# The annihilator-inclusion ideal graph of a commutative ring 

Jafar Amjadi ${ }^{1, *}$, Rana Khoeilar ${ }^{\mathbf{1}}$, Abbas Alilou ${ }^{2}$<br>${ }^{1}$ Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, I.R. Iran j-amjadi@azaruniv.ac.ir khoeilar@azaruniv.ac.ir<br>${ }^{2}$ Jabir Ibn Hayyan research center, Khoy, I.R. Iran<br>abbasalilou@yahoo.com

Received: 25 January 2020; Accepted: 22 December 2020
Published Online: 24 December 2020


#### Abstract

Let $R$ be a commutative ring with non-zero identity. The annihilatorinclusion ideal graph of $R$, denoted by $\xi_{R}$, is a graph whose vertex set is the of all non-zero proper ideals of $R$ and two distinct vertices $I$ and $J$ are adjacent if and only if either $\operatorname{Ann}(I) \subseteq J$ or $\operatorname{Ann}(J) \subseteq I$. The purpose of this paper is to provide some basic properties of the graph $\xi_{R}$. In particular, shows that $\xi_{R}$ is a connected graph with diameter at most three, and has girth 3 or $\infty$. Furthermore, is determined all isomorphic classes of non-local Artinian rings whose annihilator-inclusion ideal graphs have genus zero or one.


Keywords: Annihilator-inclusion ideal graph, Artinian ring, planar graph; genus
AMS Subject classification: 05C25, 05C10

## 1. Introduction

Let $G$ be a simple graph with the vertex set $V(G)$ and edge set $E(G)$. For every vertex $v \in V(G)$, the degree of a vertex $v$ is defined as $d_{G}(v)=|\{u \in V(G) \mid u v \in E(G)\}|$. The distance $d_{G}(u, v)$ between two vertices $u$ and $v$ in a connected graph $G$ is the length of the shortest $u v$-path in $G$. The greatest distance between any pair of vertices $u$ and $v$ in $G$ is the diameter of $G$ and denoted by $\operatorname{diam}(G)$. If a graph $G$ contains one vertex adjacent to all other vertices and with no extra edge, then $G$ is called a star

[^0]graph. The girth of a graph $G$, denoted by $g(G)$, is the length of its shortest cycle. The girth of a graph with no cycle is defined $\infty$.
A simple graph is said to be planar if it can be drawn in the plane or on the surface of a sphere. It is known that $K_{3,3}$ and $K_{5}$ are not planar and can be drawn without crossings on the surface of a torus. The torus can be thought of as a sphere with one handle. More generally, a surface is said to be of genus $g$ if it is topologically homeomorphic to a sphere with $g$ handles. Thus the genus of a sphere is 0 and the one of torus is one. A graph can be drawn without crossings on the surface of genus $g$, but not on one of genus $g-1$, is called a graph of genus $g$. We write $\lambda(G)$ for the genus of a graph $G$. Therefore $\lambda\left(K_{3,3}\right)=\lambda\left(K_{5}\right)=1$. A well-known fact is that if $G$ is a connected graph of genus $g$, with $n$ vertices, $m$ edges and $f$ faces, then $n-m+f=2-2 g$. For terminology and notation not defined here, the reader is referred to [16].

The study of algebraic structures, using the properties of graphs, has become an exciting research topic in the last two decades, leading to many interesting results and questions. In ring theory, the structure of a ring R is closely tied to behavior ideals more than elements, and so it is deserving to define a graph with vertex set as ideals instead of elements. There are many papers on assigning a graph to a ring. The old one is the zero divisor graph $\Gamma(R)$ (see for instance [4, 5]). The vertex set of this graph is $Z(R) \backslash(0)$ and two distinct vertices $v_{1}$ and $v_{2}$ are adjacent if and only if $v_{1} v_{2}=0$ and some of them to mention annihilating [7, 8], co-annihilating [1], essential ideal graph $[2,3]$ and co-maximal graph [10] of commutative rings. Several authors studied about various properties of these graphs including diameter, planarity and genus [13-15].
Here we propose a new graph associated to a commutative ring which we call annihilator-inclusion ideal graph. The annihilator-inclusion ideal graph, denoted by $\xi_{R}$, is the (undirected) graph with vertices $\mathbb{I}^{*}(R)$, and two distinct vertices $I$ and $J$ are adjacent if and only if either $\operatorname{Ann}(I) \subseteq J$ or $\operatorname{Ann}(J) \subseteq I$.
Throughout this paper, all rings are assumed to be commutative rings with identity that are not integral domains. We denote the collection of all non-zero proper ideals of $R$ by $\mathbb{I}^{*}(R)$. If $X$ is either an element or a subset of $R$, then the annihilator of $X$ is defined as $\operatorname{Ann}(X)=\{r \in R \mid r X=0\}$. By $\operatorname{Max}(R)$ we denote the set of all maximal ideals. Furthermore, a ring $R$ is a local ring if $R$ has a unique maximal ideal.
In this paper we initiate the study of the annihilator-inclusion ideal graph and we investigate its basic properties. In particular, we characterize all rings whose annihilator-inclusion ideal graphs have genus 0 or 1 .
We make use of the following results.

Observation 1. Let $(R, \mathfrak{m})$ be a local ring. If $\operatorname{dim}\left(\mathfrak{m} / \mathfrak{m}^{2}\right) \geq 2$, then $R$ has at least three distinct non-trivial ideals $I, J$ and $K$ such that $I, J, K \neq \mathfrak{m}^{i}$ for every $i$.

Proof. By hypothesis, $\operatorname{dim}\left(\mathfrak{m} / \mathfrak{m}^{2}\right) \geq 2$. Hence, it is possible to find $x_{1}, x_{2} \in \mathfrak{m}$ such that $\left\{x_{1}+\mathfrak{m}^{2}, x_{2}+\mathfrak{m}^{2}\right\}$ is linearly independent over $R / \mathfrak{m}$. Then the ideals
$I=R x_{1}, J=R x_{2}$, and $K=R\left(x_{1}+x_{2}\right)$ are distinct non-trivial ideals of $R$ such that $I, J, K \notin\left\{\mathfrak{m}^{i} \mid i \in \mathbb{N}\right\}$.

Observation 2. Let $R$ be a ring and $\mathfrak{m}$ be a maximal ideal in $R$. If $\operatorname{Ann}(\mathfrak{m}) \neq 0$, then $\mathfrak{m}=Z(\operatorname{Ann}(\mathfrak{m}))$.

Proof. Since $\mathfrak{m A n n}(\mathfrak{m})=0, \mathfrak{m} \subseteq Z(\operatorname{Ann}(\mathfrak{m}))$. Now, if $x$ is an arbitrary element in $Z(\operatorname{Ann}(\mathfrak{m}))$, then there is a nonzero element $y \in \operatorname{Ann}(\mathfrak{m})$ such that $x y=0$. If $x \notin \mathfrak{m}$, then there exists $z \in \mathfrak{m}$ such that $r x+z=1$, for some $r \in R$, and so $y=0$, a contradiction. Thus $Z(\operatorname{Ann}(\mathfrak{m})) \subseteq \mathfrak{m}$ and so, $\mathfrak{m}=Z(\operatorname{Ann}(\mathfrak{m}))$.

Theorem A. ([14] Lemma 2.6) Let $(R, m)$ be a local ring. If $\operatorname{dim}\left(\frac{\mathfrak{m}}{\mathfrak{m}^{2}}\right)=1$ and for some positive integer $t, \mathfrak{m}^{t}=(0)$, then the set of all non-trivial ideals of R is the set $\left\{\mathfrak{m}^{i} \mid 1 \leq i<t\right\}$.

Observation 3. Let $R$ be a ring. Then the subgraph $\xi_{R}[\operatorname{Max}(R)]$ is a clique.

Proof. If $R$ is local we are done. Assume $R$ is not local. If $\mathfrak{m}_{1}$ and $\mathfrak{m}_{2}$ are two distinct maximal ideals of $R$, then it follows from $\mathfrak{m}_{1} \operatorname{Ann}\left(\mathfrak{m}_{1}\right)=(0) \subseteq \mathfrak{m}_{2}$ that $\operatorname{Ann}\left(\mathfrak{m}_{1}\right) \subseteq \mathfrak{m}_{2}$. So $\mathfrak{m}_{1}$ and $\mathfrak{m}_{2}$ are adjacent. This implies that the subgraph induced by $\operatorname{Max}(R)$ is a clique.

Observation 4. Let $R$ be a ring. Then $\xi_{R}$ is finite if and only if the degree of each vertex of $\xi_{R}$ is finite.

Proof. If $\xi_{R}$ is finite, then obviously the degree of each vertex of $\xi_{R}$ is finite. Suppose that the degree of each vertex of $\xi_{R}$ is finite. Since the subgraph induced by $\operatorname{Max}(R)$ is a clique, $|\operatorname{Max}(R)|<\infty$. Let $\operatorname{Max}(R)=\left\{\mathfrak{m}_{1}, \mathfrak{m}_{2}, \ldots, \mathfrak{m}_{n}\right\}$ and define $X_{i}=\{(0) \neq$ $\left.I \triangleleft R \mid \operatorname{Ann}(I) \subseteq \mathfrak{m}_{i}\right\}$ for each $1 \leq i \leq n$. Then $\mathbb{I}(R)=X_{1} \cup X_{2} \cup \ldots \cup X_{n}$. Since $\operatorname{deg} \mathfrak{m}_{i}<\infty$, we have $\left|X_{i}\right|<\infty$ for each $i$ and hence $\xi_{R}$ is finite.

## 2. Properties of the annihilator-inclusion ideal graphs

In this section we first show that the annihilator-inclusion ideal graph of a commutative ring is connected with diameter at most 3 and girth 3 or $\infty$, and then we classify all commutative rings whose annihilator-inclusion ideal graphs are stars or cycles. Our first theorem shows that $\xi_{R}$ is a connected graph with $\operatorname{diam}\left(\xi_{R}\right) \leq 3$.

Theorem 5. Let $R$ be a ring. Then $\xi_{R}$ is connected and $\operatorname{diam}\left(\xi_{R}\right) \leq 3$.

