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Abstract: Let R be a commutative ring with non-zero identity. The annihilator-
inclusion ideal graph of R, denoted by ξR, is a graph whose vertex set is the of all

non-zero proper ideals of R and two distinct vertices I and J are adjacent if and only

if either Ann(I) ⊆ J or Ann(J) ⊆ I. The purpose of this paper is to provide some
basic properties of the graph ξR. In particular, shows that ξR is a connected graph

with diameter at most three, and has girth 3 or ∞. Furthermore, is determined all

isomorphic classes of non-local Artinian rings whose annihilator-inclusion ideal graphs
have genus zero or one.
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1. Introduction

Let G be a simple graph with the vertex set V (G) and edge set E(G). For every vertex

v ∈ V (G), the degree of a vertex v is defined as dG(v) = |{u ∈ V (G) | uv ∈ E(G)}|.
The distance dG(u, v) between two vertices u and v in a connected graph G is the

length of the shortest uv-path in G. The greatest distance between any pair of vertices

u and v in G is the diameter of G and denoted by diam(G). If a graph G contains one

vertex adjacent to all other vertices and with no extra edge, then G is called a star
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232 The annihilator-inclusion ideal graph of a commutative ring

graph. The girth of a graph G, denoted by g(G), is the length of its shortest cycle.

The girth of a graph with no cycle is defined ∞.

A simple graph is said to be planar if it can be drawn in the plane or on the surface

of a sphere. It is known that K3,3 and K5 are not planar and can be drawn without

crossings on the surface of a torus. The torus can be thought of as a sphere with

one handle. More generally, a surface is said to be of genus g if it is topologically

homeomorphic to a sphere with g handles. Thus the genus of a sphere is 0 and the

one of torus is one. A graph can be drawn without crossings on the surface of genus

g, but not on one of genus g − 1, is called a graph of genus g. We write λ(G) for

the genus of a graph G. Therefore λ(K3,3) = λ(K5) = 1. A well-known fact is that

if G is a connected graph of genus g, with n vertices, m edges and f faces, then

n − m + f = 2 − 2g. For terminology and notation not defined here, the reader is

referred to [16].

The study of algebraic structures, using the properties of graphs, has become an

exciting research topic in the last two decades, leading to many interesting results

and questions. In ring theory, the structure of a ring R is closely tied to behavior

ideals more than elements, and so it is deserving to define a graph with vertex set

as ideals instead of elements. There are many papers on assigning a graph to a ring.

The old one is the zero divisor graph Γ(R) (see for instance [4, 5]). The vertex set of

this graph is Z(R) \ (0) and two distinct vertices v1 and v2 are adjacent if and only if

v1v2 = 0 and some of them to mention annihilating [7, 8], co-annihilating [1], essential

ideal graph [2, 3] and co-maximal graph [10] of commutative rings. Several authors

studied about various properties of these graphs including diameter, planarity and

genus [13–15].

Here we propose a new graph associated to a commutative ring which we call

annihilator-inclusion ideal graph. The annihilator-inclusion ideal graph, denoted by

ξR, is the (undirected) graph with vertices I∗(R), and two distinct vertices I and J

are adjacent if and only if either Ann(I) ⊆ J or Ann(J) ⊆ I.

Throughout this paper, all rings are assumed to be commutative rings with identity

that are not integral domains. We denote the collection of all non-zero proper ideals

of R by I∗(R). If X is either an element or a subset of R, then the annihilator of X is

defined as Ann(X) = {r ∈ R | rX = 0}. By Max(R) we denote the set of all maximal

ideals. Furthermore, a ring R is a local ring if R has a unique maximal ideal.

In this paper we initiate the study of the annihilator-inclusion ideal graph and

we investigate its basic properties. In particular, we characterize all rings whose

annihilator-inclusion ideal graphs have genus 0 or 1.

We make use of the following results.

Observation 1. Let (R,m) be a local ring. If dim(m/m2) ≥ 2, then R has at least three
distinct non-trivial ideals I, J and K such that I, J,K 6= mi for every i.

Proof. By hypothesis, dim(m/m2) ≥ 2. Hence, it is possible to find x1, x2 ∈ m

such that {x1 + m2, x2 + m2} is linearly independent over R/m. Then the ideals
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I = Rx1, J = Rx2, and K = R(x1 + x2) are distinct non-trivial ideals of R such that

I, J,K /∈ {mi | i ∈ N}.

Observation 2. Let R be a ring and m be a maximal ideal in R. If Ann(m) 6= 0, then
m = Z(Ann(m)).

