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Abstract: A Roman dominating function (RDF) on a graph G = (V, E) is a function
f V. — {0,1,2} such that every vertex u for which f(u) = 0 is adjacent to at
least one vertex v for which f(v) = 2. An RDF f is called an outer independent
Roman dominating function (OIRDF) if the set of vertices assigned a 0 under f is
an independent set. The weight of an OIRDF is the sum of its function values over
all vertices, and the outer independent Roman domination number v,;r(G) is the
minimum weight of an OIRDF on G. In this paper, we show that if T is a tree of order
n > 3 with s(T') support vertices, then v,;r(T) < min{%7 S"%S(T)} Moreover, we
characterize the tress attaining each bound.

Keywords: Outer independent Roman dominating function, outer independent Ro-
man domination number, tree.
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1. Introduction

In this paper, G is a simple graph with vertex set V = V(G) and edge set £ = E(G).
The order |V| of G is denoted by n = n(G). The open neighborhood of a vertex
v € V is the set N(v) = Ng(v) = {u € V | wv € E}, and its closed neighborhood
is the set N[v] = N(v) U{v}. The degree degs(v) of a vertex v is the cardinality
of its open neighborhood. A vertex of degree one is called a leaf, and its neighbor
is called a support vertex. A vertex adjacent to two or more leaves is called a strong
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274 Outer independent Roman domination number of trees

support vertex. The set of leaves adjacent to a support vertex v is denoted by L,,. For
r,s > 1, a double star DS, s is a tree with exactly two vertices that are not leaves,
with one adjacent to r leaves and the other to s leaves. The distance d(u,v) between
two vertices u and v in a graph G is the length of a shortest (u,v)-path in G, and the
diameter, diam(G), of a graph G is the greatest distance between two vertices of G.
For a vertex v in a (rooted) tree T, let C'(v) and D(v) denote the set of children and
descendants of v, respectively and let D[v] = D(v) U {v}. The mazimal subtree at v
is the subtree of T induced by D[v], and is denoted by T,,. The depth of v denoted
by depth(v) is the largest distance from v to a vertex in D(v).

A Roman dominating function (RDF) of graph G is a function f from V to the set
{0,1,2} such that each vertex v € V with f(v) = 0 is adjacent to at least one vertex
u with f(u) = 2. The weight of an RDF [ is the value w(f) = >, .y f(v). For an
RDF f,let V; = {v € V| f(v) =i} for i = 0,1,2. Since these three sets determine
f, we can equivalently write f = (Vp, V1, Va). Introduced by Cockayne et al. [9] in
2004, the Roman domination is now well studied, where several variations have been
defined. For more on Roman domination, we refer the reader to the book chapters
[4, 6] and surveys [5, 7, 8].

An outer independent Roman dominating function (OIRDF) on a graph G is a Roman
dominating function with the additional property that the set Vj is independent, that
is no two vertices in Vy are adjacent. The outer independent Roman domination
number Yo;r(G) is the minimum weight of an OIRDF of G. A ~,;r(G)-function is
an OIRDF of G with weight v,;r(G). Outer independent Roman domination was
introduced by Abdollahzadeh Ahangar et al. in [1] in 2017, and studied recently in
[2, 3, 10-12].

In this paper, we provide two upper bounds on the outer independent Roman domi-
nation number of trees in terms of the order and number of support vertices, and we
characterize the trees attaining each bound. More precisely, we shall prove:

Theorem 1. If T is a tree of order n > 3, then

Yoin(T) < 2, 1)

with equality if and only if T € T (The family 7 is defined in Section 2).

Theorem 2. If T is a tree of order n > 3 with s(T") support vertices, then

toin(T) < 22D, @)

with equality if and only if T €F (The family F is defined in Section 3).
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2. Proof of Theorem 1

In this section, we prove Theorem 1. For the purpose of characterizing the trees
attaining the upper bound in Theorem 1, we introduce the family T of trees T = T},
that can be obtained as follows. Let T} be a Fg, and if k¥ > 2, then T;11 can be
obtained recursively from T; by operation O defined below.

