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Abstract: A Roman dominating function (RDF) on a graph G = (V,E) is a function

f : V → {0, 1, 2} such that every vertex u for which f(u) = 0 is adjacent to at
least one vertex v for which f(v) = 2. An RDF f is called an outer independent

Roman dominating function (OIRDF) if the set of vertices assigned a 0 under f is

an independent set. The weight of an OIRDF is the sum of its function values over
all vertices, and the outer independent Roman domination number γoiR(G) is the

minimum weight of an OIRDF on G. In this paper, we show that if T is a tree of order

n ≥ 3 with s(T ) support vertices, then γoiR(T ) ≤ min{ 5n
6
,
3n+s(T )

4
}. Moreover, we

characterize the tress attaining each bound.

Keywords: Outer independent Roman dominating function, outer independent Ro-

man domination number, tree.
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1. Introduction

In this paper, G is a simple graph with vertex set V = V (G) and edge set E = E(G).

The order |V | of G is denoted by n = n(G). The open neighborhood of a vertex

v ∈ V is the set N(v) = NG(v) = {u ∈ V | uv ∈ E}, and its closed neighborhood

is the set N [v] = N(v) ∪ {v}. The degree degG(v) of a vertex v is the cardinality

of its open neighborhood. A vertex of degree one is called a leaf, and its neighbor

is called a support vertex. A vertex adjacent to two or more leaves is called a strong
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274 Outer independent Roman domination number of trees

support vertex. The set of leaves adjacent to a support vertex v is denoted by Lv. For

r, s ≥ 1, a double star DSr,s is a tree with exactly two vertices that are not leaves,

with one adjacent to r leaves and the other to s leaves. The distance d(u, v) between

two vertices u and v in a graph G is the length of a shortest (u, v)-path in G, and the

diameter, diam(G), of a graph G is the greatest distance between two vertices of G.

For a vertex v in a (rooted) tree T , let C(v) and D(v) denote the set of children and

descendants of v, respectively and let D[v] = D(v) ∪ {v}. The maximal subtree at v

is the subtree of T induced by D[v], and is denoted by Tv. The depth of v denoted

by depth(v) is the largest distance from v to a vertex in D(v).

A Roman dominating function (RDF) of graph G is a function f from V to the set

{0, 1, 2} such that each vertex v ∈ V with f(v) = 0 is adjacent to at least one vertex

u with f(u) = 2. The weight of an RDF f is the value ω(f) =
∑

v∈V f(v). For an

RDF f , let Vi = {v ∈ V | f(v) = i} for i = 0, 1, 2. Since these three sets determine

f , we can equivalently write f = (V0, V1, V2). Introduced by Cockayne et al. [9] in

2004, the Roman domination is now well studied, where several variations have been

defined. For more on Roman domination, we refer the reader to the book chapters

[4, 6] and surveys [5, 7, 8].

An outer independent Roman dominating function (OIRDF) on a graph G is a Roman

dominating function with the additional property that the set V0 is independent, that

is no two vertices in V0 are adjacent. The outer independent Roman domination

number γoiR(G) is the minimum weight of an OIRDF of G. A γoiR(G)-function is

an OIRDF of G with weight γoiR(G). Outer independent Roman domination was

introduced by Abdollahzadeh Ahangar et al. in [1] in 2017, and studied recently in

[2, 3, 10–12].

In this paper, we provide two upper bounds on the outer independent Roman domi-

nation number of trees in terms of the order and number of support vertices, and we

characterize the trees attaining each bound. More precisely, we shall prove:

Theorem 1. If T is a tree of order n ≥ 3, then

γoiR(T ) ≤ 5n

6
, (1)

with equality if and only if T ∈ T (The family T is defined in Section 2).

Theorem 2. If T is a tree of order n ≥ 3 with s(T ) support vertices, then

γoiR(T ) ≤ 3n+ s(T )

4
, (2)

with equality if and only if T ∈F (The family F is defined in Section 3).
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2. Proof of Theorem 1

In this section, we prove Theorem 1. For the purpose of characterizing the trees

attaining the upper bound in Theorem 1, we introduce the family T of trees T = Tk
that can be obtained as follows. Let T1 be a P6, and if k ≥ 2, then Ti+1 can be

obtained recursively from Ti by operation O defined below.

Operation O: If v is a vertex of Ti which is neither a support nor a leaf, then O
adds a path P6 by joining v to the third vertex of P6.

From the way in which a tree T ∈ T is constructed we make the following observation.

Observation 3. Let T be a tree of T . Then

(i) every support vertex has degree two.

(ii) every vertex which is neither a support vertex nor a leaf is adjacent to a support vertex.