Proof. Since mAnn(m) = 0, m ⊆ Z(Ann(m)). Now, if x is an arbitrary element

in Z(Ann(m)), then there is a nonzero element y ∈ Ann(m) such that xy = 0. If

x /∈ m, then there exists z ∈ m such that rx+ z = 1, for some r ∈ R, and so y = 0, a

contradiction. Thus Z(Ann(m)) ⊆ m and so, m = Z(Ann(m)).

Theorem A. ([14] Lemma 2.6) Let (R,m) be a local ring. If dim( m
m2 ) = 1 and for some

positive integer t, mt = (0), then the set of all non-trivial ideals of R is the set {mi | 1 ≤ i < t}.

Observation 3. Let R be a ring. Then the subgraph ξR[Max(R)] is a clique.

Proof. If R is local we are done. Assume R is not local. If m1 and m2 are two distinct

maximal ideals of R, then it follows from m1Ann(m1) = (0) ⊆ m2 that Ann(m1) ⊆ m2.

So m1 and m2 are adjacent. This implies that the subgraph induced by Max(R) is a

clique.

Observation 4. Let R be a ring. Then ξR is finite if and only if the degree of each vertex
of ξR is finite .

Proof. If ξR is finite, then obviously the degree of each vertex of ξR is finite. Suppose

that the degree of each vertex of ξR is finite. Since the subgraph induced by Max(R)

is a clique, |Max(R)| < ∞. Let Max(R) = {m1,m2, . . . ,mn} and define Xi = {(0) 6=
I � R | Ann(I) ⊆ mi} for each 1 ≤ i ≤ n. Then I(R) = X1 ∪ X2 ∪ . . . ∪ Xn. Since

degmi <∞, we have |Xi| <∞ for each i and hence ξR is finite.

2. Properties of the annihilator-inclusion ideal graphs

In this section we first show that the annihilator-inclusion ideal graph of a commuta-

tive ring is connected with diameter at most 3 and girth 3 or ∞, and then we classify

all commutative rings whose annihilator-inclusion ideal graphs are stars or cycles.

Our first theorem shows that ξR is a connected graph with diam(ξR) ≤ 3.

Theorem 5. Let R be a ring. Then ξR is connected and diam(ξR) ≤ 3.

Proof. If R is a local ring with the maximal ideal m, then Ann(I) ⊆ m for every

non-zero proper ideal I of R and so m is adjacent to all non-zero proper ideals of R.

This implies that ξR is connected and diamξR ≤ 2.
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Assume R is not a local ring. If I, J are two vertices of ξR, then there are two maximal

ideals m and m′ such that Ann(I) ⊆ m and Ann(J) ⊆ m′. Hence d(I, J) ≤ 3 and so

ξR is a connected graph with diameter at most 3 and the proof is complete.

Next we show that the girth of ξR is either 3 or ∞. We need the followings lemmas.

Lemma 1. Let R be a ring. Then one of the following conditions is fulfilled:

(a) For each maximal ideal m of R, Ann(m) ⊆ m.

(b) R ∼= F × S, where F is a field and S is a commutative ring with identity.

Proof. Let m be a maximal ideal of R such that Ann(m) 6⊆ m. Then m+Ann(m) = R

and so a + b = 1 for some a ∈ Ann(m) and b ∈ m. If r ∈ m ∩ Ann(m), then we have

r = ra+ rb = 0. It follows that R ∼= R
m ×

R
Ann(m) and the proof is complete.

Lemma 2. Let R be a commutative ring with identity such that Max(R) = {m1,m2},
Ann(m1) 6= 0 and Ann(m2) 6= 0. Then one of the following conditions is fulfilled.

(a) R ∼= F × S, where F is a field and S is a commutative local ring with identity.

(b) Ann(J(R)) 6= mi, for each i = 1, 2.

Proof. If Ann(m1) 6⊆ m1 or Ann(m2) 6⊆ m2, then by Lemma 1 we are done. Suppose

that Ann(m1) ⊆ m1 and Ann(m2) ⊆ m2. Note that if Ann(m1) = m1 (the case

Ann(m2) = m2 is similar), then m1 = m2, a contradiction. Thus Ann(m1) ( m1 and

Ann(m2) ( m2. Clearly, m1m2 6= (0), for otherwise m1 ⊆ Ann(m2) ⊆ m2 which is

impossible. It follows that J(R) 6= (0). Assume, to the contrary, that Ann(J(R)) =

m1 (the case Ann(J(R)) = m2 is similar). By Observation 2, Z(Ann(m2)) = m2. Since

Ann(m2) ⊆ J(R), we have m1Ann(m2) = (0). Let 0 6= r ∈ Ann(m2) and x ∈ m1−m2.