Operation O: If v is a vertex of T; which is neither a support nor a leaf, then O
adds a path Ps by joining v to the third vertex of Pg.

From the way in which a tree T € T is constructed we make the following observation.

Observation 3. Let T be a tree of 7. Then

(i) every support vertex has degree two.

(ii) every vertex which is neither a support vertex nor a leaf is adjacent to a support vertex.

Lemma 1. If T; is a tree with vo,r(T3) = 5n(Ti) and Ti+1 is obtained from T; by

6
5n(Ti41)
—s

Operation O, then vo;r(Ti+1) =

Proof. Let us denote in order by uq, us, us, ug, us, ug the vertices of the added path
Ps attached at v € V(T;) by usv. If fis a v,;r(T;)-function, then f can be extended
to an OIRDF of T; 1, by assigning a 2 to us,us, a 1 to u; and a 0 to uq and ug. Hence
’YoiR(Ti-‘rl) < ’YoiR(Ti) +59.

Now let f be a ypir(Tis1)-function. Clearly, S0 f(u;) > 5. f f(ug) # 2 or f(v) # 0,
then the function of f, restricted to T; is an OIRDF of T;, and we deduce from the
assumption that Yo;r(Tiy1)—5 > w(flr,) > Yoir(T;). Now let f(us) = 2 and f(v) = 0.
By Observation 3, let w be the support vertex adjacent to v in T; and w’ the leaf
neighbor of w. Clearly f(w) # 0, since f(v) =0, and f(w)+ f(w’) > 2. Therefore, we
can assume that f(w) = 2 and f(w') = 0, and thus as previously, f|r, is an OIRDF
of T; yielding voir(Ti+1) — 5 > Yoir(T3). Hence voir(Tiv1) = Yoir(Ti) + 5, and thus

(T ) = 5n(Tiga)
701R(E+1) - 6 .

Proposition 1. If T € T, then voir(T) = 3.

Proof. Let T € T. Then there exists a sequence of trees Ty, Ty, ..., T} (k > 1) such
that 71 = Pg, and if £ > 2, then T; 11 can be obtained recursively from T; by Operation
Oforie{1,2,...,k—1}. We use an induction on the number of operations applied to
construct T. If k =1, then T = Py and clearly v,;r(Ps) = 5. Let k > 2, and assume
the property is true for all trees of 7 constructed with k—1 > 0 operations. Let T = T},

%T/). Since T is

obtained from T by operation O, we conclude from Lemma 1 that v,;g(T) = 5n(T)

6
O

and T’ = Ty_1. By the induction hypothesis, we have v,;gr(T") =
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Proposition 2. If T is a tree of order n > 3, then voir(T) < 2%, with equality only if
TecT.

Proof. The proofis by induction on n. If n € {3,4,5}, then T is either a star, a double
star or a path Ps. Clearly, for stars v,,r(T) = 2 and for double stars v,;z(T) = 4,
while for paths Ps; we have 7,;r(Ps) = 4. In all cases, v,ir(T) < %". Let n = 6 and
diam(T") > 4. If diam(7T") = 4, then T is obtained from a path P; by adding a new
vertex adjacent to either a support vertex or the center vertex of Ps. In any case,
Yoir(T) = 4 < %”. If diam(T) = 5, then T = Pg, where v,;r(T) = 5 = % and
Ps € T. Thus let n > 7, and assume that every tree T of order 3 < n’ < n satisfies
Yoir(T") < 57”, with equality only if 7/ € 7. Let T be a tree of order n and diameter
at least four.

Let v1vs ... vg, with d > 5, be a diametral path in T such that deg;(v2) is as large as
possible. Root T' at vy.

We first assume that degp(v2) > 3. Let T/ = T — T,,. Since any ~,;ir(T)-function
can be extended to an OIRDF of T by assigning a 2 to vo and a 0 to its leaves,
Yoir(T) < Y0ir(T") + 2. By the induction hypothesis, we have

—d
5(n ggT(vz)) +2<5Fn.