Proof. If $R$ is a local ring with the maximal ideal $\mathfrak{m}$, then $\operatorname{Ann}(I) \subseteq \mathfrak{m}$ for every non-zero proper ideal $I$ of $R$ and so $\mathfrak{m}$ is adjacent to all non-zero proper ideals of $R$. This implies that $\xi_{R}$ is connected and $\operatorname{diam} \xi_{R} \leq 2$.

Assume $R$ is not a local ring. If $I, J$ are two vertices of $\xi_{R}$, then there are two maximal ideals $\mathfrak{m}$ and $\mathfrak{m}^{\prime}$ such that $\operatorname{Ann}(I) \subseteq \mathfrak{m}$ and $\operatorname{Ann}(J) \subseteq \mathfrak{m}^{\prime}$. Hence $d(I, J) \leq 3$ and so $\xi_{R}$ is a connected graph with diameter at most 3 and the proof is complete.

Next we show that the girth of $\xi_{R}$ is either 3 or $\infty$. We need the followings lemmas.

Lemma 1. Let $R$ be a ring. Then one of the following conditions is fulfilled:
(a) For each maximal ideal $\mathfrak{m}$ of $R, \operatorname{Ann}(\mathfrak{m}) \subseteq \mathfrak{m}$.
(b) $R \cong F \times S$, where $F$ is a field and $S$ is a commutative ring with identity.

Proof. Let $\mathfrak{m}$ be a maximal ideal of $R$ such that $\operatorname{Ann}(\mathfrak{m}) \nsubseteq \mathfrak{m}$. Then $\mathfrak{m}+\operatorname{Ann}(\mathfrak{m})=R$ and so $a+b=1$ for some $a \in \operatorname{Ann}(\mathfrak{m})$ and $b \in \mathfrak{m}$. If $r \in \mathfrak{m} \cap \operatorname{Ann}(\mathfrak{m})$, then we have $r=r a+r b=0$. It follows that $R \cong \frac{R}{\mathfrak{m}} \times \frac{R}{\operatorname{Ann(m)}}$ and the proof is complete.

Lemma 2. Let $R$ be a commutative ring with identity such that $\operatorname{Max}(R)=\left\{\mathfrak{m}_{1}, \mathfrak{m}_{2}\right\}$, $\operatorname{Ann}\left(\mathfrak{m}_{1}\right) \neq 0$ and $\operatorname{Ann}\left(\mathfrak{m}_{2}\right) \neq 0$. Then one of the following conditions is fulfilled.
(a) $R \cong F \times S$, where $F$ is a field and $S$ is a commutative local ring with identity.
(b) $\operatorname{Ann}(J(R)) \neq \mathfrak{m}_{i}$, for each $i=1,2$.

Proof. If $\operatorname{Ann}\left(\mathfrak{m}_{1}\right) \nsubseteq \mathfrak{m}_{1}$ or $\operatorname{Ann}\left(\mathfrak{m}_{2}\right) \nsubseteq \mathfrak{m}_{2}$, then by Lemma 1 we are done. Suppose that $\operatorname{Ann}\left(\mathfrak{m}_{1}\right) \subseteq \mathfrak{m}_{1}$ and $\operatorname{Ann}\left(\mathfrak{m}_{2}\right) \subseteq \mathfrak{m}_{2}$. Note that if $\operatorname{Ann}\left(\mathfrak{m}_{1}\right)=\mathfrak{m}_{1}$ (the case $\operatorname{Ann}\left(\mathfrak{m}_{2}\right)=\mathfrak{m}_{2}$ is similar), then $\mathfrak{m}_{1}=\mathfrak{m}_{2}$, a contradiction. Thus Ann $\left(\mathfrak{m}_{1}\right) \subsetneq \mathfrak{m}_{1}$ and $\operatorname{Ann}\left(\mathfrak{m}_{2}\right) \subsetneq \mathfrak{m}_{2}$. Clearly, $\mathfrak{m}_{1} \mathfrak{m}_{2} \neq(0)$, for otherwise $\mathfrak{m}_{1} \subseteq \operatorname{Ann}\left(\mathfrak{m}_{2}\right) \subseteq \mathfrak{m}_{2}$ which is impossible. It follows that $J(R) \neq(0)$. Assume, to the contrary, that $\operatorname{Ann}(J(R))=$ $\mathfrak{m}_{1}\left(\right.$ the case $\operatorname{Ann}(J(R))=\mathfrak{m}_{2}$ is similar). By Observation $2, Z\left(\operatorname{Ann}\left(\mathfrak{m}_{2}\right)\right)=\mathfrak{m}_{2}$. Since $\operatorname{Ann}\left(\mathfrak{m}_{2}\right) \subseteq J(R)$, we have $\mathfrak{m}_{1} \operatorname{Ann}\left(\mathfrak{m}_{2}\right)=(0)$. Let $0 \neq r \in \operatorname{Ann}\left(\mathfrak{m}_{2}\right)$ and $x \in \mathfrak{m}_{1}-\mathfrak{m}_{2}$. Then $x r=0$ and this implies $x \in Z\left(\operatorname{Ann}\left(\mathfrak{m}_{2}\right)\right)=\mathfrak{m}_{2}$, a contradiction. Therefore, $\operatorname{Ann}(J(R)) \neq \mathfrak{m}_{1}$ and $\operatorname{Ann}(J(R)) \neq \mathfrak{m}_{2}$ and so (b) holds.

Theorem 6. Let $R$ be a ring. Then $\operatorname{girth}\left(\xi_{R}\right)=3$ or $\infty$.

Proof. If $|\operatorname{Max}(R)| \geq 3$, then we have girth $\left(\xi_{R}\right)=3$ by Observation 3. If $|\operatorname{Max}(R)|=$ 1 , then $(R, \mathfrak{m})$ is a local ring and clearly $\mathfrak{m}$ is adjacent to all other vertices. This implies that $\operatorname{girth}\left(\xi_{R}\right)=3$ or $\infty$. Assume that $|\operatorname{Max}(R)|=2$ and let $\operatorname{Max}(R)=\left\{\mathfrak{m}_{1}, \mathfrak{m}_{2}\right\}$. If $J(R)=(0)$, then $R \simeq F_{1} \times F_{2}$, where $F_{1}, F_{2}$ are fields. Then clearly $\xi_{R} \cong K_{2}$ and so $\operatorname{girth}\left(\xi_{R}\right)=\infty$. Suppose that $J(R) \neq(0)$. If $\operatorname{Ann}\left(\mathfrak{m}_{1}\right)=0$ or $\operatorname{Ann}\left(\mathfrak{m}_{2}\right)=0$ then $\mathfrak{m}_{1}$ or $\mathfrak{m}_{2}$ is a universal vertex and so $\operatorname{girth}\left(\xi_{R}\right)=3$ or $\infty$. Assume that $\operatorname{Ann}\left(\mathfrak{m}_{1}\right) \neq(0)$ and $\operatorname{Ann}\left(\mathfrak{m}_{2}\right) \neq(0)$. By lemma 2, we distinguish two cases.
Case 1. $R \cong F \times S$, where $F$ is a field and $S$ is commutative local ring with identity. Let $\mathfrak{m}$ be the maximal ideal of $S$. If $S$ has exactly one non-zero proper ideal, then clearly $\xi_{R} \cong P_{4}$ and so $\operatorname{girth}\left(\xi_{R}\right)=\infty$. Let $I$ be a non-zero proper ideal of $S$ different
from $\mathfrak{m}$, then the subgraph induced by $\{F \times \mathfrak{m}, F \times I,(0) \times S\}$ is a triangle and this implies that $\operatorname{girth}\left(\xi_{R}\right)=3$.
Case 2. $\operatorname{Ann}(J(R)) \neq \mathfrak{m}_{i}$, for $i=1,2$.
Since $\operatorname{Ann}\left(\mathfrak{m}_{i}\right) \subseteq \operatorname{Ann}(J(R))$ for $i=1,2, \operatorname{Ann}(J(R))$ is adjacent to $\mathfrak{m}_{1}, \mathfrak{m}_{2}$. It follows from observation 3 that the subgraph induced by $\left\{\operatorname{Ann}(J(R)), \mathfrak{m}_{1}, \mathfrak{m}_{2}\right\}$ is a triangle and so $\operatorname{girth}\left(\xi_{R}\right)=3$. This completes the proof.

Corollary 1. Let $R$ be a ring. Then $\xi_{R}$ is a cycle if and only if ( $R, \mathfrak{m}$ ) is a local ring such that $\mathbb{I}^{*}(R)=\left\{\mathfrak{m}^{3}, \mathfrak{m}^{2}, \mathfrak{m}\right\}$.

Proof. Let $\xi_{R}$ be a cycle of order $n \geq 3$. By Theorem 6 , we have $n=3$ and so $R$ has exactly three non-trivial ideals. Thus $R$ is Artinian. This implies that $R=R_{1} \times \cdots \times R_{s}$ where $\left(R_{i}, \mathfrak{m}_{i}\right)$ is an Artinian local ring for each $i$. Since $R$ has exactly three non-trivial ideals, we have $s=1$ and $\operatorname{dim}\left(\frac{\mathfrak{m}_{1}}{\mathfrak{m}_{1}^{1}}\right)=1$. It follows from Theorem A that $\mathfrak{m}_{1}, \mathfrak{m}_{1}^{2}, \mathfrak{m}_{1}^{3}$ are the non-trivial ideals of $R$ and the proof is complete.

Next, we classify all rings $R$ whose annihilator-inclusion ideal graph $\xi_{R}$ is a star.

Theorem 7. Let $R$ be a ring. Then $\xi_{R}$ is a star if and only if one of the following statements hold.
(a) $R \cong F_{1} \times F_{2}$, where $F_{1}, F_{2}$ are fields.
(b) $(R, \mathfrak{m})$ is a local ring such that $\operatorname{Ann}(I) \in\{I, \mathfrak{m}\}$ for each non-zero proper ideal $I$ of $R$.

