‖p−1(s0 − s∗)‖+ ‖p(x0 − x∗)‖

)
×
√
‖p∆x−‖2 + ‖p−1∆s−‖2 − ν2(x0 − x∗)T (s0 − s∗)

= −ξt− ν2(x0 − x∗)T (s0 − s∗) ≥ −ξt− nµ.

Here the first inequality follows from the Cauchy-Schwarz inequality and the second

inequality is due to the following inequality, for any a, b, c, d ∈ Rn

‖a‖‖b‖+ ‖c‖‖d‖ ≤ [‖b‖+ ‖d‖][‖a‖2 + ‖c‖2]
1
2 ,

and the last inequality follows by

ν2(x∗ − x0)T (s∗ − s0) = ν2
(
(x0)T (s0)− (x0)T (s∗)− (x∗)T (s0)

)
≤ ν2((x0)T (s0)) ≤ ν(xT s) ≤ nµ.

Thus we have completed the proof.

Lemma 5. If (x, y, s) ∈ N (τ, β), then

‖dx+‖2 + ‖ds+‖2 ≤
β2(2− β)2

(1− β)3
τµ.

Proof. Taking the squared-norm on both sides of the third equation of (17), remem-

bering that dxT+ds+ = 0, implies that

‖dx+ + ds+‖2 = ‖dx+‖2 + ‖ds+‖2 =
∥∥τµe+ v2

v3
(τµe− v2)+

∥∥2
≤ β2(2− β)2

(1− β)3
τµ,

where the inequality is obtained from Lemma 3(ii). Thus the proof is completed.
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Lemma 6. If (x, y, s) ∈ N (τ, β), then

‖dx−‖2 + ‖ds−‖2 ≤ ω2n2µ,

where ω = 3√
(1−β)τ

+
√

9
(1−β)τ + 6

n
≥ 6.

Proof. Using (16) and Lemma 3(i), it follows that

t2 = ‖dx−‖2 + ‖ds−‖2 ≤ −2(dx−)T (ds−) + 4nµ ≤ 2ξt+ 6nµ,

where the second inequality is due to Lemma 4. This implies

0 ≤ t ≤ ξ +
√
ξ2 + 6nµ. (20)

From proof of lemma 4.6 in [11], we have

ξ ≤ 3nµ√
(1− β)τµ

.

Substitution of this bound into (20) yields

t2 ≤

(
3nµ√

(1− β)τµ
+

√
9n2µ2

(1− β)τµ
+ 6nµ

)2

≤ ω2n2µ,

where ω = 3√
(1−β)τ

+
√

9
(1−β)τ + 6

n ≥ 6. The proof is completed.

Based on the results in Lemmas 5 and 6 and the inequality of arithmetic and geometric

means, we can straightforwardly prove the following corollary.

Corollary 1. Suppose that (x, y, s) ∈ N (τ, β). Then

(i) ‖dx+‖‖ds+‖ ≤ β2(2−β)2
2(1−β)3 τµ.

(ii) ‖dx−‖‖ds−‖ ≤ ω2n2µ
2

.

Lemma 7. Let (x, y, s) ∈ N (τ, β) and p = (x−1s)
1
2 , then

‖dxc‖‖dsc‖ ≤ ω4n4µ

8(1− β)τ
, where ω ≥ 6.
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Proof. If we take the squared-norm of the third equation of (18) and use the or-

thogonality property of the vectors dxc and dsc, then we obtain

‖dxc‖2 + ‖dsc‖2 = ‖v−1(dx−ds−)‖2 ≤ ‖v−1‖2∞‖dx−ds−‖2 ≤
ω4n4µ

4(1− β)τ
, (21)

where the last inequality follows from the fact that (x, y, s) ∈ N (τ, β) and Corollary

1(ii). Finally, using the inequality of arithmetic and geometric means and the above

inequality, we obtain the inequality in lemma.