Lemma 1. If Ti is a tree with γoiR(Ti) = 5n(Ti)
6

and Ti+1 is obtained from Ti by

Operation O, then γoiR(Ti+1) =
5n(Ti+1)

6
.

Proof. Let us denote in order by u1, u2, u3, u4, u5, u6 the vertices of the added path

P6 attached at v ∈ V (Ti) by u3v. If f is a γoiR(Ti)-function, then f can be extended

to an OIRDF of Ti+1 by assigning a 2 to u3, u5, a 1 to u1 and a 0 to u4 and u6. Hence

γoiR(Ti+1) ≤ γoiR(Ti) + 5.

Now let f be a γoiR(Ti+1)-function. Clearly,
∑6

i=1 f(ui) ≥ 5. If f(u3) 6= 2 or f(v) 6= 0,

then the function of f , restricted to Ti is an OIRDF of Ti, and we deduce from the

assumption that γoiR(Ti+1)−5 ≥ ω(f |Ti) ≥ γoiR(Ti). Now let f(u3) = 2 and f(v) = 0.

By Observation 3, let w be the support vertex adjacent to v in Ti and w′ the leaf

neighbor of w. Clearly f(w) 6= 0, since f(v) = 0, and f(w) +f(w′) ≥ 2. Therefore, we

can assume that f(w) = 2 and f(w′) = 0, and thus as previously, f |Ti
is an OIRDF

of Ti yielding γoiR(Ti+1) − 5 ≥ γoiR(Ti). Hence γoiR(Ti+1) = γoiR(Ti) + 5, and thus

γoiR(Ti+1) = 5n(Ti+1)
6 . 2

Proposition 1. If T ∈ T , then γoiR(T ) = 5n
6

.

Proof. Let T ∈ T . Then there exists a sequence of trees T1, T2, . . . , Tk (k ≥ 1) such

that T1 = P6, and if k ≥ 2, then Ti+1 can be obtained recursively from Ti by Operation

O for i ∈ {1, 2, . . . , k−1}. We use an induction on the number of operations applied to

construct T . If k = 1, then T = P6 and clearly γoiR(P6) = 5. Let k ≥ 2, and assume

the property is true for all trees of T constructed with k−1 ≥ 0 operations. Let T = Tk
and T ′ = Tk−1. By the induction hypothesis, we have γoiR(T ′) = 5n(T ′)

6 . Since T is

obtained from T ′ by operation O, we conclude from Lemma 1 that γoiR(T ) = 5n(T )
6 .

2



276 Outer independent Roman domination number of trees

Proposition 2. If T is a tree of order n ≥ 3, then γoiR(T ) ≤ 5n
6
, with equality only if

T ∈ T .

Proof. The proof is by induction on n. If n ∈ {3, 4, 5}, then T is either a star, a double

star or a path P5. Clearly, for stars γoiR(T ) = 2 and for double stars γoiR(T ) = 4,

while for paths P5 we have γoiR(P5) = 4. In all cases, γoiR(T ) < 5n
6 . Let n = 6 and

diam(T ) ≥ 4. If diam(T ) = 4, then T is obtained from a path P5 by adding a new

vertex adjacent to either a support vertex or the center vertex of P5. In any case,

γoiR(T ) = 4 < 5n
6 . If diam(T ) = 5, then T = P6, where γoiR(T ) = 5 = 5n

6 and

P6 ∈ T . Thus let n ≥ 7, and assume that every tree T ′ of order 3 ≤ n′ < n satisfies

γoiR(T ′) ≤ 5n′

6 with equality only if T ′ ∈ T . Let T be a tree of order n and diameter

at least four.

Let v1v2 . . . vd, with d ≥ 5, be a diametral path in T such that degT (v2) is as large as

possible. Root T at vd.

We first assume that degT (v2) ≥ 3. Let T ′ = T − Tv2 . Since any γoiR(T )-function

can be extended to an OIRDF of T by assigning a 2 to v2 and a 0 to its leaves,

γoiR(T ) ≤ γoiR(T ′) + 2. By the induction hypothesis, we have

γoiR(T ) ≤ γoiR(T ′) + 2 ≤ 5(n− degT (v2))

6
+ 2 <

5n

6
.

Hence let degT (v2) = 2. By the choice of the diametral path, we may assume that

any child of v3 with depth 1 is of degree 2.