Proof. If $R \cong F_{1} \times F_{2}$ where $F_{1}, F_{2}$ are fields, then $\xi_{R} \cong K_{2}$ and we are done. Let (b) hold. Then clearly $\mathfrak{m}$ is adjacent to all vertices in $\xi_{R}$. Let $I, J$ be two distinct ideals of $R$ different from $\mathfrak{m}$. We show that $I$ and $J$ are not adjacent. If $\operatorname{Ann}(I)=\mathfrak{m}$ and $\operatorname{Ann}(J)=\mathfrak{m}$, then clearly $\operatorname{Ann}(J) \nsubseteq I$ and $\operatorname{Ann}(I) \nsubseteq J$ and so $I J \notin E\left(\xi_{R}\right)$. Assume $\operatorname{Ann}(I)=I$ and $\operatorname{Ann}(J)=\mathfrak{m}$. Then clearly $\operatorname{Ann}(J) \nsubseteq I$. If $\operatorname{Ann}(I) \subseteq J$, then we have $\mathfrak{m}=\operatorname{Ann}(J) \subseteq \operatorname{Ann}(I)=I$, a contradiction. Therefore $\operatorname{Ann}(I) \nsubseteq J$ and so $I$ and $J$ are not adjacent. Now let $\operatorname{Ann}(I)=I, \operatorname{Ann}(J)=J$. If $I=\operatorname{Ann}(I) \subseteq J$, then $J=\operatorname{Ann}(J) \subseteq \operatorname{Ann}(I)=I$ and we have $I=J$, a contradiction. Thus $\operatorname{Ann}(I) \nsubseteq J$. Similarly, $\operatorname{Ann}(J) \nsubseteq I$ and this implies that $I$ and $J$ are not adjacent.
Conversely, let $\xi_{R}$ be a star. Since the subgraph induced by $\operatorname{Max}(R)$ is a clique, we conclude that $|\operatorname{Max}(R)| \leq 2$. We consider two cases:
Case 1. $|\operatorname{Max}(R)|=2$.
Let $\operatorname{Max}(R)=\left\{\mathfrak{m}_{1}, \mathfrak{m}_{2}\right\}$. We claim that $J(R)=(0)$. Suppose, to the contrary, that $J(R) \neq(0)$. Since $\xi_{R}$ is a star and $\mathfrak{m}_{1}$ and $\mathfrak{m}_{2}$ are adjacent in $\xi_{R}$, we may assume without loss of generality that $\mathfrak{m}_{1}$ is the central vertex of $\xi_{R}$. If $\operatorname{Ann}\left(\mathfrak{m}_{2}\right)=(0)$, then $\mathfrak{m}_{1}, \mathfrak{m}_{2}, J(R)$ is a triangle, a contradiction. Assume that $\operatorname{Ann}\left(\mathfrak{m}_{2}\right) \neq(0)$. If $\operatorname{Ann}\left(\mathfrak{m}_{2}\right)=\mathfrak{m}_{2}$, then $\mathfrak{m}_{2}^{2}=(0)$ which implies that $\mathfrak{m}_{2} \subseteq \mathfrak{m}_{1}$, a contradiction. Thus $\operatorname{Ann}\left(\mathfrak{m}_{2}\right) \neq \mathfrak{m}_{2}$. Obviously, $\mathfrak{m}_{2}$ is adjacent to $\operatorname{Ann}\left(\mathfrak{m}_{2}\right)$ in $\xi_{R}$. If $\mathfrak{m}_{1} \neq \operatorname{Ann}\left(\mathfrak{m}_{2}\right)$, then
$\mathfrak{m}_{1}, \mathfrak{m}_{2}, \operatorname{Ann}\left(\mathfrak{m}_{2}\right)$ is a triangle which is a contradiction. Let $\mathfrak{m}_{1}=\operatorname{Ann}\left(\mathfrak{m}_{2}\right)$. Then $\mathfrak{m}_{1} \cap \mathfrak{m}_{2}=\mathfrak{m}_{1} \cdot \mathfrak{m}_{2}=0$, a contradiction again. Thus $J(R)=(0)$ and $R \cong F_{1} \times F_{2}$ where $F_{1}$ and $F_{2}$ are fields.
Case 2. $\operatorname{Max}(R)=\{\mathfrak{m}\}$.
Clearly, $\mathfrak{m}$ is the central vertex of $\xi_{R}$. If $R$ has exactly two non-zero proper ideals, then we are done. Henceforth, we suppose that $R$ has at least three non-zero proper ideals. Let $I$ be a non-zero proper ideal of $R$ different from $\mathfrak{m}$. If $\operatorname{Ann}(I)=(0)$, then $I$ is adjacent to all vertices which leads to a contradiction. So $\operatorname{Ann}(I) \neq(0)$. If $\operatorname{Ann}(I) \neq$ $\mathfrak{m}$ and $\operatorname{Ann}(I) \neq I$, then the subgraph induced by the vertices $I, \operatorname{Ann}(I), \mathfrak{m}$ is a triangle, a contradiction. Therefore, $\operatorname{Ann}(I) \in\{\mathfrak{m}, I\}$ and the proof is complete.

Corollary 2. Let $R$ be a ring. Then $\xi_{R}$ is a tree if and only if $\xi_{R}$ is a star or $P_{4}$.

Proof. One side is clear. Suppose that $\xi_{R}$ is a tree. We conclude from Observation 3 that $|\operatorname{Max}(R)| \leq 2$. If $(R, \mathfrak{m})$ is a local ring, then $\mathfrak{m}$ is adjacent to all other vertices and so $\xi_{R}$ is a star. Suppose that $\operatorname{Max}(R)=\left\{\mathfrak{m}_{1}, \mathfrak{m}_{2}\right\}$. By the same arguments as in the proof of Theorem 6, we have $\xi_{R} \cong K_{2}$ if $J(R)=(0)$ and $\xi_{R} \cong P_{4}$ if $J(R) \neq(0)$.

## 3. Classification of Artinian rings whose annihilator-inclusion ideal graph has genus at most one

In this section we characterize all Artinian non-local rings whose annihilator-inclusion ideal graph has genus at most one. We make use of the following Theorems in this section.

Theorem B. (Kuratowski [9]) A graph is planar if and only if it does not contain a subdivision of $K_{5}$ or $K_{3,3}$.

Theorem C. ([16]) Let $G$ be a graph of order $n$ and size $m$. Then $m \leq 3(n-2+2 \lambda(G))$.

The proof of the following results can be found in Ringel and Youngs [12]; Ringel [11], respectively.

Theorem D. For $n \geq 3, \lambda\left(K_{n}\right)=\left\lceil\frac{1}{12}(n-3)(n-4)\right\rceil$. In particular, $\lambda\left(K_{n}\right)=1$ if $n=5,6,7$.

Theorem E. For $m, n \geq 2, \lambda\left(K_{m, n}\right)=\left\lceil\frac{(m-2)(n-2)}{4}\right\rceil$.
Lemma 3. Let $n \geq 2$ and $R \simeq F_{1} \times F_{2} \times \cdots \times F_{n}$, where $F_{i}$ is a field for each $i$. Then $\xi_{R}$ is planar if and only if $n=2,3$.

Proof. If $n=2$ then $\xi_{R} \simeq K_{2}$ and so $\xi_{R}$ is planar. If $n=3$, then Figure 1, shows that $\xi_{R}$ is planar.
Conversely, let $\xi_{R}$ be planar. If $n \geq 4$, then the subgraph induced by $\left\{(0) \times F_{2} \times \cdots \times\right.$ $F_{n},(0) \times(0) \times F_{3} \times \cdots \times F_{n}, F_{1} \times(0) \times F_{3} \times \cdots \times F_{n}, F_{1} \times F_{2} \times(0) \times \cdots \times(0), F_{1} \times F_{2} \times$ $\left.\left.F_{3} \times(0) \times \cdots \times(0), F_{1} \times F_{2} \times(0) \times F_{4} \times \cdots \times F_{n}\right)\right\}$ contains $K_{3,3}$ whose bipartite sets are $X=\left\{(0) \times F_{2} \times \cdots \times F_{n},(0) \times(0) \times F_{3} \times \cdots \times F_{n}, F_{1} \times(0) \times F_{3} \times \cdots \times F_{n}\right\}$ and $\left.Y=\left\{F_{1} \times F_{2} \times(0) \times \cdots \times(0), F_{1} \times F_{2} \times F_{3} \times(0) \times \cdots \times(0), F_{1} \times F_{2} \times(0) \times F_{4} \times \cdots \times F_{n}\right)\right\}$, a contradiction. Hence $n \leq 3$ and the proof is complete.


Figure 1. $\xi_{F_{1} \times F_{2} \times F_{3}}$

Theorem 8. Let $R=R_{1} \times R_{2} \times \cdots \times R_{n}$ be a commutative ring with identity where each ( $R_{i}, \mathfrak{m}_{i}$ ) is a local ring with $\mathfrak{m}_{i} \neq 0$ and $n \geq 2$. Let $n_{i}$ be the nilpotency of $\mathfrak{m}_{i}$. Then $\xi_{R}$ is planar if and only if $n=2$ and $\left|\mathbb{I}^{*}\left(R_{1}\right)\right|+\left|\mathbb{I}^{*}\left(R_{2}\right)\right| \leq 3$.