Yoir(T) < 7oir(T') +2 <
Hence let degp(v2) = 2. By the choice of the diametral path, we may assume that
any child of v with depth 1 is of degree 2.
Assume now that degp(v3) > 3, and let vz have s children with depth 1 and r children
with depth 0. Let 77" = T — T, and let g be a ,;z(T")-function. Define a function
hon V(T) by h(vs) =2, h(z) = 1if z is a leaf in T, not adjacent to vz, h(x) = g(zx)
for x € V(T") and h(z) = 0 otherwise. Obviously, h is an OIRDF of T yielding
Yoir(T) < voir(T') + s+ 2. Since r+ s > 2, we deduce from the induction hypothesis
that

5(n72577ﬂ71)+8+2S5€n_45+2r77<5Fn'

Yoir(T) < Yoir(T') + s +2 <

In the sequel, we can assume that degp(vs) = 2. Considering the above argument,
we can assume that any child of vy with depth 2, is of degree 2. Let vy have k
children with depth 2, say vs = y1,...,¥yk, s children with depth 1, say 21, ..., 2s and
r leaves, say x1,...,z,, where s, > 0. For the sake of simplicity, any pendant path
of length three containing v4 will be denoted by vay;y/y7 for each j € {1,...,k}. Also,
if degy(z;) > 3 for some i, then using a similar proof as in above when deg,(vs) > 3,
we can see that v,r(T) < %. Henceforth, we assume that degp(z;) = 2 for each 1,
if any, and z; its unique leaf neighbor. Consider the following cases.

Case 1. s+7r=0.
Let T/ = T — T,,. Note that since n > 7, T” has order n’ > 3. Clearly, if f is a
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Yoir(T")-function, then the function h defined by h(vs) =1, h(y}) =2 for 1 < j <k,

h(u) = f(u) for u € V(T") and h(z) = 0 otherwise, is an OIRDF of T implying that

Yoir(T) < Yoir(T") + 2k + 1. We conclude from the induction hypothesis that
Yoir(T) < Yoir(T") +2k +1

BBkl 4 9k 41
Sn _3k—1 _ %n_

[RVANRVAN

6 6

Case 2. s+r > 1.

Let 7" =T — T,,. Clearly, n’ > 3. If f is a v,;r(T”")-function, then the function h

defined by h(vs) = h(y;) = 2 for every j € {1,...,k}, h(zj) = 1 for every i € {1, ..., s},

h(u) = f(u) for v € V(T') and h(x) = 0 otherwise, is an OIRDF of T. Therefore,

Yoir(T) < Yoir(T') + 2k + s + 2. We conclude from the induction hypothesis that
Yoir(T) Yoir(T') +2k + s +2

5(n—3k—2s—r—1) + 2%k +s+2
5n  3k+4s+5r—7
6 6

5n
6

IA A IA

Further, if v,;z(T) = %", then we have equality throughout this inequality chain. In
particular, k = s =1, r =0, and y;r(T’) = 5%/. By the induction hypothesis on T,
we obtain that 77 € 7. Next we shall show that vs is neither a support vertex nor a
leaf in T”. Assume first that vs is a support vertex, and let w be a leaf neighbor of vs.
Let T” be the tree obtained from T by removing vertices w, vy, va, 21, 21. Clearly, there
is Yoir (T")-function f such that {f(v3), f(vs), f(vs)} N {2} # O and thus accordingly
Yoir(T) < Y0ir(T") + 4. By the induction hypothesis, we deduce that

Yoin(T) < poin (@) +4 < 202D g 50

a contradiction. Hence vs is not a support vertex. Now, assume that vs is a leaf of
T'. Since T' € T, we must have degy (vs) = 2 (by Observation 3). Let T" =T —T,,.
Clearly, if f is a Yo;r(T")-function, then the function h defined by h(vs) = h(ve) = 2,
h(ve) = h(z]) = 1, h(u) = f(u) for u € V(T") and h(xz) = 0 otherwise, is an OIRDF
of T. Therefore, voir(T) < Yoir(T") + 6, and by the induction hypothesis we obtain