Assume now that degT (v3) ≥ 3, and let v3 have s children with depth 1 and r children

with depth 0. Let T ′ = T − Tv3 , and let g be a γoiR(T ′)-function. Define a function

h on V (T ) by h(v3) = 2, h(x) = 1 if x is a leaf in Tv3 not adjacent to v3, h(x) = g(x)

for x ∈ V (T ′) and h(x) = 0 otherwise. Obviously, h is an OIRDF of T yielding

γoiR(T ) ≤ γoiR(T ′) + s+ 2. Since r+ s ≥ 2, we deduce from the induction hypothesis

that

γoiR(T ) ≤ γoiR(T ′) + s+ 2 ≤ 5(n− 2s− r − 1)

6
+ s+ 2 ≤ 5n

6
− 4s+ 5r − 7

6
<

5n

6
.

In the sequel, we can assume that degT (v3) = 2. Considering the above argument,

we can assume that any child of v4 with depth 2, is of degree 2. Let v4 have k

children with depth 2, say v3 = y1, . . . , yk, s children with depth 1, say z1, . . . , zs and

r leaves, say x1, . . . , xr, where s, r ≥ 0. For the sake of simplicity, any pendant path

of length three containing v4 will be denoted by v4yjy
′
jy
′′
j for each j ∈ {1, ..., k}. Also,

if degT (zi) ≥ 3 for some i, then using a similar proof as in above when degT (v2) ≥ 3,

we can see that γoiR(T ) < 5n
6 . Henceforth, we assume that degT (zi) = 2 for each i,

if any, and z′i its unique leaf neighbor. Consider the following cases.

Case 1. s+ r = 0.

Let T ′ = T − Tv4 . Note that since n ≥ 7, T ′ has order n′ ≥ 3. Clearly, if f is a
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γoiR(T ′)-function, then the function h defined by h(v4) = 1, h(y′j) = 2 for 1 ≤ j ≤ k,

h(u) = f(u) for u ∈ V (T ′) and h(x) = 0 otherwise, is an OIRDF of T implying that

γoiR(T ) ≤ γoiR(T ′) + 2k + 1. We conclude from the induction hypothesis that

γoiR(T ) ≤ γoiR(T ′) + 2k + 1

≤ 5(n−3k−1)
6 + 2k + 1

= 5n
6 −

3k−1
6 < 5n

6 .

Case 2. s+ r ≥ 1.

Let T ′ = T − Tv4 . Clearly, n′ ≥ 3. If f is a γoiR(T ′)-function, then the function h

defined by h(v4) = h(y′j) = 2 for every j ∈ {1, ..., k}, h(z′i) = 1 for every i ∈ {1, ..., s},
h(u) = f(u) for u ∈ V (T ′) and h(x) = 0 otherwise, is an OIRDF of T. Therefore,

γoiR(T ) ≤ γoiR(T ′) + 2k + s+ 2. We conclude from the induction hypothesis that

γoiR(T ) ≤ γoiR(T ′) + 2k + s+ 2

≤ 5(n−3k−2s−r−1)
6 + 2k + s+ 2

= 5n
6 −

3k+4s+5r−7
6

≤ 5n
6 .

Further, if γoiR(T ) = 5n
6 , then we have equality throughout this inequality chain. In

particular, k = s = 1, r = 0, and γoiR(T ′) = 5n′

6 . By the induction hypothesis on T ′,

we obtain that T ′ ∈ T . Next we shall show that v5 is neither a support vertex nor a

leaf in T ′. Assume first that v5 is a support vertex, and let w be a leaf neighbor of v5.

Let T ′′ be the tree obtained from T by removing vertices w, v1, v2, z1, z
′
1. Clearly, there

is γoiR(T ′′)-function f such that {f(v3), f(v4), f(v5)} ∩ {2} 6= ∅ and thus accordingly

γoiR(T ) ≤ γoiR(T ′′) + 4. By the induction hypothesis, we deduce that

γoiR(T ) ≤ γoiR(T ′′) + 4 ≤ 5(n− 5)

6
+ 4 <

5n

6
,

a contradiction. Hence v5 is not a support vertex. Now, assume that v5 is a leaf of

T ′. Since T ′ ∈ T , we must have degT ′(v6) = 2 (by Observation 3). Let T ′′ = T −Tv6 .