Proof. If $n=2$ and $\left|\mathbb{I}^{*}\left(R_{1}\right)\right|+\left|\mathbb{I}^{*}\left(R_{2}\right)\right| \leq 3$, then $\xi_{R}$ is one of the graphs illustrated in Figures 2 or 3 respectively with vertex sets $\left\{v_{1}=(0) \times R_{2}, v_{2}=R_{1} \times \mathfrak{m}_{2}, v_{3}=\right.$ $\left.(0) \times J, v_{4}=(0) \times \mathfrak{m}_{2}, v_{5}=R_{1} \times J, v_{6}=\mathfrak{m}_{1} \times \mathfrak{m}_{2}, v_{7}=\mathfrak{m}_{1} \times R_{2}, v_{8}=\mathfrak{m}_{1} \times(0)\right\}$ and $\left\{v_{1}=R_{1} \times(0), v_{2}=\mathfrak{m}_{1} \times R_{2}, v_{3}=\mathfrak{m}_{1} \times(0), v_{4}=\mathfrak{m}_{1} \times \mathfrak{m}_{2}, v_{5}=(0) \times \mathfrak{m}_{2}, v_{6}=\right.$ $\left.R_{1} \times \mathfrak{m}_{2}, v_{7}=(0) \times R_{2}\right\}$ respectively and hence is planar. Conversely, let $\xi_{R}$ be a planar graph. If $n \geq 4$, then it can be shown as in the proof of Lemma 3 that $\xi_{R}$ contains $K_{3,3}$ as a subgraph and this is in contraction to the assumption that $\xi_{R}$ is planar. Hence $n \leq 3$. If $n=3$, then the subgraph induced by
$\left\{R_{1} \times(0) \times \mathfrak{m}_{3}, R_{1} \times(0) \times R_{3}, R_{1} \times \mathfrak{m}_{2} \times R_{3}, R_{1} \times R_{2} \times \mathfrak{m}_{3},(0) \times R_{2} \times R_{3},(0) \times R_{2} \times \mathfrak{m}_{3}\right\}$
contains $K_{3,3}$ whose bipartite sets are $X=\left\{R_{1} \times(0) \times \mathfrak{m}_{3}, R_{1} \times(0) \times R_{3}, R_{1} \times \mathfrak{m}_{2} \times R_{3}\right\}$ and $Y=\left\{R_{1} \times R_{2} \times \mathfrak{m}_{3},(0) \times R_{2} \times R_{3},(0) \times R_{2} \times \mathfrak{m}_{3}\right\}$ which is a contradiction. Suppose that $n=2$. If $\left|\mathbb{I}^{*}\left(R_{1}\right)\right| \geq 2$ and $\left|\mathbb{I}^{*}\left(R_{2}\right)\right| \geq 2$, then let $I_{i}$ be a non-zero proper ideal of $R_{i}$ different from $\mathfrak{m}_{i}$, for $i=1,2$. Then the subgraph induced by $\left\{R_{1} \times \mathfrak{m}_{2}, R_{1} \times I_{2}, R_{1} \times(0), \mathfrak{m}_{1} \times R_{2}, I_{1} \times R_{2},(0) \times R_{2}\right\}$ contains $K_{3,3}$ whose bipartite sets are $X=\left\{R_{1} \times \mathfrak{m}_{2}, R_{1} \times I_{2}, R_{1} \times(0)\right\}$ and $=\left\{\mathfrak{m}_{1} \times R_{2}, I_{1} \times R_{2},(0) \times R_{2}\right\}$, a contradiction.


Figure 2. $\quad\left|\mathbb{I}^{*}\left(R_{1}\right)\right|=1,\left|\mathbb{I}^{*}\left(R_{2}\right)\right|=2$


Figure 3. $\quad\left|\mathbb{I}^{*}\left(R_{1}\right)\right|=\left|\mathbb{I}^{*}\left(R_{2}\right)\right|=1$

Henceforth, we may assume without the loss of generality that $\left|\mathbb{I}^{*}\left(R_{1}\right)\right|=1$. If $\left|\mathbb{I}^{*}\left(R_{2}\right)\right| \geq 3$, then let $I, J$ be two distinct non-zero proper ideals of $R_{2}$ different from $\mathfrak{m}_{3}$. Then the subgraph induced by $\left\{R_{1} \times \mathfrak{m}_{2}, R_{1} \times J, R_{1} \times I, \mathfrak{m}_{1} \times \mathfrak{m}_{2},(0) \times R_{2},(0) \times \mathfrak{m}_{2}\right\}$ contains $K_{3,3}$ whose bipartite sets are $X=\left\{R_{1} \times \mathfrak{m}_{2}, R_{1} \times J, R_{1} \times I\right\}$ and $Y=$ $\left\{\mathfrak{m}_{1} \times \mathfrak{m}_{2},(0) \times R_{2},(0) \times \mathfrak{m}_{2}\right\}$, a contradiction. Hence, $\left|\mathbb{I}^{*}\left(R_{2}\right)\right| \leq 2$.

Theorem 9. Let $R=R_{1} \times \cdots \times R_{n} \times F_{1} \times \cdots \times F_{m}$ be a commutative ring with identity, where each $\left(R_{i}, \mathfrak{m}_{i}\right)$ is a local ring with $\mathfrak{m}_{i} \neq 0$ and each $F_{j}$ is a field, $n \geq 1$ and $m \geq 1$. Then $\xi_{R}$ is planar if and only if one of the following conditions hold:
(i) $R=R_{1} \times F_{1} \times F_{2}$ and $\mathfrak{m}_{1}$ is the only non-trivial ideal in $R_{1}$;
(ii) $R=R_{1} \times F_{1}$ and $\left\{\mathfrak{m}_{1}, \mathfrak{m}_{1}^{2}\right\}$ or $\left\{\mathfrak{m}_{1}, \mathfrak{m}_{1}^{2}, \mathfrak{m}_{1}^{3}\right\}$ is the set of all non-zero proper ideals of $R_{1}$.

Proof. Assume that $\xi_{R}$ is planar. If $m+n \geq 4$, then it can be shown as in the proof of Lemma 3 that $\xi_{R}$ contains $K_{3,3}$ as a subgraph and this is a contradiction. Hence $2 \leq m+n \leq 3$. If $n=2$ and $m=1$, then the subgraph induced by $\left\{\mathfrak{m}_{1} \times(0) \times F_{1}, R_{1} \times\right.$ $(0) \times F_{1}, R_{1} \times \mathfrak{m}_{2} \times F_{1}, \mathfrak{m}_{1} \times R_{2} \times F_{1}, R_{1} \times R_{2} \times(0), \mathfrak{m}_{1} \times R_{2} \times(0)$ is $K_{3,3}$ whose bipartite sets are $X=\left\{\mathfrak{m}_{1} \times(0) \times F_{1}, R_{1} \times(0) \times F_{1}, R_{1} \times \mathfrak{m}_{2} \times F_{1}\right\}$ and $Y=\left\{\mathfrak{m}_{1} \times R_{2} \times F_{1}, R_{1} \times\right.$ $\left.R_{2} \times(0), \mathfrak{m}_{1} \times R_{2} \times(0)\right\}$, which is a contradiction. Now suppose that $m=2$ and $n=1$.

If $R_{1}$ has a non-zero proper ideal $I$ different from $\mathfrak{m}_{1}$, then the subgraph induced by $\left\{\mathfrak{m}_{1} \times(0) \times F_{2}, R_{1} \times(0) \times F_{2}, \mathfrak{m}_{1} \times F_{1} \times F_{2}, R_{1} \times F_{1} \times(0), \mathfrak{m}_{1} \times F_{1} \times(0), I \times F_{1} \times(0)\right\}$ is $K_{3,3}$ whose bipartite sets are $X=\left\{\mathfrak{m}_{1} \times(0) \times F_{2}, R_{1} \times(0) \times F_{2}, \mathfrak{m}_{1} \times F_{1} \times F_{2}\right\}$ and $Y=\left\{R_{1} \times F_{1} \times(0), \mathfrak{m}_{1} \times F_{1} \times(0), I \times F_{1} \times(0)\right\}$, a contradiction. Hence $R_{1}$ has exactly one non-zero proper ideal and so $R$ satisfies in (i).
Now let $n=m=1$. If $\left|\mathbb{I}^{*}\left(R_{1}\right)\right| \geq 4$, then let $I, J, K$ be three distinct non-zero proper ideals of $R_{1}$ different $\mathfrak{m}_{1}$. Then the subgraph induced by $I \times F_{1}, J \times F_{1}, K \times F_{1}, \mathfrak{m}_{1} \times$ $F_{1}, \mathfrak{m}_{1} \times(0), R_{1} \times(0)$ is $K_{3,3}$ whose bipartite sets are $X=\left\{I \times F_{1}, J \times F_{1}, K \times F_{1}\right\}$ and $Y=\left\{\mathfrak{m}_{1} \times F_{1}, \mathfrak{m}_{1} \times(0), R_{1} \times(0)\right\}$, a contradiction. Hence $\left|\mathbb{I}^{*}\left(R_{1}\right)\right| \leq 3$. Using by Observation 1, as above, it can be shown that $\operatorname{dim}_{R_{1} / \mathfrak{m}_{1}} \mathfrak{m}_{1} / \mathfrak{m}_{1}^{2}=1$. Now we conclude from Theorem A that $R_{1}$ satisfies (ii).
Conversely, if $R$ satisfies (i), then $\left\{v_{1}=\mathfrak{m}_{1} \times F_{1} \times(0), v_{2}=\mathfrak{m}_{1} \times(0) \times F_{2}, v_{3}=\right.$ $\mathfrak{m}_{1} \times(0) \times(0), v_{4}=\mathfrak{m}_{1} \times F_{1} \times F_{2}, v_{5}=R_{1} \times(0) \times(0), v_{6}=(0) \times F_{1} \times F_{2}, v_{7}=$ $\left.(0) \times(0) \times F_{2}, v_{8}=(0) \times F_{1} \times(0), v_{9}=R_{1} \times(0) \times F_{2}, v_{10}=R_{1} \times F_{1} \times(0)\right\}$ is the vertex set of $\xi_{R}$ and so $\xi_{R}$ is the graph illustrated in Figure 4.
Now let $R$ satisfies (ii), then it is easy to verify that $\xi_{R}$ is one of the graphs illustrated in Figure 5 respectively with the vertex set $\left\{v_{1}=(0) \times F_{1}, v_{2}=R_{1} \times(0), v_{3}=\mathfrak{m}_{1} \times\right.$ $\left.F_{1}, v_{4}=\mathfrak{m}_{1}^{2} \times F_{1}, v_{5}=\mathfrak{m}_{1} \times(0), v_{6}=\mathfrak{m}_{1}^{2} \times(0)\right\}$ and $\left\{v_{1}=(0) \times F_{1}, v_{2}=R_{1} \times(0), v_{3}=\right.$ $\left.\mathfrak{m}_{1} \times F_{1}, v_{4}=\mathfrak{m}_{1}^{2} \times F_{1}, v_{5}=\mathfrak{m}_{1} \times(0), v_{6}=\mathfrak{m}_{1}^{3} \times(0), v_{7}=\mathfrak{m}_{1}^{2} \times(0), v_{8}=\mathfrak{m}_{1}^{3} \times F_{1}\right\}$.


Figure 4. $\quad \xi_{R_{1} \times F_{1} \times F_{2}}$ with $\left|\mathbb{I}^{*}\left(R_{1}\right)\right|=1$


Figure 5. $\quad \xi_{R_{1} \times F_{1}}$ with $2 \leq\left|\mathbb{I}^{*}\left(R_{1}\right)\right| \leq 3$

It is well known that every commutative Artinian ring $R$ isomorphic to the direct product of finitely many local rings. Using this, we have the following corollary which
gives a characterization for $\xi_{R}$ to be planar for a commutative non-local Artinian ring $R$.