The next result is a straightforward consequence of Lemmas 5, 6 and the inequality

(21).

Corollary 2. Let (x, y, s) ∈ N (τ, β) and p = (x−1s)
1
2 , then

(i) ‖dx−‖‖ds+‖ ≤ β(2−β)

(1−β)
3
2

√
τnωµ, (iv) ‖dx−‖‖dsc‖ ≤ ω3n3µ

2
√

(1−β)τ
,

(ii) ‖ds−‖‖dx+‖ ≤ β(2−β)

(1−β)
3
2

√
τnωµ, (v) ‖ds+‖‖dxc‖ ≤ β(2−β)

2(1−β)2ω
2n2µ,

(iii) ‖ds−‖‖dxc‖ ≤ ω3n3µ

2
√

(1−β)τ
, (vi) ‖dsc‖‖dx+‖ ≤ β(2−β)

2(1−β)2ω
2n2µ.

Given (x, y, s) ∈ N (τ, β), the following lemma ensures that the algorithm reduces the

duality gap for a specific choice of parameters.

Lemma 8. Suppose (x, y, s) ∈ N (τ, β). If α1 =
√

βτ
2n
α2, α2 ≤ 1

√
nω

3
2
, β ≤ 1

78
and

τ ≤ 51
100

, then µ(α) ≤
(
1− α1

250

)
µ.

Proof. By (19), Lemma 2 and the Cauchy-Schwartz inequality, we can find

µ(α) ≤ 1

n

(
nµ− α1

2
(1− τ)nµ+ α2

2− β
1− β

√
nβτµ

+
α3
1

2
(‖ds−‖‖dxc‖+ ‖dx−‖‖dsc‖) +

α1α2

2
(‖ds+‖‖dx−‖+ ‖ds−‖‖dx+‖)

)
≤ µ− (1− τ)α1µ

2
+
α1

√
2βτ(2− β)µ

1− β
+

α3
1ω

3n2µ

2
√

(1− β)τ
+
α1α2β(2− β)ω

√
τµ

(1− β)
3
2

≤
(

1−
(1− τ

2
−
√

2βτ(2− β)

1− β
− β

√
τ

4
√

1− β
− β(2− β)

√
τ

(1− β)
3
2
√
nω

)
α1

)
µ

≤

(
1−

(
49

200
− 155

√
51

770
√

39
−
√

3978

3120
√

77
− 12090

√
3978

4684680
√

462

)
α1

)
µ ≤

(
1− α1

250

)
µ,
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where the second inequality follows from Corollary 2, the third one from α1 =
√

βτ
2nα2

and α2 ≤ 1
√
nω

3
2

and the fourth one is due to ω ≥ 6, n ≥ 1, τ ≤ 51
100 and β ≤ 1

78 . Thus

the proof is completed.

Lemma 9. Let α1 =
√

βτ
2n
α2, α2 ≤ 1

√
nω

3
2
, β ≤ 1

78
, τ = 51

100
and (x, y, s) ∈ N (τ, β).

Then

x(α)T s(α) ≥
(

1− α1

2

)
xT s.

Proof. First, by using the inequalities 1 ≤ τµe+v2

v2 ≤ 2 and α1 ≤ α2, we have

α1

2
eT
(
τµe+ v2

v2
(τµe− v2)−

)
+ α2e

T

(
τµe+ v2

v2
(τµe− v2)+

)
≥ α1

2
eT
(
2(τµe− v2)−

)
+ α2e

T
(
(τµe− v2)+

)
≥ α1

2
eT
(
2(τµe− v2)−

)
+ α1e

T
(
(τµe− v2)+

)
= α1e

T
(
(τµe− v2)

)
= α1(τ − 1)nµ.