Then xr = 0 and this implies x ∈ Z(Ann(m2)) = m2, a contradiction. Therefore,

Ann(J(R)) 6= m1 and Ann(J(R)) 6= m2 and so (b) holds.

Theorem 6. Let R be a ring. Then girth(ξR) = 3 or ∞.

Proof. If |Max(R)| ≥ 3, then we have girth(ξR) = 3 by Observation 3. If |Max(R)| =
1, then (R,m) is a local ring and clearly m is adjacent to all other vertices. This implies

that girth(ξR) = 3 or ∞. Assume that |Max(R)| = 2 and let Max(R) = {m1,m2}. If

J(R) = (0), then R ' F1 × F2, where F1, F2 are fields. Then clearly ξR ∼= K2 and so

girth(ξR) = ∞. Suppose that J(R) 6= (0). If Ann(m1) = 0 or Ann(m2) = 0 then m1

or m2 is a universal vertex and so girth(ξR) = 3 or ∞. Assume that Ann(m1) 6= (0)

and Ann(m2) 6= (0). By lemma 2, we distinguish two cases.

Case 1. R ∼= F ×S, where F is a field and S is commutative local ring with identity.

Let m be the maximal ideal of S. If S has exactly one non-zero proper ideal, then

clearly ξR ∼= P4 and so girth(ξR) =∞. Let I be a non-zero proper ideal of S different
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from m, then the subgraph induced by {F ×m, F × I, (0)× S} is a triangle and this

implies that girth(ξR) = 3.

Case 2. Ann(J(R)) 6= mi, for i = 1, 2.

Since Ann(mi) ⊆ Ann(J(R)) for i = 1, 2, Ann(J(R)) is adjacent to m1,m2. It follows

from observation 3 that the subgraph induced by {Ann(J(R)),m1,m2} is a triangle

and so girth(ξR) = 3. This completes the proof.

Corollary 1. Let R be a ring. Then ξR is a cycle if and only if (R,m) is a local ring
such that I∗(R) = {m3,m2,m}.

Proof. Let ξR be a cycle of order n ≥ 3. By Theorem 6, we have n = 3 and

so R has exactly three non-trivial ideals. Thus R is Artinian. This implies that

R = R1 × · · · × Rs where (Ri,mi) is an Artinian local ring for each i. Since R

has exactly three non-trivial ideals, we have s = 1 and dim(m1

m2
1
) = 1. It follows

from Theorem A that m1,m
2
1,m

3
1 are the non-trivial ideals of R and the proof is

complete.

Next, we classify all rings R whose annihilator-inclusion ideal graph ξR is a star.

Theorem 7. Let R be a ring. Then ξR is a star if and only if one of the following
statements hold.

(a) R ∼= F1 × F2, where F1, F2 are fields.

(b) (R,m) is a local ring such that Ann(I) ∈ {I,m} for each non-zero proper ideal I of R.

Proof. If R ∼= F1×F2 where F1, F2 are fields, then ξR ∼= K2 and we are done. Let (b)

hold. Then clearly m is adjacent to all vertices in ξR. Let I, J be two distinct ideals

of R different from m. We show that I and J are not adjacent. If Ann(I) = m and

Ann(J) = m, then clearly Ann(J) 6⊆ I and Ann(I) 6⊆ J and so IJ 6∈ E(ξR). Assume

Ann(I) = I and Ann(J) = m. Then clearly Ann(J) 6⊆ I. If Ann(I) ⊆ J , then we

have m = Ann(J) ⊆ Ann(I) = I, a contradiction. Therefore Ann(I) 6⊆ J and so I

and J are not adjacent. Now let Ann(I) = I, Ann(J) = J . If I = Ann(I) ⊆ J , then

J = Ann(J) ⊆ Ann(I) = I and we have I = J , a contradiction. Thus Ann(I) 6⊆ J .

Similarly, Ann(J) 6⊆ I and this implies that I and J are not adjacent.

Conversely, let ξR be a star. Since the subgraph induced by Max(R) is a clique, we

conclude that |Max(R)| ≤ 2. We consider two cases:

Case 1. |Max(R)| = 2.