Clearly, if f is a γoiR(T ′′)-function, then the function h defined by h(v4) = h(v2) = 2,

h(v6) = h(z′1) = 1, h(u) = f(u) for u ∈ V (T ′′) and h(x) = 0 otherwise, is an OIRDF

of T. Therefore, γoiR(T ) ≤ γoiR(T ′′) + 6, and by the induction hypothesis we obtain

γoiR(T ) ≤ γoiR(T ′′) + 6 ≤ 5(n− 8)

6
+ 6 <

5n

6
,

a contradiction. Thus v5 is not a leaf too. Since T is obtained from T ′ by Operation

O, we conclude that T ∈ T . This complete the proof. 2

According to Propositions 1 and 2, we have proven Theorem 1.
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3. Proof of Theorem 2

In this section, we prove Theorem 2. For the purpose of characterizing the trees

attaining the upper bound in Theorem 2, we define the set WT = {v ∈ V (T ) |
there is no γoiR(T )-function f such that f(w) = 1 for every w ∈ N [v]}, and we intro-

duced the family F of trees T that can be obtained from a sequence T1, T2, . . . , Tk of

trees such that T1 = P6, and if k ≥ 2, then Ti+1 can be obtained recursively from Ti
by one of the following operations for i ∈ {1, . . . , k− 1}. Let s(T ) denote the number

of support vertices of a tree T.

Operation O1: If v ∈WTi
, then O1 adds a path P6 by joining v to the third vertex

of P6.

Operation O2: If v is a leaf of Ti, then O2 adds a path P4 by joining one of its leaves

to v.

From the way in which a tree T ∈ F is constructed, every support vertex of T is

adjacent to exactly one leaf.

Lemma 2. If Ti is a tree with 4γoiR(Ti) = 3n(Ti) + s(Ti) and Ti+1 is a tree obtained
from Ti by Operation O1, then 4γoiR(Ti+1) = 3n(Ti+1) + s(Ti+1).

Proof. To prove that γoiR(Ti+1) ≤ γoiR(Ti) + 5, let f be a γoiR(Ti)-function and

define g : V (Ti+1) → {0, 1, 2} by g(u1) = 1, g(u3) = g(u5) = 2, g(u2) = g(u4) =

g(u6) = 0, and g(y) = f(y) otherwise. Obviously, g is an OIRDF of Ti+1 and so

γoiR(Ti+1) ≤ γoiR(Ti) + 5.

Now let f be a γoiR(Ti+1)-function. Clearly, we have
∑6

i=1 f(ui) ≥ 5. If f(u3) 6= 2 or

f(v) 6= 0, then the function of f , restricted to Ti is an OIRDF of Ti and we deduce

from the assumption that γoiR(Ti+1) − 5 ≥ ω(f |Ti
) ≥ γoiR(Ti). Now let f(u3) = 2

and f(v) = 0. If there is w ∈ N(v) − {u3} such that f(w) = 2, then the function

of f , restricted to Ti is an OIRDF of Ti and we deduce from the assumption that

γoiR(Ti+1)− 5 ≥ ω(f |Ti
) ≥ γoiR(Ti). Hence let f(w) = 1 for every w ∈ N(v)− {u3}.

Then the function g : V (Ti) → {0, 1, 2} defined by g(v) = 1 and g(x) = f(x) for

x ∈ V (Ti) − {u}, is an OIRDF of Ti of weight at most ω(f) − 4. Since v ∈ WTi
, we

deduce that ω(g) ≥ γoiR(Ti) + 1 yielding γoiR(Ti+1) ≥ γoiR(Ti) + 5. It follows that

γoiR(Ti+1) = γoiR(Ti) + 5. Now the result follows from the assumption γoiR(Ti) =
3n(Ti)+s(Ti)

4 . 2

Lemma 3. If Ti is a tree with 4γoiR(Ti) = 3n(Ti) + s(Ti) and Ti+1 is a tree obtained
from Ti by Operation O2, then 4γoiR(Ti+1) = 3n(Ti+1) + s(Ti+1).

Proof. Let P4 : u1u2u3u4 be the added path attached at a leaf v ∈ V (Ti) by u1v. Let

f be a γoiR(Ti)-function and define the function g on V (Ti+1) by g(u1) = 1, g(u3) = 2,

g(u2) = g(u4) = 0, and g(y) = f(y) otherwise. Obviously, g is an OIRDF of Ti+1 and

so γoiR(Ti+1) ≤ γoiR(Ti) + 3.
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Now let f be a γoiR(Ti+1)-function. Clearly,
∑4

i=1 f(ui) ≥ 3. Now, if f(u1) 6= 2

or f(v) 6= 0, then the function of f , restricted to Ti is an OIRDF of Ti and thus

γoiR(Ti+1) − 3 ≥ ω(f |Ti
) ≥ γoiR(Ti). Hence, assume that f(u1) = 2 and f(v) = 0.