Corollary 3. Let $R$ be a non-local Artinian ring. Then $\xi_{R}$ is planar if and only if one of the following conditions is fulfilled.
(a) $R=F_{1} \times F_{2}$ or $R=F_{1} \times F_{2} \times F_{3}$, where each $F_{i}$ is a field;
(b) $R=R_{1} \times F_{1} \times F_{2}$, where ( $R_{1}, \mathfrak{m}_{1}$ ) is a local ring, where $\mathfrak{m}_{1}$ is the only non-trivial ideal in $R_{1}$ and $F_{i}$ is a field for $i=1,2$;
(c) $R=R_{1} \times R_{2}$, where ( $R_{i}, \mathfrak{m}_{i}$ ) is a local ring for $i=1,2$ such that $\left|\mathbb{I}^{*}\left(R_{1}\right)\right|+\left|\mathbb{I}^{*}\left(R_{2}\right)\right| \leq 3$;
(d) $R=R_{1} \times F_{1}$, where $\left(R_{1}, \mathfrak{m}_{1}\right)$ is a local ring such that $\left\{\mathfrak{m}_{1}, \mathfrak{m}_{1}^{2}\right\}$ or $\left\{\mathfrak{m}_{1}, \mathfrak{m}_{1}^{2}, \mathfrak{m}_{1}^{3}\right\}$ is the set of all non-zero proper ideals of $R_{1}$ and $F_{1}$ is a field.

Now, we classify all Artinian rings whose annihilator-inclusion ideal graphs have genus one. Given a connected graph $G$, we say that a vertex $v$ of $G$ is a cut vertex if $G-v$ is disconnected. A block is a maximal connected subgraph of $G$ having no cut vertices. A result of Battle, Harary, Kodama, and Youngs states that the genus of a graph is the sum of the genus of its blocks [6]. For example, the graph in Figure 6 has two blocks, both isomorphic to $K_{3,3}$, and so has genus 2 .


Figure 6. A graph with two blocks, each isomorphic to $K_{3,3}$

Proposition 1. Let $R \simeq F_{1} \times F_{2} \times \cdots \times F_{n}(n \geq 3)$ where $F_{1}, \ldots, F_{n}$ are fields. Then $\lambda\left(\xi_{R}\right)=1$ if and only if $n=4$.

Proof. If $n=4$, then the vertex set of $\xi_{R}$ is $\left\{v_{1}=F_{1} \times F_{2} \times(0) \times(0), v_{2}=\right.$ $\left.F_{1} \times(0) \times F_{3} \times(0), v_{3}=F_{1} \times(0) \times(0) \times F_{4}\right), v_{4}=(0) \times F_{2} \times F_{3} \times(0), v_{5}=(0) \times F_{2} \times$ $(0) \times F_{5}, v_{6}=(0) \times(0) \times F_{3} \times F_{4}, v_{7}=F_{1} \times F_{2} \times F_{3} \times(0), v_{8}=F_{1} \times F_{2} \times(0) \times F_{4}, v_{9}=$ $F_{1} \times(0) \times F_{3} \times F_{4}, v_{10}=(0) \times F_{2} \times F_{3} \times F_{4}, v_{11}=F_{1} \times(0) \times(0) \times(0), v_{12}=$ $\left.(0) \times F_{2} \times(0) \times(0), v_{13}=(0) \times(0) \times F_{3} \times(0), v_{14}=(0) \times(0) \times(0) \times F_{4}\right\}$ and the graph $\xi_{R}$ is illustrated in Figure 7. This implies that $\lambda\left(\xi_{R}\right)=1$ and the proof is complete. Conversely, let $\lambda\left(\xi_{R}\right)=1$. It follows from Corollary 3 that $n \geq 4$. If $n \geq 5$, then $\xi_{R}$ contains $K_{3,7}$ whose bipartite sets are
$X=\left\{(0) \times F_{2} \times F_{3} \times \cdots \times F_{n},(0) \times(0) \times F_{3} \times \cdots \times F_{n}, F_{1} \times(0) \times F_{3} \times \cdots \times F_{n}\right\} \quad$ and
$Y=\left\{F_{1} \times F_{2} \times(0) \times \cdots \times(0), F_{1} \times F_{2} \times F_{3} \times(0) \times \cdots \times(0), F_{1} \times F_{2} \times(0) \times F_{4} \times\right.$ $(0) \times \cdots \times(0), F_{1} \times F_{2} \times(0) \times(0) \times F_{5} \times \cdots \times F_{n}, F_{1} \times F_{2} \times F_{3} \times(0) \times F_{5} \times \cdots \times$ $\left.F_{n}, F_{1} \times F_{2} \times(0) \times F_{4} \times \cdots \times F_{n}, F_{1} \times F_{2} \times F_{3} \times F_{4} \times(0) \times F_{6} \times \cdots \times F_{n}\right\}$ which leads to a contradiction by Theorem E. Thus $n=4$, and the proof is complete.


Figure 7. toroidal embedding of $\xi\left(F_{1} \times F_{2} \times F_{3} \times F_{4}\right)$

The following results are very useful in the subsequent sections.

Theorem 10. Let $R=R_{1} \times R_{2} \times \cdots \times R_{n}$ be a commutative ring with identity where each $\left(R_{i}, \mathfrak{m}_{i}\right)$ is a local ring with $\mathfrak{m}_{i} \neq 0$ and $n \geq 2$. Let $n_{i}$ be the nilpotency of $\mathfrak{m}_{i}$. Then $\lambda\left(\xi_{R}\right)=1$ if and only if $n=2$ and one of the following conditions hold:
(i) $n_{1}=2, n_{2}=3, \mathfrak{m}_{1}$ is the only non-trivial ideal in $R_{1}$ and $\mathfrak{m}_{2}, \mathfrak{m}_{2}^{2}, \mathfrak{m}_{2}^{3}$ are the only nontrivial ideals in $R_{2}$;
(ii) $n_{1}=3, n_{2}=3, \mathfrak{m}_{1}, \mathfrak{m}_{1}^{2}, \mathfrak{m}_{1}^{3}$ are the only non-trivial ideals in $R_{1}$ and $\mathfrak{m}_{2}$ is the only non-trivial ideal in $R_{2}$;
(iii) $n_{1}=n_{2}=2, \mathfrak{m}_{1}$ is the only non-trivial ideal in $R_{1}$ and $R_{2}$ has exactly three non-trivial ideal $I, J$ and $K$ different from $\mathfrak{m}_{2}$;
(iv) $n_{1}=n_{2}=2, \mathfrak{m}_{2}$ is the only non-trivial ideal in $R_{2}$ and $R_{1}$ has exactly three non-trivial ideal $I, J$ and $K$ different from $\mathfrak{m}_{1}$.

Proof. Assume that $\lambda\left(\xi_{R}\right)=1$. If $n \geq 3$, then $\xi_{R}$ contains $K_{3,7}$ whose bipartite sets are $X=\left\{R_{1} \times R_{2} \times \mathfrak{m}_{3} \times R_{4} \times \cdots \times R_{n}, R_{1} \times \mathfrak{m}_{2} \times R_{3} \times R_{4} \times \cdots \times R_{n}, R_{1} \times \mathfrak{m}_{2} \times\right.$ $\left.\mathfrak{m}_{3} \times R_{4} \times \cdots \times R_{n}\right\}$ and $Y=\left\{(0) \times R_{2} \times R_{3} \times R_{4} \times \cdots \times R_{n}, \mathfrak{m}_{1} \times R_{2} \times R_{3} \times R_{4} \times\right.$ $\cdots \times R_{n},(0) \times R_{2} \times R_{3} \times R_{4} \times \cdots \times R_{n}, \mathfrak{m}_{1} \times R_{2} \times \mathfrak{m}_{3} \times R_{4} \times \cdots \times R_{n},(0) \times \mathfrak{m}_{2} \times R_{3} \times$ $\left.R_{4} \times \cdots \times R_{n}, \mathfrak{m}_{1} \times \mathfrak{m}_{2} \times R_{3} \times R_{4} \times \cdots \times R_{n},(0) \times \mathfrak{m}_{2} \times \mathfrak{m}_{3} \times R_{4} \times \cdots \times R_{n}\right\}$ which is a contradiction. Hence $n=2$. It follows by Theorem 8, that $\left|\mathbb{I}^{*}\left(R_{1}\right)\right|+\left|\mathbb{I}^{*}\left(R_{2}\right)\right| \geq 4$.

Claim $1\left|\mathbb{I}^{*}\left(R_{1}\right)\right| \leq 3$ or $\left|\mathbb{I}^{*}\left(R_{2}\right)\right| \leq 3$.
Proof of claim 1. Let, to contrary, $\left|\mathbb{I}^{*}\left(R_{1}\right)\right| \geq 4$ and $\left|\mathbb{I}^{*}\left(R_{2}\right)\right| \geq 4$. Let $I_{1}, J_{1}$ and $I_{2}, J_{2}$ be non-trivial ideals in $R_{1}$ and $R_{2}$ different from $\mathfrak{m}_{1}$ and $\mathfrak{m}_{2}$ respectively. Then the subgraph induced by $\left\{u_{1}=R_{1} \times \mathfrak{m}_{2}, u_{2}=R_{1} \times J_{2}, u_{3}=R_{1} \times I_{2}, v_{1}=J_{1} \times \mathfrak{m}_{2}, v_{2}=\right.$ $\left.\mathfrak{m}_{1} \times R_{2}, v_{3}=I_{1} \times R_{2}, v_{4}=J_{1} \times R_{2}, v_{5}=(0) \times \mathfrak{m}_{2}, v_{6}=\mathfrak{m}_{1} \times \mathfrak{m}_{2}, v_{7}=I_{1} \times \mathfrak{m}_{2}\right\}$ contains $K_{3,7}$ whose bipartite sets are $X=\left\{u_{1}, u_{2}, u_{3}\right\}$ and $Y=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}\right\}$. By Theorem $\mathrm{E}, \lambda\left(\xi_{R}\right)>1$ which is a contradiction, which proves that claim.