Substituting this into (19), also using the Cauchy-Schwartz inequality, we obtain

x(α)T s(α) ≥ nµ+ α1(τ − 1)nµ− α3
1

2

(
‖ds−‖‖dxc‖+ ‖dx−‖‖dsc‖

)
−α1α2

2

(
‖ds+‖‖dx−‖+ ‖dx+‖‖ds−‖

)
≥ nµ− α1(1− τ)nµ− α3

1

( ω3n3µ

2
√

(1− β)τ

)
− α1α2

(β(2− β)

(1− β)
3
2

ω
√
τnµ

)
≥

(
1−

(
1− τ + α2

1

( ω3n2

2
√

(1− β)τ

)
+ α2

(β(2− β)

(1− β)
3
2

ω
√
τ
))

α1

)
nµ

≥
(

1−
(

1− τ +
β
√
τ

4
√

1− β
+

β(2− β)
√
τ

(1− β)
3
2
√
nω

)
α1

)
nµ

≥

(
1−

( 49

100
+

√
3978

3120
√

77
+

12090
√

3978

4684680
√

462

)
α1

)
nµ

= (1− 0.4999α1)nµ ≥
(

1− α1

2

)
xT s

Thus we have completed the proof.

The proof of next lemma is quite similar to the proof of Lemma 6 in [13], so the proof

is omitted here.
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Lemma 10. Suppose that µ(α) > 0 and (x, y, s) ∈ N (τ, β), then we have

∥∥(τµ(α)e− Γ(α))+
∥∥ ≤ (1− 2α2

)
βτµ(α),

where

Γ(α) = v2 +
τµe+ v2

v2

(α1

2
(τµe− v2)− + α2(τµe− v2)+

)
.

Lemma 11. If α = (α1, α2), α1 =
√

βτ
2n
α2, α2 ≤ 1

ω
3
2 n

3
4
, β ≤ 1

78
, τ = 51

100
and (x, y, s) ∈

N (τ, β), then

(x(α), y(α), s(α)) ∈ N (τ, β)

.

Proof. From (9), Lemma 10 and Corollary 2 we deduce that

∥∥(τµ(α)e− x(α)s(α))+
∥∥ =

∥∥[τµ(α)e− Γ(α)− α1α2

2
(dx+ds− + ds+dx−)

−α
3
1

2
(ds−dx

c + dx−ds
c)− α2α

2
1(ds+dx

c + dscdx+)

−α2
2(dx+ds+)− α4

1(dxcdsc)]+
∥∥

≤
∥∥[τµ(α)e− Γ(α)]+

∥∥+
α1α2

2
(‖(dx+‖‖ds−‖+ ‖ds+‖‖dx−‖)

+
α3
1

2
(‖ds−‖‖dxc‖+ ‖dx−‖‖dsc‖) + α2α

2
1(‖ds+‖‖dxc‖+ ‖dx+‖‖dsc‖)

+α2
2(‖dx+‖‖ds+‖) + α4

1(‖dxc‖‖dsc‖)

≤ (1− 2α2)βτµ(α) +

√
βτ

2n
α2
2

β(2− β)

(1− β)
3
2

√
τ nωµ

+
(βτ

2n

) 3
2 α3

2ω
3n3µ

2
√

(1− β)τ
+
(βτ

2n

)α3
2β(2− β)

(1− β)2
ω2n2µ

+
α2
2β

2(2− β)2τµ

2(1− β)3
+
(β2τ2

4n2

) α4
2ω

4n4µ

8(1− β)τ

≤ (1− 2α2)βτµ(α) + α2βτµ
( (2− β)

√
β

n
1
4 (1− β)

3
2

√
2ω
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√
β

4
√

2(1− β)

+
β(2− β)

2
√
nω(1− β)2

+
β(2− β)2

2ω
3
2n

3
4 (1− β)3

+
β

32(1− β)
√
ωn

1
4
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≤ (1− 2α2)βτµ(α)

+α2βτµ
( 155

154
√

231
+

1

4
√

154
+

155

71148
+

(155)2

(77)3 × 12
√

6
+

1

77× 32
√

6

)
≤ (1− 2α2)βτµ(α) + 0.091α2βτµ.
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On the other hand, from lemma 9, α1 =
√

βτ
2nα2 and α2 ≤ 1

n
3
4 ω

3
2

it follows that

µ(α) ≥
(

1− α1

2

)
µ ≥

(
1−

√
βτ

2
√

2n
5
4ω

3
2

)
µ.