Let Max(R) = {m1,m2}. We claim that J(R) = (0). Suppose, to the contrary, that

J(R) 6= (0). Since ξR is a star and m1 and m2 are adjacent in ξR, we may assume

without loss of generality that m1 is the central vertex of ξR. If Ann(m2) = (0),

then m1,m2, J(R) is a triangle, a contradiction. Assume that Ann(m2) 6= (0). If

Ann(m2) = m2, then m2
2 = (0) which implies that m2 ⊆ m1, a contradiction. Thus

Ann(m2) 6= m2. Obviously, m2 is adjacent to Ann(m2) in ξR. If m1 6= Ann(m2), then
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m1,m2,Ann(m2) is a triangle which is a contradiction. Let m1 = Ann(m2). Then

m1 ∩ m2 = m1.m2 = 0, a contradiction again. Thus J(R) = (0) and R ∼= F1 × F2

where F1 and F2 are fields.

Case 2. Max(R) = {m}.
Clearly, m is the central vertex of ξR. If R has exactly two non-zero proper ideals, then

we are done. Henceforth, we suppose that R has at least three non-zero proper ideals.

Let I be a non-zero proper ideal of R different from m. If Ann(I) = (0), then I is

adjacent to all vertices which leads to a contradiction. So Ann(I) 6= (0). If Ann(I) 6=
m and Ann(I) 6= I, then the subgraph induced by the vertices I,Ann(I),m is a

triangle, a contradiction. Therefore, Ann(I) ∈ {m, I} and the proof is complete.

Corollary 2. Let R be a ring. Then ξR is a tree if and only if ξR is a star or P4.

Proof. One side is clear. Suppose that ξR is a tree. We conclude from Observation 3

that |Max(R)| ≤ 2. If (R,m) is a local ring, then m is adjacent to all other vertices and

so ξR is a star. Suppose that Max(R) = {m1,m2}. By the same arguments as in the

proof of Theorem 6, we have ξR ∼= K2 if J(R) = (0) and ξR ∼= P4 if J(R) 6= (0).

3. Classification of Artinian rings whose annihilator-inclusion
ideal graph has genus at most one

In this section we characterize all Artinian non-local rings whose annihilator-inclusion

ideal graph has genus at most one. We make use of the following Theorems in this

section.

Theorem B. (Kuratowski [9]) A graph is planar if and only if it does not contain a
subdivision of K5 or K3,3.

Theorem C. ([16]) Let G be a graph of order n and size m. Then m ≤ 3(n− 2 + 2λ(G)).

The proof of the following results can be found in Ringel and Youngs [12]; Ringel [11],

respectively.

Theorem D. For n ≥ 3, λ(Kn) = d 1
12

(n − 3)(n − 4)e. In particular, λ(Kn) = 1 if
n = 5, 6, 7.

Theorem E. For m,n ≥ 2, λ(Km,n) = d (m−2)(n−2)
4

e.

Lemma 3. Let n ≥ 2 and R ' F1 × F2 × · · · × Fn, where Fi is a field for each i. Then
ξR is planar if and only if n = 2, 3.
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Proof. If n = 2 then ξR ' K2 and so ξR is planar. If n = 3, then Figure 1, shows

that ξR is planar.

Conversely, let ξR be planar. If n ≥ 4, then the subgraph induced by {(0)×F2×· · ·×
Fn, (0)× (0)×F3×· · ·×Fn, F1× (0)×F3×· · ·×Fn, F1×F2× (0)×· · ·× (0), F1×F2×
F3× (0)× · · ·× (0), F1×F2× (0)×F4× · · ·×Fn)} contains K3,3 whose bipartite sets

are X = {(0)×F2 × · · · ×Fn, (0)× (0)×F3 × · · · ×Fn, F1 × (0)×F3 × · · · ×Fn} and

Y = {F1×F2×(0)×· · ·×(0), F1×F2×F3×(0)×· · ·×(0), F1×F2×(0)×F4×· · ·×Fn)},
a contradiction. Hence n ≤ 3 and the proof is complete.

s
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A
A
A
A
AA�
��

Q
QQ

F1 × F2 × (0)

F1 × (0) × F3

(0) × F2 × (0)F1 × (0) × (0)

(0) × (0) × F3

(0) × F2 × F3

Figure 1. ξF1×F2×F3

Theorem 8. Let R = R1×R2×· · ·×Rn be a commutative ring with identity where each
(Ri,mi) is a local ring with mi 6= 0 and n ≥ 2. Let ni be the nilpotency of mi. Then ξR is
planar if and only if n = 2 and |I∗(R1)|+ |I∗(R2)| ≤ 3.