Claim $2\left|\mathbb{I}^{*}\left(R_{1}\right)\right| \neq 2$ and $\left|\mathbb{I}^{*}\left(R_{2}\right)\right| \neq 2$.
Proof of claim 2. Let, to contrary, $\left|\mathbb{I}^{*}\left(R_{1}\right)\right|=2$ or $\left|\mathbb{I}^{*}\left(R_{2}\right)\right|=2$. Without loss of generality suppose that $\left|\mathbb{I}^{*}\left(R_{1}\right)\right|=2$. Then $\left|\mathbb{I}^{*}\left(R_{2}\right)\right| \geq 2$. Let $\left|\mathbb{I}^{*}\left(R_{2}\right)\right|=3$. If $\operatorname{dim} \mathfrak{m}_{i} / \mathfrak{m}_{i}^{2} \geq 2$, for $i=1,2$, then it follows from Observation 1 that there are distinct non-trivial ideals $I, J, K$ of $R_{2}$ such that $I, J, K \notin\left\{\mathfrak{m}_{i}^{j} \mid j \in \mathbb{N}\right\}$. By Nakayama's lemma, we get $\mathfrak{m}_{i} \neq \mathfrak{m}_{i}^{2}$. This implies that $\left\{I, J, K, \mathfrak{m}_{i}, \mathfrak{m}_{i}^{2}\right\} \subseteq \mathbb{I}^{*}\left(R_{i}\right)$ and so, $\left|\mathbb{I}^{*}\left(R_{i}\right)\right| \geq 5$ for $i=1,2$. This is in contradiction to the assumption that $\left|\mathbb{I}^{*}\left(R_{1}\right)\right|=2$ or $\left|\mathbb{I}^{*}\left(R_{2}\right)\right|=$ 3. Therefore, $\operatorname{dim} \mathfrak{m}_{i} / \mathfrak{m}_{i}^{2}=1$ for $i=1,2$. Then it follows from Theorem A that $\mathbb{I}^{*}\left(R_{1}\right)=\left\{\mathfrak{m}_{1}, \mathfrak{m}_{1}^{2}\right\}$ and $\mathbb{I}^{*}\left(R_{2}\right)=\left\{\mathfrak{m}_{2}, \mathfrak{m}_{2}^{2}, \mathfrak{m}_{2}^{3}\right\}$. Then the subgraph induced by $\left\{u_{1}=\right.$ $\mathfrak{m}_{1} \times \mathfrak{m}_{2}, u_{2}=\mathfrak{m}_{1} \times R_{2}, u_{3}=R_{1} \times \mathfrak{m}_{2}, v_{1}=\mathfrak{m}_{1}^{2} \times \mathfrak{m}_{2}^{3}, v_{2}=\mathfrak{m}_{1}^{2} \times R_{2}, v_{3}=R_{1} \times \mathfrak{m}_{2}^{2}, v_{4}=$ $\left.R_{1} \times \mathfrak{m}_{2}^{3}, v_{5}=\mathfrak{m}_{1} \times \mathfrak{m}_{2}^{3}, v_{6}=\mathfrak{m}_{1} \times \mathfrak{m}_{2}^{2}, v_{7}=\mathfrak{m}_{1}^{2} \times \mathfrak{m}_{2}^{2}, v_{8}=\mathfrak{m}_{1}^{2} \times \mathfrak{m}_{2}\right\}$ contains $K_{3,8}$ whose bipartite sets are $X=\left\{u_{1}, u_{2}, u_{3}\right\}$ and $Y=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}\right\}$. Hence by Theorem E, $\lambda\left(\xi_{R}\right)>1$, a contradiction. Let $\left|\mathbb{I}^{*}\left(R_{2}\right)\right| \geq 4$. Consider $I, J$ and $K$ are non-trivial ideals different from $\mathfrak{m}_{2}$ in $R_{2}$, Then the subgraph induced by $\left\{u_{1}=R_{1} \times I, u_{2}=R_{1} \times J, u_{3}=R_{1} \times K, u_{4}=R_{1} \times \mathfrak{m}_{2}, v_{1}=(0) \times \mathfrak{m}_{2}, v_{2}=\right.$ $\left.\mathfrak{m}_{1} \times \mathfrak{m}_{2}, v_{3}=\mathfrak{m}_{1}^{2} \times \mathfrak{m}_{2}, v_{4}=(0) \times R_{2}, v_{5}=\mathfrak{m}_{1}^{2} \times R_{2}\right\}$ contains $K_{4,5}$ whose bipartite sets are $X=\left\{u_{1}, u_{2}, u_{3}\right\}$ and $Y=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$. Hence by Theorem E, $\lambda\left(\xi_{R}\right)>1$, a contradiction.
Now let $\left|\mathbb{I}^{*}\left(R_{2}\right)\right|=2$, then it can be shown as in Claim 2 that $\mathfrak{m}_{1}, \mathfrak{m}_{1}^{2}$ and $\mathfrak{m}_{2}, \mathfrak{m}_{2}^{2}$ are the only non-trivial ideals in $R_{1}$ and $R_{2}$ respectively. Consider the subgraph $G$ of $\xi_{R}$ induced by the non-trivial ideals $u_{1}=\mathfrak{m}_{1} \times R_{2}, u_{2}=R_{1} \times \mathfrak{m}_{2}, u_{3}=\mathfrak{m}_{1} \times$ $\mathfrak{m}_{2}, v_{1}=\mathfrak{m}_{1}^{2} \times \mathfrak{m}_{2}, v_{2}=\mathfrak{m}_{1}^{2} \times R_{2}, v_{3}=R_{1} \times \mathfrak{m}_{2}^{2}, v_{4}=\mathfrak{m}_{1}^{2} \times \mathfrak{m}_{2}^{2}, v_{5}=\mathfrak{m}_{1} \times \mathfrak{m}_{2}^{2}, x_{1}=$ $(0) \times R_{2}, x_{2}=R_{1} \times(0), x_{3}=\mathfrak{m}_{1} \times(0), x_{4}=(0) \times \mathfrak{m}_{2}$. Let $G^{\prime}=\left(G-\left\{x_{3}, x_{4}\right\}\right)-$ $\left\{u_{1} u_{2}, u_{1} u_{3}, u_{2} u_{3}, v_{1} v_{3}, v_{1} v_{5}, v_{2} v_{3}, v_{2} v_{5}\right\}$ and $G^{\prime \prime}=G^{\prime}-\left\{x_{1}, x_{2}\right\}$. Then $G^{\prime \prime} \cong K_{3,5}$ and so $\lambda\left(G^{\prime \prime}\right)=1$. Since $\lambda\left(G^{\prime \prime}\right) \leq \lambda\left(G^{\prime}\right) \leq \lambda(G)$ and $\lambda(G)=1, \lambda\left(G^{\prime}\right)=1$. Note that $|V(G)|=10$ and $|E(G)|=20$. Then by Euler's formula, there are 10 faces when drawing $G^{\prime}$ on a torus. Fix a representation of $G^{\prime}$ and let $\left\{F_{1}^{\prime}, \ldots, F_{10}^{\prime}\right\}$ be of faces of $G^{\prime}$ corresponding to the representation. Let $\left\{F_{1}^{\prime \prime}, \ldots, F_{r}^{\prime \prime}\right\}$ be the set of faces of $G^{\prime \prime}$ obtained by deleting $x_{1}, x_{2}$ and all the edges incident with $x_{1}, x_{2}$ from the representation of $G^{\prime}$. Notice that $G^{\prime \prime} \cong K_{3,5}$. From the fact that $n-m+f=$ $2-2 g, K_{3,5}$ has 7 faces, six with 4 boundary edges and one with 6 boundary edges. So $r=7$. Moreover, for every $i$, each boundary of $F^{\prime \prime}$ cannot have consecutive repetition of a single edge. Therefore in $K_{3,5}$, the only way to have a closed walk of length 6 without consecutive repetition of single edge is to have 6 -cycle. Then in $K_{3,5}$, all faces boundaries are 4 -cycle but with one 6 -cycle. We may assume that the
boundary of $F_{7}^{\prime \prime}$ is 6 . Now $\left\{F_{1}^{\prime}, \ldots, F_{10}^{\prime}\right\}$ can be recovered by inserting $x_{1}, x_{2}$ onto the representation corresponds to $\left\{F_{1}^{\prime \prime}, \ldots, F_{7}^{\prime \prime}\right\}$. Note that $x_{1} x_{2} \in E\left(G^{\prime}\right)$. Hence $x_{1}, x_{2}$


## Figure 8.

should be inserted to the same face say $F_{m}^{\prime \prime}$ of $G^{\prime \prime}$ to avoid crossing. Also note that $x_{1} v_{3}, x_{1} u_{2}, x_{2} u_{1}, x_{2} v_{2} \in E\left(G^{\prime}\right)$ and therefore $v_{3}, u_{2}, u_{1}, v_{2}$ are the boundary vertices of $F_{m}^{\prime \prime}$. Consider the following edges of $G: e_{1}=x_{1} v_{3}, e_{2}=x_{1} u_{2}, e_{3}=x_{2} u_{1}, e_{4}=$ $x_{2} v_{2}, e_{5}=x_{1} x_{2}, e_{6}=v_{3} u_{1}, e_{7}=v_{2} u_{2}$. After inserting $x_{1}, x_{2}$ and $e_{i}, i=1$ to 5 into the face $F_{m}^{\prime \prime}, m \neq 7$, we obtain Fig 8 (a) as above. Then the edge $e_{6}$ can be inserted into the face $F_{7}^{\prime \prime}$. But there is no other face with $v_{2}$ and $u_{2}$ as the boundary vertices and so there is no way to insert the edge $e_{7}$ without crossing in the embedding if $G$. After inserting $x_{1}, x_{2}$ and $e_{i}, i=1$ to 5 into the face $F_{7}^{\prime \prime}$, we obtain Fig 8 (b) as above. Then the edge $e_{5}$ can be inserted in to the face $F_{m}^{\prime \prime}$ where $m \neq 7$. But there is no other face with $v_{2}$ and $u_{2}$ as the boundary vertices and so there is no way to insert the edge $e_{7}$ without crossing in the embedding of $G$. Hence we conclude that $\lambda\left(\xi_{R}\right)>1$, a contraction.
Now without loss of generality, suppose that $\left|\mathbb{I}^{*}\left(R_{1}\right)\right| \leq 3$. Then $\left|\mathbb{I}^{*}\left(R_{1}\right)\right|=1$ or $\left|\mathbb{I}^{*}\left(R_{1}\right)\right|=3$. We consider two cases.