It follows that f(u3) = 2 and f(u2) = f(u4) = 0. In this case, the function g defined

on V (Ti) by g(v) = 1 and h(u) = f(u) for u ∈ V (Ti) − {v}, is an OIRDF of Ti
implying that γoiR(Ti) ≤ γoiR(Ti+1)− 3. In any case, γoiR(Ti+1) = γoiR(Ti) + 3. The

result easily follows from the facts that n(Ti+1) = n(Ti) + 4, s(Ti+1) = s(Ti) and

4γoiR(Ti) = 3n(Ti) + s(Ti). 2

Proposition 3. If T ∈ F , then γoiR(T ) = 3n+s(T )
4

.

Proof. Let T ∈ F . Then there exists a sequence of trees T1, T2, . . . , Tk (k ≥ 1) such

that T1 = P6, and if k ≥ 2, then Ti+1 can be obtained recursively from Ti by one

of the aforementioned operations for i ∈ {1, 2, . . . , k − 1}. We use an induction on

the number of operations applied to construct T . If k = 1, then T = P6 and clearly

γoiR(P6) = 3n+s(T )
4 = 5. Let k ≥ 2, and assume the property is true for all trees

of F constructed with k − 1 ≥ 0 operations. Let T = Tk and T ′ = Tk−1. By the

induction hypothesis, we have γoiR(T ′) = 3n′+s(T ′)
4 . Since T = Tk is obtained from

T ′ by Operations O1 or O2, we deduce from Lemmas 2, 3 that γoiR(T ) = 3n+s(T )
4 . 2

Proposition 4. If T is a tree of order n ≥ 3 with s(T) support vertices, then γoiR(T ) ≤
3n+s(T )

4
, with equality only if T ∈ F .

Proof. We use an induction on n. Let n ∈ {3, 4, 5}. If diam(T ) = 2, then T is a

star and thus γoiR(T ) = 2 < 3n+s(T )
4 . If diam(T ) = 3, then T is a double star DSr,s,

where min{r, s} = 1 and thus γoiR(T ) = 3 < 3n+s(T )
4 . If diam(T ) = 4, then T = P5

and clearly γoiR(T ) = 4 < 3n+s(T )
4 . Now, let n = 6. As above, if diam(T ) ∈ {2, 3, 4},

then one can see that γoiR(T ) < 3n+s(T )
4 . If diam(T ) = 5, then T = P6 and clearly

γoiR(T ) = 4 = 3n+s(T )
4 . Thus let n ≥ 7, and assume that every tree T ′ of order

3 ≤ n′ < n with s(T ′) support vertices satisfies γoiR(T ′) ≤ 3n′+s(T ′)
4 with equality

only if T ′ ∈ F . Let T be a tree of order n with s(T ) support vertices. Since stars and

double stars satisfies the result, we may assume that diam(T ) ≥ 4.

Let v1v2 . . . vd, with d ≥ 5, be a diametral path in T such that deg(v2) is as large as

possible. Root T at vd, and consider the following situations.

Case 1. degT (v2) ≥ 3.

Assume first that degT (v3) ≥ 3, and let T ′ = T −Tv2 . Clearly, γoiR(T ) ≤ γoiR(T ′)+2
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and s(T ) = s(T ′) + 1. By the induction hypothesis, we obtain

γoiR(T ) ≤ γoiR(T ′) + 2

≤ 3(n− degT (v2)) + s(T )− 1

4
+ 2

≤ 3n+ s(T )

4
− 3 degT (v2)− 7

4

<
3n+ s(T )

4
.

Now, assume that degT (v3) = 2 and degT (v4) ≥ 3. Let T ′ = T − Tv3 . Then

s(T ) = s(T ′) + 1 and any γoiR(T ′)-function can be extended to an OIRDF of T by

assigning a 1 to v3, a 2 to v2 and a 0 to leaves in Lv2 . Hence γoiR(T ) ≤ γoiR(T ′) + 3.

By the induction hypothesis, we have

γoiR(T ) ≤ γoiR(T ′) + 3

≤ 3(n− degT (v2)− 1) + s(T )− 1

4
+ 3

≤ 3n+ s(T )

4
− 3 degT (v2)− 8

4

<
3n+ s(T )

4
.

Finally, assume that degT (v3) = degT (v4) = 2, and let T ′ = T − Tv4 . Note that if

n′ = 1, then γoiR(T ) = 4 < 3n+s(T )
4 , and if n′ = 2, then γoiR(T ) = 5 < 3n+s(T )

4 .

Thus we can assume that n′ ≥ 3. Since any γoiR(T ′)-function can be extended to an

OIRDF of T by assigning a 1 to v4, a 2 to v2 and a 0 to any vertex in Lv2 ∪ {v3}, we

obtain that γoiR(T ) ≤ γoiR(T ′) + 3. By the induction hypothesis, we have

γoiR(T ) ≤ γoiR(T ′) + 3

≤ 3(n− degT (v2)− 2) + s(T )

4
+ 3

≤ 3n+ s(T )

4
− 3 degT (v2)− 6

4

<
3n+ s(T )

4
.