Proof. If n = 2 and |I∗(R1)|+ |I∗(R2)| ≤ 3, then ξR is one of the graphs illustrated

in Figures 2 or 3 respectively with vertex sets {v1 = (0) × R2, v2 = R1 × m2, v3 =

(0) × J, v4 = (0) × m2, v5 = R1 × J, v6 = m1 × m2, v7 = m1 × R2, v8 = m1 × (0)}
and {v1 = R1 × (0), v2 = m1 × R2, v3 = m1 × (0), v4 = m1 × m2, v5 = (0) × m2, v6 =

R1 × m2, v7 = (0) × R2} respectively and hence is planar. Conversely, let ξR be a

planar graph. If n ≥ 4, then it can be shown as in the proof of Lemma 3 that ξR
contains K3,3 as a subgraph and this is in contraction to the assumption that ξR is

planar. Hence n ≤ 3. If n = 3, then the subgraph induced by

{R1×(0)×m3, R1×(0)×R3, R1×m2×R3, R1×R2×m3, (0)×R2×R3, (0)×R2×m3}

contains K3,3 whose bipartite sets are X = {R1×(0)×m3, R1×(0)×R3, R1×m2×R3}
and Y = {R1 × R2 × m3, (0) × R2 × R3, (0) × R2 × m3} which is a contradiction.

Suppose that n = 2. If |I∗(R1)| ≥ 2 and |I∗(R2)| ≥ 2, then let Ii be a non-zero

proper ideal of Ri different from mi, for i = 1, 2. Then the subgraph induced by

{R1×m2, R1×I2, R1×(0),m1×R2, I1×R2, (0)×R2} contains K3,3 whose bipartite sets

are X = {R1×m2, R1×I2, R1×(0)} and = {m1×R2, I1×R2, (0)×R2}, a contradiction.



238 The annihilator-inclusion ideal graph of a commutative ring

v2

v6

v7

v10

v8

v1

v9

v5

v3

v4

Figure 2. |I∗(R1)| = 1, |I∗(R2)| = 2
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Figure 3. |I∗(R1)| = |I∗(R2)| = 1

Henceforth, we may assume without the loss of generality that |I∗(R1)| = 1. If

|I∗(R2)| ≥ 3, then let I, J be two distinct non-zero proper ideals of R2 different from

m3. Then the subgraph induced by {R1×m2, R1×J,R1×I,m1×m2, (0)×R2, (0)×m2}
contains K3,3 whose bipartite sets are X = {R1 × m2, R1 × J,R1 × I} and Y =

{m1 ×m2, (0)×R2, (0)×m2}, a contradiction. Hence, |I∗(R2)| ≤ 2.

Theorem 9. Let R = R1×· · ·×Rn×F1×· · ·×Fm be a commutative ring with identity,
where each (Ri,mi) is a local ring with mi 6= 0 and each Fj is a field, n ≥ 1 and m ≥ 1.
Then ξR is planar if and only if one of the following conditions hold:

(i) R = R1 × F1 × F2 and m1 is the only non-trivial ideal in R1;

(ii) R = R1 × F1 and {m1,m
2
1} or {m1,m

2
1,m

3
1} is the set of all non-zero proper ideals of

R1.

Proof. Assume that ξR is planar. If m+n ≥ 4, then it can be shown as in the proof

of Lemma 3 that ξR contains K3,3 as a subgraph and this is a contradiction. Hence

2 ≤ m+n ≤ 3. If n = 2 and m = 1, then the subgraph induced by {m1×(0)×F1, R1×
(0)×F1, R1×m2×F1,m1×R2×F1, R1×R2×(0),m1×R2×(0) is K3,3 whose bipartite

sets are X = {m1×(0)×F1, R1×(0)×F1, R1×m2×F1} and Y = {m1×R2×F1, R1×
R2×(0),m1×R2×(0)}, which is a contradiction. Now suppose that m = 2 and n = 1.
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If R1 has a non-zero proper ideal I different from m1, then the subgraph induced by

{m1× (0)×F2, R1× (0)×F2,m1×F1×F2, R1×F1× (0),m1×F1× (0), I ×F1× (0)}
is K3,3 whose bipartite sets are X = {m1 × (0) × F2, R1 × (0) × F2,m1 × F1 × F2}
and Y = {R1 × F1 × (0),m1 × F1 × (0), I × F1 × (0)}, a contradiction. Hence R1 has

exactly one non-zero proper ideal and so R satisfies in (i).