Case $1\left|\mathbb{I}^{*}\left(R_{1}\right)\right|=1$. If $\left|\mathbb{I}^{*}\left(R_{2}\right)\right| \geq 5$, then let $I, J, K$ and $L$ are non-trivial ideals different from $\mathfrak{m}_{2}$ in $R_{2}$. Then the subgraph induced by $\left\{u_{1}=R_{1} \times I, u_{2}=R_{1} \times\right.$ $J, u_{3}=R_{1} \times K, u_{4}=R_{1} \times L, v_{1}=(0) \times \mathfrak{m}_{2}, v_{2}=R_{1} \times \mathfrak{m}_{2}, v_{3}=\mathfrak{m}_{1} \times \mathfrak{m}_{2}, v_{4}=$ $\left.\mathfrak{m}_{1} \times R_{2}, v_{5}=(0) \times R_{2}\right\}$ contains $K_{4,5}$ whose bipartite sets are $X=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ and $Y=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$, By Theorem $\mathrm{E}, \gamma\left(\xi_{R}\right)>1$ which is a contradiction. Therefore $3 \leq\left|\mathbb{I}^{*}\left(R_{2}\right)\right| \leq 4$.
Let $\left|\mathbb{I}^{*}\left(R_{2}\right)\right|=4$. We claim that $\mathfrak{m}_{2}^{2}=0$. Suppose to the contrary that $\mathfrak{m}_{2}^{2} \neq 0$. By Nakayama's lemma $\mathfrak{m}_{2} \neq \mathfrak{m}_{2}^{2}$. If $\operatorname{dim}\left(\mathfrak{m}_{2} / \mathfrak{m}_{2}^{2}\right) \geq 2$, then it follows from Observation 1 that there are distinct non-trivial ideals $I, J, K$ of $R_{2}$ such that $I, J, K \notin\left\{\mathfrak{m}^{i} \mid i \in \mathbb{N}\right\}$. This implies that $\left\{I, J, K \mathfrak{m}_{2}, \mathfrak{m}_{2}^{2}\right\} \subseteq \mathbb{I}^{*}\left(R_{2}\right)$ and so $\left|\mathbb{I}^{*}\left(R_{2}\right)\right| \geq 5$, a contradiction with the assumption that $\left|\mathbb{I}^{*}\left(R_{2}\right)\right|=4$. Therefore, $\operatorname{dim}\left(\mathfrak{m}_{2} / \mathfrak{m}_{2}^{2}\right)=1$. Then it follows from

Theorem A that $\mathbb{I}^{*}\left(R_{2}\right)=\left\{\mathfrak{m}^{i} \mid i \in\{1,2,3,4\}\right\}$. Then the subgraph induced by $\left\{u_{1}=\mathfrak{m}_{1} \times \mathfrak{m}_{2}^{2}, u_{2}=R_{1} \times \mathfrak{m}_{2}^{2}, u_{3}=R_{1} \times m_{2}^{3}, u_{4}=R_{1} \times \mathfrak{m}_{2}^{4}, v_{1}=(0) \times \mathfrak{m}_{2}, v_{2}=\right.$ $\left.\mathfrak{m}_{1} \times m_{2}, v_{3}=\mathfrak{m}_{1} \times R_{2}, v_{4}=(0) \times R_{2}, v_{5}=R_{1} \times \mathfrak{m}_{2}, w_{1}=R_{1} \times \mathfrak{m}_{2}^{3}, w_{2}=R_{1} \times \mathfrak{m}_{2}^{2}\right\}$ contains a subdivision of $K_{4,5}$ (see Figure 9). By Theorem E, $\gamma\left(\xi_{R}\right)>1$ which is a contradiction. Then $\mathfrak{m}_{2}^{2}=0$ and $R_{2}$ has exactly three non-trivial ideal $I, J$ and $K$ different from $\mathfrak{m}_{2}$ and so $R$ satisfies in (iv). Moreover if $\left|\mathbb{I}^{*}\left(R_{2}\right)\right|=3$, then $R$ satisfies in (i), as desired.


Figure 9. A subdivision of $K_{4,5}$

Case $2\left|\mathbb{I}^{*}\left(R_{1}\right)\right|=3$. If $\left|\mathbb{I}^{*}\left(R_{2}\right)\right| \geq 3$, then let $I$ and $J$ are non-trivial ideals of $R_{2}$ different from $\mathfrak{m}_{2}$. Then the sub graph induced by $\left\{u_{1}=R_{1} \times \mathfrak{m}_{2}, u_{2}=R_{1} \times I, u_{3}=\right.$ $R_{1} \times J, v_{1}=\mathfrak{m}_{1}^{2} \times \mathfrak{m}_{2}, v_{2}=\mathfrak{m}_{1}^{3} \times \mathfrak{m}_{2}, v_{3}=\mathfrak{m}_{1} \times \mathfrak{m}_{2}, v_{4}=\mathfrak{m}_{1}^{2} \times R_{2}, v_{5}=\mathfrak{m}_{1} \times R_{2}, v_{6}=$ $\left.\mathfrak{m}_{1}^{3} \times R_{2}, v_{7}=(0) \times R_{2}\right\}$ contains $K_{3,7}$ whose bipartite sets are $X=\left\{u_{1}, u_{2}, u_{3}\right\}$ and $Y=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}\right\}$. By Theorem $\mathrm{E} \lambda\left(\xi_{R}\right)>1$, a contradiction. Hence $\left|\mathbb{I}^{*}\left(R_{2}\right)\right|=1$. Therefore $R$ satisfies (ii).
Conversely if $R$ satisfies (i) or (iii), then it is easy to verify that $\xi_{R}$ is the graphs illustrated in Figures 10 and Figure 11 with vertex sets $\left\{v_{1}=R_{1} \times \mathfrak{m}_{2}, v_{2}=\mathfrak{m}_{1} \times\right.$ $\mathfrak{m}_{2}, v_{3}=\mathfrak{m}_{1} \times \mathfrak{m}_{2}^{2}, v_{4}=\mathfrak{m}_{1} \times \mathfrak{m}_{2}^{3}, v_{5}=\mathfrak{m}_{1} \times R_{2}, v_{6}=R_{1} \times \mathfrak{m}_{2}^{2}, v_{7}=(0) \times \mathfrak{m}_{2}, v_{8}=$ $\left.R_{1} \times \mathfrak{m}_{2}^{3}, v_{9}=(0) \times R_{2}, v_{10}=R_{1} \times(0), v_{11}=(0) \times \mathfrak{m}_{2}^{2}, v_{12}=\mathfrak{m}_{1} \times(0), v_{13}=(0) \times \mathfrak{m}_{2}^{3}\right\}$ and $\left\{v_{1}=R_{1} \times \mathfrak{m}_{2}, v_{2}=R_{1} \times J, v_{3}=R_{1} \times I, v_{4}=R_{1} \times K, v_{5}=\mathfrak{m}_{1} \times R_{1}, v_{6}=\right.$ $\mathfrak{m}_{1} \times I, v_{7}=\mathfrak{m}_{1} \times K, v_{8}=\mathfrak{m}_{1} \times J, v_{9}=\mathfrak{m}_{1} \times \mathfrak{m}_{2}, v_{10}=R_{1} \times(0), v_{11}=(0) \times R_{2}, v_{12}=$ $\left.(0) \times \mathfrak{m}_{2}, v_{13}=(0) \times I, v_{14}=(0) \times K, v_{15}=(0) \times J, v_{16}=\mathfrak{m}_{1} \times(0)\right\}$ respectively.

The following result is very useful in the subsequent sections.

Theorem 11. Let $R=R_{1} \times \cdots \times R_{n} \times F_{1} \times \cdots \times F_{m}$ be a commutative ring with identity, where each $\left(R_{i}, \mathfrak{m}_{i}\right)$ is a local ring with $\mathfrak{m}_{i} \neq 0$ and each $F_{j}$ is a field, $n \geq 1, m \geq 1$ and $n+m \geq 3$. Then $\lambda\left(\xi_{R}\right)=1$ if and only if one of the following conditions hold:
(i) $R=R_{1} \times F_{1} \times F_{2}$ and $\mathfrak{m}_{1}$ and $\mathfrak{m}_{1}^{2}$ are the only non-trivial ideals in $R_{1}$;
(ii) $R=R_{1} \times R_{2} \times F_{1}$ and $\mathfrak{m}_{1}$ and $\mathfrak{m}_{2}$ are the only non-trivial ideals in $R_{1}$ and $R_{2}$ respectively.

Proof. Let $\lambda\left(\xi_{R}\right)=1$. If $n+m \geq 5$, then an argument similar to that describe in the proof of 1 shows that $\xi_{R}$ contains $K_{3,7}$ which is a contradiction. Thus $m+n \leq 4$.


Figure 10. Torus embedding of $\xi_{R_{1} \times R_{2}}$ with $n_{1}=2, n_{2}=4$


Figure 11. Torus embedding of $\xi_{R_{1} \times R_{2}}$ with $\mathfrak{m}_{1}$ is the only non-trivial ideals in $R_{1}$ and $I, J, K$ are the only non-trivial ideal in $R_{2}$ different from $\mathfrak{m}_{2}$