5(n—8)+6<5n

PYoiR(T) S ’YoiR(T/I) + 6 S 6 Fa

a contradiction. Thus vs is not a leaf too. Since T is obtained from 7" by Operation
O, we conclude that T' € 7. This complete the proof. O

According to Propositions 1 and 2, we have proven Theorem 1.
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3. Proof of Theorem 2

In this section, we prove Theorem 2. For the purpose of characterizing the trees
attaining the upper bound in Theorem 2, we define the set Wy = {v € V(T |
there is no v,;r(T)-function f such that f(w) =1 for every w € N[v]}, and we intro-
duced the family F of trees T' that can be obtained from a sequence T3, 75, ..., Ty of
trees such that T3 = Pg, and if k£ > 2, then 7541 can be obtained recursively from T;
by one of the following operations for i € {1,...,k —1}. Let s(T') denote the number
of support vertices of a tree T.

Operation O;: If v € Wr,, then O; adds a path Fs by joining v to the third vertex
of Pﬁ.

Operation Os: If v is a leaf of T}, then O adds a path P, by joining one of its leaves
to v.

From the way in which a tree T" € F is constructed, every support vertex of T is
adjacent to exactly one leaf.

Lemma 2. If 7T; is a tree with 4v,ir(T})

3n(T;) + s(T3) and Ti41 is a tree obtained
from T; by Operation O1, then 47o;r(Ti+1) (

3n(Tiv1) + 5(Titr).

Proof. To prove that voir(Ti+1) < voir(Ti) + 5, let f be a v,;r(T;)-function and
define g : V(Tiyr) = {0,1,2} by glur) = 1,g(us) = glus) = 2, gluz) = glua) =
g(ug) = 0, and ¢g(y) = f(y) otherwise. Obviously, g is an OIRDF of T;;; and so
Yoir(Tit1) < Yoir(Ti) + 5.

Now let f be a Yoir(Tit1)-function. Clearly, we have 2?21 flu;) > 5. If f(us) # 2 or
f(v) # 0, then the function of f, restricted to T; is an OIRDF of T; and we deduce
from the assumption that Yo;r(Tit1) — 5 > w(flr,) = Yoir(Ti). Now let f(us) = 2
and f(v) = 0. If there is w € N(v) — {ug} such that f(w) = 2, then the function
of f, restricted to T; is an OIRDF of T; and we deduce from the assumption that
Yoir(Ti+1) =5 = w(flr) = Yoir(T;). Hence let f(w) =1 for every w € N(v) — {us}.
Then the function g : V(T;) — {0,1,2} defined by g(v) = 1 and g(z) = f(x) for
x € V(T;) — {u}, is an OIRDF of T; of weight at most w(f) — 4. Since v € Wr,, we
deduce that w(g) > Yoir(T;) + 1 yielding Voir(Ti+1) = Yoir(T;) + 5. It follows that

Yoir(Ti+1) = Yoir(T:) + 5. Now the result follows from the assumption v,z (T;) =
3n(Ti)+s(Ty) 0O
7 )

Lemma 3. If T; is a tree with 4v,r(Ti) = 3n(T3) + s(T;) and Ti41 is a tree obtained
from T; by Operation Oz, then 4v,ir(Tit1) = 3n(Tit1) + s(Tit1)-

Proof. Let Py : ujususuy be the added path attached at a leaf v € V(T;) by ujv. Let
f be a v,;r(T;)-function and define the function g on V(T;41) by g(u1) = 1, g(us) = 2,
g(u2) = g(uqg) = 0, and g(y) = f(y) otherwise. Obviously, g is an OIRDF of T;;, and
50 Yoir(Tix1) < Yoir(Ti) + 3.
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Now let f be a voir(Ti+1)-function. Clearly, Z?Zl fu;) > 3. Now, if f(uy) # 2
or f(v) # 0, then the function of f, restricted to T; is an OIRDF of T; and thus
Yoir(Ti+1) — 3 > w(f|r,) > voir(Ti). Hence, assume that f(u;) = 2 and f(v) = 0.
It follows that f(us) =2 and f(u2) = f(us) = 0. In this case, the function ¢ defined
on V(T;) by g(v) = 1 and h(u) = f(u) for v € V(T;) — {v}, is an OIRDF of T;
implying that Y,r(Ti) < Yoir(Tit1) — 3. In any case, Yoir(Tit1) = Yoir(T3) +3. The
result easily follows from the facts that n(Ti11) = n(T3) + 4, s(Ti+1) = s(T;) and
4im(T3) = 30(T;) + s(T). O