Therefore, we can write

∥∥(τµ(α)e− x(α)s(α))+
∥∥− βτµ(α) ≤ −2α2βτµ(α) + 0.091α2βτµ

≤ −2α2βτ
(

1−
√
βτ

2
√

2n
5
4ω

3
2

)
µ+ 0.091α2βτµ

=
(
− 2 + 0.002 + 0.091

)
α2βτµ ≤ 0.

The proof is completed.

Now, we state our main result concerning upper bound for the number of iterations

in which Algorithm 1 stops with an ε-approximate solution.

Theorem 1. Suppose that τ = 51
100

and β ≤ 1
78

are fixed for all iterations. Then

Algorithm 1 will terminate in O
(
n

5
4 log ε−1

)
iterations with a solution (x, y, s) for which

µ ≤ εµ0, ‖b−Ax‖ ≤ ε‖b−Ax0‖ and ‖c− s−AT y‖ ≤ ε‖c− s0 −AT y0‖.

Proof. By Lemma 8, at each iteration, we have

µk ≤
(

1− α1

250

)
µk−1 =

(
1− α1

250

)k
µ0 ≤

(
1−

√
βτ

250
√

2n
5
4ω

3
2

)k
µ0.

The above inequality implies that µ ≤ εµ0 if k ≥ 250
√
2ω

3
2 n

5
4√

βτ
log ε−1. Thus the proof

is completed.

5. Conclusions

We have presented a predictor-corrector infeasible interior-point algorithm for LO

based on a wide neighborhood of the central path. The predictor search direction

induced by the kernel function is decomposed into two orthogonal different direc-

tions. The algorithm produces a linear combination of the composed predictor di-

rections along with a second-order corrector step in the desired neighborhood. By

using an elegant analysis, we proved that the iteration complexity of the algorithm is

O(n
5
4 log ε−1).
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and B. Strazicky editor, System Modelling and Optimization: Proceedings of the

12th IFIP-Conference held in Budapest, Hungary, September 1985, Lecture Notes

in Control and Information Sciences, 84, Springer Verlag, Berlin, West-Germany,

1986, pp. 866–876.

[25] G.-Q. Wang and Y.-Q. Bai, A new full nesterov–todd step primal–dual path-

following interior-point algorithm for symmetric optimization, J. Optim. Theory

Appl. 154 (2012), no. 3, 966–985.

[26] G.Q. Wang, Y.Q. Bai, X.Y. Gao, and D.Z. Wang, Improved complexity analysis

of full Nesterov–Todd step interior-point methods for semidefinite optimization,

J. Optim. Theory Appl. 165 (2015), no. 1, 242–262.

[27] G.Q. Wang, X.J. Fan, D.T. Zhu, and D.Z. Wang, New complexity analysis of a

full-newton step feasible interior-point algorithm for P∗(κ)-LCP, Optim. Lett. 9

(2015), no. 6, 1105–1119.

[28] S.J. Wright, Primal-Dual Interior-Point Methods, SIAM, 1997.

[29] Y. Ye, Interior Point Algorithms: Theory and Analysis, vol. 44, John Wiley &

Sons Inc., New York, 1997.

[30] Y. Zhang and D. Zhang, On polynomiality of the mehrotra-type predictor–

corrector interior-point algorithms, Math. Program. 68 (1995), no. 1, 303–318.


	Introduction
	Preliminaries
	An infeasible-interior-point algorithm
	Analysis of the algorithm
	Conclusions
	References