Case 2. degT (v2) = 2.

By the choice of the diametral path, we may assume that any child of v3 with depth

1 is of degree 2. Consider the following subcases.

Subcase 2.1. degT (v3) ≥ 3.

Let v3 have r children with depth 1, say z1 = v2, . . . , zr and ` children with depth 0,

say x1, . . . , x`. Let z′i denote the leaf neighbor of zi for 1 ≤ i ≤ r.
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Assume first that ` ≥ 1, and let T ′ = T − Tv3 . Note that n′ ≥ 3, since n ≥ 7. If f

is a γoiR(T ′)-function, then the function h defined by h(v3) = 2, h(z′i) = 1 for every

i ∈ {1, . . . , r}, h(u) = f(u) for u ∈ V (T ′) and h(x) = 0 otherwise, is an OIRDF of T.

It follows that γoiR(T ) ≤ γoiR(T ′) + r+ 2, and by the induction hypothesis we obtain

γoiR(T ) ≤ γoiR(T ′) + r + 2

≤ 3(n− 2r − `− 1) + s(T )− r
4

+ r + 2

=
3n+ s(T )

4
− 3r + 3`− 5

4

<
3n+ s(T )

4
.

Assume now that ` = 0. Since degT (v3) ≥ 3, we have r ≥ 2. If degT (v4) ≥ 3 or r ≥ 3,

then let T ′ = T −Tv3 . Note that if n′ = 2, then T is a subdivided star centered at v3,

where γoiR(T ) = degT (v3) + 2 < 3n+s(T )
4 . Hence we can assume that n′ ≥ 3. Clearly,

if f is a γoiR(T ′)-function, then the function h defined by h(v3) = 2, h(z′i) = 1 for

every i ∈ {1, . . . , r}, h(u) = f(u) for u ∈ V (T ′) and h(x) = 0 otherwise, is an OIRDF

of T implying that γoiR(T ) ≤ γoiR(T ′) + r + 2. Let j = 0 if degT (v4) ≥ 3 and j = 1

degT (v4) = 2. Note that if j = 1, then r ≥ 3. Also, S(T ′) ≤ S(T ) − r + j. Now, by

the induction hypothesis we have,

γoiR(T ) ≤ γoiR(T ′) + r + 2

≤ 3(n− 2r − 1) + s(T )− r + j

4
+ r + 2

=
3n+ s(T )

4
− 3r − 5− j

4

<
3n+ s(T )

4
.

Now, assume that degT (v4) = 2 and r = 2. Let T ′ = T − {v1, v2, z′2}, and let f be a

γoiR(T ′)-function such that f(v3) is maximum. If f(v3) + f(z2) = 1, then we must

have f(v3) = 0, f(z2) = 1 and thus f(v4) = 2. Now, if f(v5) 6= 0, then assigning

z2, v3 and v4, the values 0, 2 and 0 instead of 1, 0, 2 respectively, provides a γoiR(T ′)-

function g with g(v3) > f(v3), contradicting our choice of f. Thus f(v5) = 0. Then

assigning z2, v3, v4 and v5, the values 0, 2, 0 and 1 instead of 1, 0, 2, 0 respectively,

provides a γoiR(T ′)-function g′ with g′(v3) > f(v3), a contradiction too. Therefore

f(v3) + f(z2) = 2, and thus it is easy to see that γoiR(T ) ≤ γoiR(T ′) + 2. By the
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induction hypothesis we obtain,

γoiR(T ) ≤ γoiR(T ′) + 2

≤ 3(n− 3) + s(T )− 1

4
+ 2

=
3n+ s(T )

4
− 2

4

<
3n+ s(T )

4
.

Subcase 2.2. degT (v3) = 2 and degT (v4) ≥ 3.

According to Subcase 1 and the choice of the diametral path, we may assume that

any child of v4 with depth 2 is of degree 2. Let v4 have k children with depth 2,

say y1 = v3, . . . , yk, r children with depth 1, say z1, . . . , zr and ` children with depth

0, say x1, . . . , x`. For any yj , let y′j the child of yj and y′′j the child of y′j . Now, if

deg(zi) ≥ 3 for some i, then let T ′ be the tree obtained from T by removing zi and

its leaves. One can easily see that γoiR(T ) ≤ γoiR(T ′) + 2. Using the induction and

the fact that s(T ′) = s(T )− 1, we obtain γoiR(T ) < 3n+s(T )
4 . Henceforth, we assume

that deg(zi) = 2 for each i, if any. Also, for any zi, let z′i be the unique leaf neighbor

of zi. Consider the following situations.