Proposition 3. If T € F, then yo;r(T) = 21,

Proof. Let T € F. Then there exists a sequence of trees Ty, Ts, ..., T} (k > 1) such
that 77 = Pg, and if £ > 2, then T;41 can be obtained recursively from 7T; by one
of the aforementioned operations for ¢ € {1,2,...,k — 1}. We use an induction on
the number of operations applied to construct T. If K = 1, then T = Ps and clearly
Yoir(Ps) = M%(T) = 5. Let £k > 2, and assume the property is true for all trees
of F constructed with k — 1 > 0 operations. Let T'= Ty and 7" = T_;. By the

w. Since T' = T}, is obtained from

3n+s(T)
- - O

induction hypothesis, we have v,;r(T") =
T’ by Operations O; or Oy, we deduce from Lemmas 2, 3 that v,;r(T) =

Proposition 4. If T is a tree of order n > 3 with s(T) support vertices, then voir(T) <
?’”%(T), with equality only if T' € F.

Proof. We use an induction on n. Let n € {3,4,5}. If diam(7T") = 2, then T is a
star and thus v,;r(T) =2 < L‘f(m. If diam(7T") = 3, then T is a double star DS, ,
where min{r, s} = 1 and thus v,g(T) = 3 < S"%(T). If diam(T) = 4, then T' = Ps
and clearly vo;r(T) =4 < ?’”%S(T). Now, let n = 6. As above, if diam(7T) € {2, 3,4},
then one can see that v,;gr(T) < 3"%‘9@). If diam(T") = 5, then T = Py and clearly
Yoir(T) = 4 = M%S(T). Thus let n > 7, and assume that every tree T’ of order

M with equality

3 < n' < n with s(T’) support vertices satisfies voir(T') <
only if T € F. Let T be a tree of order n with s(T") support vertices. Since stars and
double stars satisfies the result, we may assume that diam(7") > 4.

Let v1vs ... vq, with d > 5, be a diametral path in T such that deg(vsy) is as large as

possible. Root T at vy, and consider the following situations.

Case 1. degp(v2) > 3.
Assume first that deg,(vs) > 3, and let T/ =T —T,,. Clearly, voir(T) < Yoir(T') +2
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and s(T) = s(T’) + 1. By the induction hypothesis, we obtain

’YoiR(T) < ’YoiR(T/) +2
< 3(n—degT(vZ))—|—s(T) -1 49
3n+s(T)  3degp(va) =7
- 4 4
3n+s(T)
< —.

4

Now, assume that degp(vs) = 2 and degp(vq) > 3. Let 7" = T — T,,. Then
s(T) = s(T'") + 1 and any ~,;z(T")-function can be extended to an OIRDF of T by
assigning a 1 to vz, a 2 to vy and a 0 to leaves in L,,. Hence vo;r(T) < Yoir(T’) + 3.
By the induction hypothesis, we have

Yoir(T) < Yoir(T') +3
< 3(n— degT(vg)4— 1)+s(T)-1 +3
3n+s(T)  3degp(vz) —8
- 4 4
- 3n + S(T).

4

Finally, assume that degp(vs) = degp(v4) = 2, and let T/ = T — T,,,. Note that if
n =1, then voir(T) = 4 < D and if ' = 2, then 7,iz(T) = 5 < 220,
Thus we can assume that n’ > 3. Since any 7,;z(7”)-function can be extended to an
OIRDF of T by assigning a 1 to vg, a 2 to v9 and a 0 to any vertex in L,, U {vs}, we
obtain that Yoz (T) < vYeir(T’) + 3. By the induction hypothesis, we have

Yoir(T) < Yoir(T') +3
< 3(n—degT(vi) —-2)+s(T) +3
< 3n+s(T)  3degp(vz) —6
- 4 4
- 3n -|—48(T)-

Case 2. degp(v2) = 2.