Let $n+m=4$ and assume without loss of generality, that $n=1$ and $m=3$. Then $\xi_{R}$ contains a subdivision of $K_{4,5}$ whose vertices are $u_{1}=(0) \times F_{1} \times F_{2} \times F_{3}, u_{2}=$ $\mathfrak{m}_{1} \times F_{1} \times F_{2} \times F_{3}, u_{3}=R_{1} \times F_{1} \times F_{2} \times(0), u_{4}=\mathfrak{m}_{1} \times F_{1} \times F_{2} \times(0), v_{1}=\mathfrak{m}_{1} \times F_{1} \times$ $(0) \times F_{3}, v_{2}=\mathfrak{m}_{1} \times(0) \times F_{2} \times F_{3}, v_{3}=R_{1} \times F_{1} \times(0) \times F_{3}, v_{4}=R_{1} \times(0) \times F_{2} \times F_{3}, v_{5}=$ $\left.R_{1} \times(0) \times(0) \times F_{3}, w_{1}=R_{1} \times F_{1} \times F_{2} \times(0), w_{2}=R_{1} \times F_{1} \times(0) \times(0)\right\}$ (see Figure 9 ) implying that $\lambda\left(\xi_{R}\right) \geq 2$ by Theorem E, a contradiction.
Hence $n+m \leq 3$. Consider two cases.
Case $1 \quad n=1, m=2$.
If $R_{1}$ has at least three ideals $I, J$ and $K$ different from $\mathfrak{m}_{1}$, then $\xi_{R}$ contains $K_{3,7}$
whose bipartite sets are $X=\left\{\mathfrak{m}_{1} \times(0) \times F_{2}, R_{1} \times(0) \times F_{2}, \mathfrak{m}_{1} \times F_{1} \times F_{2}\right\}$ and $Y=$ $\left\{R_{1} \times F_{1} \times(0), \mathfrak{m}_{1} \times F_{1} \times(0), I \times F_{1} \times(0), J \times F_{1} \times(0), K \times F_{1} \times(0), I \times F_{1} \times F_{2}, J \times F_{1} \times F_{2}\right\}$ which is a contradiction. If $R_{1}$ has exactly three non-trivial ideal, then it can be shown as in the proof of Theorem 10 that $\mathfrak{m}_{1}, \mathfrak{m}_{1}^{2}, \mathfrak{m}_{1}^{3}$ are the only non-trivial ideals in $R_{1}$ and $\mathfrak{m}_{1}^{4}=(0)$. Consider $S=\left\{u_{1}=R_{1} \times(0) \times(0), u_{2}=R_{1} \times(0) \times F_{2}, u_{3}=\mathfrak{m}_{1} \times(0) \times\right.$ (0), $v_{1}=\mathfrak{m}_{1}^{2} \times F_{1} \times F_{2}, v_{2}=\mathfrak{m}_{1} \times F_{1} \times F_{2}, v_{3}=\mathfrak{m}_{1}^{3} \times F_{1} \times F_{2}, w_{1}=\mathfrak{m}_{1} \times(0) \times F_{2}, w_{2}=$ $\left.\mathfrak{m}_{1}^{2} \times(0) \times F_{2}, z_{1}=\mathfrak{m}_{1} \times F_{1} \times(0), z_{2}=R_{1} \times F_{1} \times(0), z_{3}=\mathfrak{m}_{1}^{2} \times F_{1} \times(0)\right\}$. Then the subgraph induced by $S$ in $\xi_{R}$ contains two block, both isomorphic to $K_{3,3}$ as in Figure 12. Then $\lambda(S)=\lambda\left(K_{3,3}\right)+\lambda\left(K_{3,3}\right) \geq 2$ and it implies that $\lambda\left(\xi_{R}\right) \geq 2$, a contraction. Thus $R_{1}$ has at most two non-trivial ideal. We conclude from Theorem 11 (part i) that $R_{1}$ has exactly two non-trivial ideal and so $R$ satisfies (i).


Figure 12. $\quad \mathrm{H}$

Case $2 n=2, m=1$. If $R_{i}$ has an ideal $I$ different from $\mathfrak{m}_{i}$ for some $i \in\{1,2\}$, say $i=1$, then $\xi_{R}$ contains $K_{4,5}$ whose bipartite sets are $X=\left\{R_{1} \times R_{2} \times(0), \mathfrak{m}_{1} \times R_{2} \times\right.$ (0), $\left.R_{1} \times \mathfrak{m}_{2} \times(0), \mathfrak{m}_{1} \times \mathfrak{m}_{2} \times(0)\right\}$ and $Y=\left\{\mathfrak{m}_{1} \times R_{2} \times F_{1}, R_{1} \times \mathfrak{m}_{2} \times F_{1}, \mathfrak{m}_{1} \times \mathfrak{m}_{2} \times\right.$ $\left.F_{1}, I \times R_{2} \times F_{1}, I \times \mathfrak{m}_{2} \times F_{1}\right\}$ that leads to a contradiction by Theorem E. Hence $R$ satisfies (ii).
Conversely, if $R$ satisfies (i), then the vertex set of $\xi_{R}$ is $\left\{v_{1}=\mathfrak{m}_{1} \times F_{1} \times F_{2}, v_{2}=\right.$ $\mathfrak{m}_{1}^{2} \times F_{1} \times F_{2}, v_{3}=R_{1} \times(0) \times F_{2}, v_{4}=\mathfrak{m}_{1} \times(0) \times F_{2}, v_{5}=R_{1} \times F_{1} \times(0), v_{6}=\mathfrak{m}_{1} \times F_{1} \times$ (0), $v_{7}=\mathfrak{m}_{1} \times(0) \times(0), v_{8}=R_{1} \times(0) \times(0), v_{9}=\mathfrak{m}_{1}^{2} \times(0) \times F_{2}, v_{10}=\mathfrak{m}_{1}^{2} \times F_{1} \times(0), v_{11}=$ $\left.\mathfrak{m}_{1}^{2} \times(0) \times(0), v_{12}=(0) \times F_{1} \times F_{2}, v_{13}=(0) \times(0) \times F_{2}, v_{14}=(0) \times F_{1} \times(0)\right\}$ and Figure 13 implies that $\lambda\left(\xi_{R}\right)=1$.
If $R$ satisfies (ii), then the vertex set of $\xi_{R}$ is $V\left(\xi_{R}\right)=\left\{v_{1}=\mathfrak{m}_{1} \times R_{2} \times F_{1}, v_{2}=\right.$ $R_{1} \times \mathfrak{m}_{2} \times F_{1}, v_{3}=R_{1} \times R_{2} \times(0), v_{4}=(0) \times R_{2} \times F_{1}, v_{5}=R_{1} \times(0) \times F_{1}, v_{6}=$ $\mathfrak{m}_{1} \times(0) \times F_{1}, v_{7}=(0) \times \mathfrak{m}_{2} \times F_{1}, v_{8}=\mathfrak{m}_{1} \times \mathfrak{m}_{2} \times(0), v_{9}=\mathfrak{m}_{1} \times \mathfrak{m}_{2} \times F_{1}, v_{10}=$ $R_{1} \times \mathfrak{m}_{2} \times(0), v_{11}=\mathfrak{m}_{1} \times R_{2} \times(0), v_{12}=\mathfrak{m}_{1} \times(0) \times(0), v_{13}=(0) \times \mathfrak{m}_{2} \times(0), v_{14}=$ $\left.(0) \times(0) \times F_{1}, v_{15}=(0) \times R_{2} \times(0), v_{16}=R_{1} \times(0) \times(0)\right\}$ and it follows from Figure 14 that $\lambda\left(\xi_{R}\right)=1$ and the proof is the complete.

We have the following corollary which gives a characterization for $\xi_{R}$ to be has genus one for a commutative non-local Artinian ring $R$ with $R \not \not F F \times R_{1}$.

Corollary 4. Let $R$ be a non-local Artinian ring and $R \not \approx F \times R_{1}$ where $F$ is a field and $R_{1}$ is a ring. Then $\lambda\left(\xi_{R}\right)=1$ if and only if one of the following conditions is fulfilled:
(a) $R=F_{1} \times F_{2} \times F_{3} \times F_{4}$, where $F_{i}$ is a field for $i=1,2,3,4$.


Figure 13. $\xi\left(F_{1} \times F_{2} \times R_{3}\right)$


Figure 14. $\xi\left(F_{1} \times R_{2} \times R_{3}\right)$
(b) $R=F_{1} \times F_{2} \times R_{3}$, where $F_{i}$ is a field for $i=1,2$ and $\left|\mathbb{I}\left(R_{3}\right)\right|=\left\{\mathfrak{m}_{3}, \mathfrak{m}_{3}^{2}\right\}$.
(c) $R=F_{1} \times R_{2} \times R_{3}$, where $F_{1}$ is a field and $\left|\mathbb{I}\left(R_{1}\right)\right|=\left|\mathbb{I}\left(R_{2}\right)\right|=1$.

## References

[1] S. Akbari, A. Alilou, J. Amjadi, and S.M. Sheikholeslami, The co-annihilating ideal graphs of commutative rings, Canadian Math. Bull. 60 (2017), 3-11.
[2] A. Alilou and J. Amjadi, The sum-annihilating essential ideal graph of a commutative ring, Commun. Comb. Optim. 1 (2016), no. 2, 117-135.
[3] J. Amjadi, The essential ideal graph of a commutative ring, Asian. Eur. J. Math. 11 (2018), no. 4, ID: 1850058.
[4] D.F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), no. 2, 434-447.
[5] D.F. Anderson and S.B. Mulay, On the diameter and girth of a zero-divisor graph, J. Pure Appl. Algebra 210 (2007), no. 2, 543-550.
[6] J. Battle, F. Harary, and Y. Kodama, Additivity of the genus of a graph, Bull. Amer. Math. Soc. 68 (1962), no. 6, 565-568.
[7] M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative rings II, J. Algebra Appl. 10 (2001), no. 4, 741-753.
[8] _ The annihilating-ideal graph of commutative rings I, J. Algebra Appl. 10 (2011), no. 4, 727-739.
[9] K. Kuratowski, Sur le problèm des courbes gauches en topologie, Fund. Math. 15 (1930), 271-283.
[10] H.R. Maimani, M. Salimi, A. Sattari, and S. Yassemi, Comaximal graph of commutative rings, J. Algebra 319 (2008), no. 4, 1801-1808.
[11] G. Ringel, Das gescblecht des vollstandingen paaren graphen, Abh. Math. Sem. Univ. Hamburg 28 (1965), 139-150.
[12] G. Ringel and J.W.T. Youngs, Solution of the Heawood map-coloring problem, Proc. Nat. Acad. Sci. U.S.A. 60 (1968), 438-445.
[13] K. Selvakumar and Subbulakshmi, Classification of rings with toroidal annihilating ideal graph, Commun. Comb. Optim. 3 (2018), no. 2, 1-27.
[14] K. Selvakumar, P. Subbulakshmi, and J. Amjadi, On the genus of the graph associated to a commutative ring, Discrete Math. Algorithms Appl. 9 (2017), no. 5, 1750058 (11 pages).
[15] S. Visweswaran and P. Sarman, On the planarity of a graph associated to a commutative ring and on the planarity of its complement, São Paulo J. Math. Sci. 11 (2017), no. 2, 405-429.
[16] D.B. West, Introduction to Graph Theory, Prentice Hall, USA, 2001.


[^0]:    * Corresponding author