Assume first that ` ≥ 1. If degT (v5) ≥ 3, then let T ′ = T − Tv4 . Clearly, if f is

a γoiR(T ′)-function, then the function h defined on V (T ) by h(v4) = h(y′j) = 2 for

every j ∈ {1, . . . , k}, h(z′i) = 1 for every i ∈ {1, . . . , r}, h(u) = f(u) for u ∈ V (T ′) and

h(x) = 0 otherwise, is an OIRDF of T, implying that γoiR(T ) ≤ γoiR(T ′)+ 2k+ r+2.

We conclude from the induction hypothesis that

γoiR(T ) ≤ γoiR(T ′) + 2k + r + 2

≤ 3(n− 3k − 2r − `− 1) + s(T )− k − r − 1

4
+ 2k + r + 2

=
3n+ s(T )

4
− 2k + 3r + 3`− 4

6

<
3n+ s(T )

4
.

Now assume that deg(v5) = 2. Let T ′ = T − Tv3 , and let f be a γoiR(T ′)-function

f such that f(v4) is maximum. Assume that f(v4) = 0. Then ` = 1 for otherwise

(` ≥ 2) we reassign v4 by 2 and its leaves by 0 we obtain a γoiR(T ′)-function g with

g(v4) > f(v4), a contradiction. In this the unique leaf neighbor x1 must be assigned

a 1. Now, if r 6= 0, then f(zi) = 2 and f(z′i) = 2 for every i, but then as above we

can reassign x1, v4, zi and z′i by 0, 2, 0, 1 respectively and we get a γoiR(T ′)-function

g with g(v4) > f(v4), a contradiction. Thus r = 0. It follows that f(v5) = 2 and

f(v6) = 0. But then reassigning x1, v4, v5 and v6 by 0, 2, 0, 1 respectively provides a

γoiR(T ′)-function g with g(v4) > f(v4), a contradiction. Therefore f(v4) 6= 0. Then
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f can be extended to an OIRDF of T by assigning a 0 to v3 and v1 and a 2 to v2.

Hence γoiR(T ) ≤ γoiR(T ′) + 2. By the induction hypothesis we have,

γoiR(T ) ≤ γoiR(T ′) + 2

≤ 3(n− 3) + s(T )− 1

4
+ 2

≤ 3n+ s(T )

4
− 2

4

<
3n+ s(T )

4
.

In the sequel, we assume that ` = 0. Assume now that r + k ≥ 3, and let T ′ =

T − Tv4 . First let r ≥ 1. If n′ = 2, then γoiR(T ) = 2k + r + 3 < 3n+s(T )
4 . Thus

let n′ ≥ 3. Clearly, if f is a γoiR(T ′)-function, then the function h defined on V (T )

by h(v4) = h(y′j) = 2 for every j ∈ {1, . . . , k}, h(z′i) = 1 for every i ∈ {1, . . . , r},
h(u) = f(u) for u ∈ V (T ′) and h(x) = 0 otherwise, is an OIRDF of T implying that

γoiR(T ) ≤ γoiR(T ′) + 2k + r + 2. We conclude from the induction hypothesis that

γoiR(T ) ≤ γoiR(T ′) + 2k + r + 2

≤ 3(n− 3k − 2r − 1) + s(T )− k − r + 1

4
+ 2k + r + 2

=
3n+ s(T )

4
− 2k + 3r − 6

6

<
3n+ s(T )

4
.

Now let r = 0. If f is a γoiR(T ′)-function, then the function h defined on V (T ) by

h(v4) = 1, h(y′j) = 2 for every j ∈ {1, . . . , k}, h(u) = f(u) for u ∈ V (T ′) and h(x) = 0

otherwise, is an OIRDF of T implying that γoiR(T ) ≤ γoiR(T ′)+2k+1. We conclude

from the induction hypothesis that

γoiR(T ) ≤ γoiR(T ′) + 2k + 1

≤ 3(n− 3k − 1) + s(T )− k + 1

4
+ 2k + 1

=
3n+ s(T )

4
− 2k − 2

6

<
3n+ s(T )

4
.