By the choice of the diametral path, we may assume that any child of v3 with depth
1 is of degree 2. Consider the following subcases.

Subcase 2.1. degp(vs) > 3.

Let v3 have r children with depth 1, say z; = va, ..., 2, and ¢ children with depth 0,
say Z1,...,2s. Let z, denote the leaf neighbor of z; for 1 < i <.
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Assume first that ¢ > 1, and let 7/ = T — T,,,. Note that n’ > 3, since n > 7. If f
is a Yoir(T")-function, then the function h defined by h(vs) = 2, h(z]) = 1 for every
ie{l,...,r}, h(u) = f(u) for u e V(T") and h(z) = 0 otherwise, is an OIRDF of T.
It follows that voir(T) < Yoir(T’) + 7+ 2, and by the induction hypothesis we obtain

Yoir(T) < Yoir(T") +7+2
= g(n_%_g_le)ﬂm_rwm
_ 3n+s(T) 3r4+30-5
4 4
L el

4

Assume now that ¢ = 0. Since degp(vs) > 3, we have r > 2. If degy(v4) > 3 or 7 > 3,
then let 7" = T —T,,. Note that if n’ = 2, then T is a subdivided star centered at vs,
where Y, (T) = degp(vs) +2 < ?"L%S(T). Hence we can assume that n’ > 3. Clearly,
if f is a Yoir(T")-function, then the function h defined by h(vs) = 2, h(z}) = 1 for
every i € {1,...,7r}, h(u) = f(u) for u € V(T") and h(xz) = 0 otherwise, is an OIRDF
of T implying that voir(T) < Yoir(T") + r + 2. Let 5 = 0 if degp(vg) > 3 and j =1
degr(vq) = 2. Note that if j = 1, then r > 3. Also, S(7") < S(T) — r + j. Now, by
the induction hypothesis we have,

YoiR (T)

IN

Yoir(T') + 1+ 2
3n—2r—1)+s(T)—r+j
4
3n+s(T) 3r—5-—j
4 4

3n+s(T)
-

IN

+r+2

Now, assume that degp(vy) =2 and r = 2. Let T/ =T — {v1,v2, 25}, and let f be a
Yoir(T")-function such that f(vs3) is maximum. If f(vs) 4+ f(22) = 1, then we must
have f(vs) = 0, f(22) = 1 and thus f(vs) = 2. Now, if f(vs) # 0, then assigning
z9,v3 and vy, the values 0,2 and 0 instead of 1,0, 2 respectively, provides a v,;zr(T")-
function g with g(vs) > f(vs), contradicting our choice of f. Thus f(vs) = 0. Then
assigning zs,vs,v4 and vs, the values 0,2,0 and 1 instead of 1,0,2,0 respectively,
provides a 7,;r(T”)-function ¢ with ¢'(vs) > f(vs), a contradiction too. Therefore
f(vs) + f(2z2) = 2, and thus it is easy to see that v,;r(T) < Yoir(T') + 2. By the
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induction hypothesis we obtain,

A
=2
g
3
=
+
[\

'YoiR(T) >

IN

Subcase 2.2. degr(v3) =2 and degp(vq) > 3.

According to Subcase 1 and the choice of the diametral path, we may assume that
any child of vy with depth 2 is of degree 2. Let vy have k children with depth 2,
say Yy, = Vs, ..., Yk, T children with depth 1, say z1, ...,z and ¢ children with depth
0, say x1,..., 2. For any y;, let 3 the child of y; and y7 the child of y}. Now, if
deg(z;) > 3 for some i, then let 7" be the tree obtained from 7' by removing z; and
its leaves. One can easily see that v,ir(T) < Yoir(T’) + 2. Using the induction and
the fact that s(T") = s(T') — 1, we obtain v,z (T) < %%(ﬂ. Henceforth, we assume
that deg(z;) = 2 for each ¢, if any. Also, for any z;, let z} be the unique leaf neighbor
of z;. Consider the following situations.

Assume first that ¢ > 1. If degp(vs) > 3, then let 77 = T — T,,,. Clearly, if f is
a Yoir(T")-function, then the function h defined on V(T') by h(vs) = h(y;) = 2 for
every j € {1,...,k}, h(z]) = 1foreveryi e {1,...,r}, h(u) = f(u) for u € V(T") and
h(z) = 0 otherwise, is an OIRDF of T\, implying that vo;r(T) < Yeir(T') + 2k +r+2.
We conclude from the induction hypothesis that

Yoir(T) < Yoir(T') + 2k +7r+2
< 3(n_3k_2r_€_i)+sm_k_T_l+2k+r+2
_ 3n+s(T) 2k+3r+30-4
4 6
L Snta(l)

4

Now assume that deg(vs) = 2. Let T =T — T,,, and let f be a v,;r(T")-function
f such that f(vs) is maximum. Assume that f(vs) = 0. Then £ = 1 for otherwise
(£ > 2) we reassign v4 by 2 and its leaves by 0 we obtain a 7,;z(7”)-function g with
g(v4) > f(vg), a contradiction. In this the unique leaf neighbor z; must be assigned
a 1. Now, if r # 0, then f(z;) = 2 and f(z]) = 2 for every 4, but then as above we
can reassign 1, vy4, z; and z, by 0,2,0,1 respectively and we get a v,;r(T")-function
g with g(vg) > f(v4), a contradiction. Thus r = 0. It follows that f(vs) = 2 and
f(vg) = 0. But then reassigning x1,v4,vs and vg by 0,2,0,1 respectively provides a
Yoir(T")-function g with g(vs) > f(v4), a contradiction. Therefore f(v4) # 0. Then
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f can be extended to an OIRDF of T' by assigning a 0 to v3 and v; and a 2 to vs.
Hence Yoir(T) < 7oir(T’) + 2. By the induction hypothesis we have,

IN

'YoiR(T/) +2
3(n—3)+s(T) -1

’YoiR(T)

IN

+2
3n+s(T) 2

4 4
3 T
L snts(@

4

In the sequel, we assume that ¢ = 0. Assume now that » + &k > 3, and let T/ =
T —T,,. Firstlet r > 1. If n' = 2, then 7ir(T) = 2k + r + 3 < ) Thyg
let n' > 3. Clearly, if f is a v,;r(T”)-function, then the function h defined on V(T')
by h(va) = h(y;) = 2 for every j € {1,...,k}, h(z;) = 1 for every i € {1,...,7},
h(u) = f(u) for v € V(T") and h(x) = 0 otherwise, is an OIRDF of T implying that
Yoir(T) < voir(T') + 2k + r + 2. We conclude from the induction hypothesis that

Yoir(T) < Yoir(T') + 2k + 17+ 2

—3k—2r—1 T)—k—r+1
< 3(n— 3k —2r )4+s() k—r+ DY R
_ 3n+s(T) 2k+3r—6
B 4 6
3n+s(T)
< —2

4

Now let r = 0. If f is a v;z(T")-function, then the function h defined on V(T') by
h(vs) =1, h(y}) = 2 for every j € {1,...,k}, h(u) = f(u) for u € V(T") and h(z) =0
otherwise, is an OIRDF of T implying that veir(T) < Yoir(T”) +2k+1. We conclude
from the induction hypothesis that

Yoir(T') + 2k + 1
3(n—-3k—-1)+s(T)-k+1
4
3n+s(T) 2k—2

4 6
3n+ s(T)
<f.