Finally, assume that r + k = 2. First let r = 0, k = 2 and T ′ = T − Tv4 . If f is a

γoiR(T ′)-function, then the function h defined on V (T ) by h(v4) = 1, h(y′j) = 2 for

j ∈ {1, 2}, h(u) = f(u) for u ∈ V (T ′) and h(x) = 0 otherwise, is an OIRDF of T



284 Outer independent Roman domination number of trees

implying that γoiR(T ) ≤ γoiR(T ′) + 5. By the induction hypothesis we obtain

γoiR(T ) ≤ γoiR(T ′) + 5 ≤ 3(n− 7) + s(T )− 1

4
+ 5

=
3n+ s(T )

4
− 2

4

<
3n+ s(T )

4
.

Now, let r = k = 1. Suppose that degT (v5) = 2 and let T ′ = T − {v1, v2, z1, z′1}.
Let f be a γoiR(T ′)-function such that f(v4) is maximum. Clearly, if f(v4) = 1, then

f(v3) = 1 and so we can reassign v3 and v4 by 0 and 2, respectively which provides a

γoiR(T ′)-function g with g(v4) > f(v4), a contradiction. Now, if f(v4) = 0, then we

must have f(v3) = 1, f(v5) = 2 and f(v6) = 0. But then assigning v3, v4, v5 and v6 the

values 0, 2, 0 and 1 provides a γoiR(T ′)-function g with g(v4) > f(v4), a contradiction.

Hence f(v4) = 2, and thus f(v3) = 0. Then f can be extended to an OIRDF function

on T by assigning a 0 to v1, z1, a 2 to v2 and a 1 to z′1. By the inductive hypothesis,

we obtain

γoiR(T ) ≤ γoiR(T ′) + 3 ≤ 3(n− 4) + s(T )− 1

4
+ 3 <

3n+ s(T )

4
.

For the next, we can assume that degT (v5) ≥ 3. Let T ′ = T − Tv4 . Clearly, if f is

a γoiR(T ′)-function, then the function h defined by h(v4) = h(v2) = 2, h(z′1) = 1,

h(u) = f(u) for u ∈ V (T ′) and h(x) = 0 otherwise, is an OIRDF of T implying that

γoiR(T ) ≤ γoiR(T ′) + 5. We conclude from the induction hypothesis that

γoiR(T ) ≤ γoiR(T ′) + 5 ≤ 3(n− 6) + s(T )− 2

4
+ 5 =

3n+ s(T )

4
.

Further if γoiR(T ) = 3n+s(T )
4 , then we have equality throughout this inequality chain.

In particular, γoiR(T ′) = 3n′+s(T ′)
4 and thus T ′ ∈ F . Since degT (v5) ≥ 3, v5 is not

a leaf of T ′. Next we shall show v5 ∈ WT ′ . Suppose to the contrary that v5 /∈ WT ′ .

Then there is γoiR(T ′)-function f such that f(w) = 1 for every w ∈ N [v5]. Then

the function h defined by h(v4) = h(v2) = 2, h(v5) = 0, h(z′1) = 1, h(u) = f(u)

for u ∈ V (T ′) − {v5} and h(x) = 0 otherwise, is an OIRDF of T implying that

γoiR(T ) ≤ γoiR(T ′) + 4. We conclude from the induction hypothesis that

γoiR(T ) ≤ γoiR(T ′) + 4 ≤ 3(n− 6) + s(T )− 2

4
+ 4 <

3n+ s(T )

4
,

which is a contradiction. Thus v5 ∈ WT ′ . Now T ∈ F because it can be obtained

from T ′ by Operation O1.

Subcase 2.3. degT (v3) = 2 and degT (v4) = 2.
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Let T ′ = T − Tv4 . If f is a γoiR(T ′)-function, then the function h defined on V (T )

by h(v4) = 1, h(v2) = 2, h(u) = f(u) for u ∈ V (T ′) and h(x) = 0 otherwise, is an

OIRDF of T implying that γoiR(T ) ≤ γoiR(T ′) + 3. If degT (v5) ≥ 3, then by the

induction hypothesis we can see that

γoiR(T ) ≤ γoiR(T ′) + 3 ≤ 3(n− 4) + s(T )− 1

4
+ 3 <

3n+ s(T )

4
.

If degT (v5) = 2, then by the induction hypothesis we have

γoiR(T ) ≤ γoiR(T ′) + 3 ≤ 3(n− 4) + s(T )

4
+ 3 =

3n+ s(T )

4
.

Further if γoiR(T ) = 3n+s(T )
4 , then we have equality throughout this inequality chain.

In particular, γoiR(T ′) = 3n′+s(T ′)
4 . By the induction hypothesis, T ′ ∈ F . Since v5 is

a leaf of T ′, and T can be obtained from T ′ by Operation O2 , we deduce that T ∈ F .

This complete the proof. 2

According to Propositions 3 and 4, we have proven Theorem 2.
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