PYOZ'R(T)

IN

< +2k+1

Finally, assume that r + k = 2. First les r =0, k =2and 7" =T —-T,,. If fisa
Yoir(T")-function, then the function h defined on V(T') by h(vs) = 1, h(y}) = 2 for
Jj € {1,2}, h(u) = f(u) for v € V(T") and h(xz) = 0 otherwise, is an OIRDF of T
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implying that v,;r(T) < Yeir(T’) + 5. By the induction hypothesis we obtain

Bn—7)+s(0) -1,

Yoir(T) < Yoir(T') +5 <

4
_ 3n+s(T) 2
N 4 4
3 T
3 —|—4s( )

Now, let r = k = 1. Suppose that degy(vs) = 2 and let T/ = T — {vy,v9, 21, 21 }.
Let f be a v;r(T")-function such that f(vs) is maximum. Clearly, if f(vs) = 1, then
f(v3) =1 and so we can reassign vs and vq by 0 and 2, respectively which provides a
Yoir(T")-function g with g(vs) > f(v4), a contradiction. Now, if f(vs) = 0, then we
must have f(v3) =1, f(vs) = 2 and f(vg) = 0. But then assigning vs, vy, v5 and vg the
values 0, 2,0 and 1 provides a 7y,;z(T")-function g with g(vs) > f(v4), a contradiction.
Hence f(v4) =2, and thus f(v3) = 0. Then f can be extended to an OIRDF function
on T by assigning a 0 to vy, 21, a 2 to v2 and a 1 to z]. By the inductive hypothesis,
we obtain

3n—4)+s(T)—-1 13« 3n+s(T).

4 4
For the next, we can assume that deg;(vs) > 3. Let T/ = T — T,,,. Clearly, if f is
a Yoir(T")-function, then the function h defined by h(vs) = h(ve) = 2, h(z]) = 1,
h(u) = f(u) for u € V(T") and h(z) = 0 otherwise, is an OIRDF of T implying that
Yoir(T) < Yoir(T") + 5. We conclude from the induction hypothesis that

Yoir(T) < Yoir(T') + 3 <

3(n—6)+5(T)—2+5:3n+s(T).

Yoir(T) < Yoir(T') +5 < 1 1

Further if v4;5r(T) = 3”%5(71), then we have equality throughout this inequality chain.
In particular, v,;z(T") = M and thus 77 € F. Since degp(vs) > 3, vs is not
a leaf of T”. Next we shall show vs € Wy/. Suppose to the contrary that vs ¢ Wy
Then there is v,z (T")-function f such that f(w) = 1 for every w € N[vs]. Then
the function h defined by h(vs) = h(v2) = 2, h(vs) = 0, h(z]) = 1, h(u) = f(u)
for u € V(T") — {vs} and h(z) = 0 otherwise, is an OIRDF of T implying that
Yoir(T) < Yoir(T") + 4. We conclude from the induction hypothesis that

3(n—6)+s(T)—2+4<3n+s(T)

'YoiR(T) S ’YOiR(TI) +4 S 4 f)

which is a contradiction. Thus vs € Wp.. Now T € F because it can be obtained
from 7" by Operation O;.

Subcase 2.3. deg;(v3) = 2 and degp(vg) = 2.
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Let T =T —T,,. If fis a v,r(T")-function, then the function h defined on V(T')
by h(vs) = 1, h(v2) = 2, h(u) = f(u) for u € V(T") and h(z) = 0 otherwise, is an
OIRDF of T implying that vir(T) < Yoir(T') + 3. If degp(vs) > 3, then by the
induction hypothesis we can see that

3(n—4 ) -1 3 T

(-4 sT) -1, 3t s(T)
4 4

If degy(vs) = 2, then by the induction hypothesis we have

'YOiR(T) < ’YoiR(T,) +3<

—4 T T
oin(T) < v (T) + 3 < 3(n 31+s( ) L3 3n +4s( )

Further if v,;5(T) = ?’”%(T)/, the/n we have equality throughout this inequality chain.
In particular, v,;r(T') = S"%S(T). By the induction hypothesis, T" € F. Since vy is
a leaf of 7', and T can be obtained from T by Operation Oy , we deduce that T' € F.

This complete the proof. O

According to Propositions 3 and 4, we have proven Theorem 2.
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