Now let n = m = 1. If |I∗(R1)| ≥ 4, then let I, J,K be three distinct non-zero proper

ideals of R1 different m1. Then the subgraph induced by I ×F1, J ×F1,K×F1,m1×
F1,m1 × (0), R1 × (0) is K3,3 whose bipartite sets are X = {I × F1, J × F1,K × F1}
and Y = {m1×F1,m1× (0), R1× (0)}, a contradiction. Hence |I∗(R1)| ≤ 3. Using by

Observation 1, as above, it can be shown that dimR1/m1
m1/m

2
1 = 1. Now we conclude

from Theorem A that R1 satisfies (ii).

Conversely, if R satisfies (i), then {v1 = m1 × F1 × (0), v2 = m1 × (0) × F2, v3 =

m1 × (0) × (0), v4 = m1 × F1 × F2, v5 = R1 × (0) × (0), v6 = (0) × F1 × F2, v7 =

(0) × (0) × F2, v8 = (0) × F1 × (0), v9 = R1 × (0) × F2, v10 = R1 × F1 × (0)} is the

vertex set of ξR and so ξR is the graph illustrated in Figure 4.

Now let R satisfies (ii), then it is easy to verify that ξR is one of the graphs illustrated

in Figure 5 respectively with the vertex set {v1 = (0)× F1, v2 = R1 × (0), v3 = m1 ×
F1, v4 = m2

1×F1, v5 = m1×(0), v6 = m2
1×(0)} and {v1 = (0)×F1, v2 = R1×(0), v3 =

m1×F1, v4 = m2
1×F1, v5 = m1× (0), v6 = m3

1× (0), v7 = m2
1× (0), v8 = m3

1×F1}.

r

r r
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Figure 4. ξR1×F1×F2
with |I∗(R1)| = 1
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v4v8

v2
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v6
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v2 v4
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v1

Figure 5. ξR1×F1
with 2 ≤ |I∗(R1)| ≤ 3

It is well known that every commutative Artinian ring R isomorphic to the direct

product of finitely many local rings. Using this, we have the following corollary which
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gives a characterization for ξR to be planar for a commutative non-local Artinian ring

R.

Corollary 3. Let R be a non-local Artinian ring. Then ξR is planar if and only if one of
the following conditions is fulfilled.

(a) R = F1 × F2 or R = F1 × F2 × F3, where each Fi is a field;

(b) R = R1×F1×F2, where (R1,m1) is a local ring, where m1 is the only non-trivial ideal
in R1 and Fi is a field for i = 1, 2;

(c) R = R1×R2, where (Ri,mi) is a local ring for i = 1, 2 such that |I∗(R1)|+|I∗(R2)| ≤ 3;

(d) R = R1 × F1, where (R1,m1) is a local ring such that {m1,m
2
1} or {m1,m

2
1,m

3
1} is the

set of all non-zero proper ideals of R1 and F1 is a field.

Now, we classify all Artinian rings whose annihilator-inclusion ideal graphs have genus

one. Given a connected graph G, we say that a vertex v of G is a cut vertex if G−v is

disconnected. A block is a maximal connected subgraph of G having no cut vertices.

A result of Battle, Harary, Kodama, and Youngs states that the genus of a graph is

the sum of the genus of its blocks [6]. For example, the graph in Figure 6 has two

blocks, both isomorphic to K3,3, and so has genus 2.

PP
PP

PP
PP

��������

A
A
A
A
AA

�
�
�

@
@
@�

�
�
�
��

PPPPPPPP

��
��

��
���
�
�
�
��

@
@
@

�
�
� A
A
A
A
AA

s
s
s

s

s
s

s

s s
s
s

Figure 6. A graph with two blocks, each isomorphic to K3,3

Proposition 1. Let R ' F1 × F2 × · · · × Fn (n ≥ 3) where F1, . . . , Fn are fields. Then
λ(ξR) = 1 if and only if n = 4.

Proof. If n = 4, then the vertex set of ξR is {v1 = F1 × F2 × (0) × (0), v2 =

F1× (0)×F3× (0), v3 = F1× (0)× (0)×F4), v4 = (0)×F2×F3× (0), v5 = (0)×F2×
(0)×F5, v6 = (0)× (0)×F3×F4, v7 = F1×F2×F3× (0), v8 = F1×F2× (0)×F4, v9 =

F1 × (0) × F3 × F4, v10 = (0) × F2 × F3 × F4, v11 = F1 × (0) × (0) × (0), v12 =

(0)×F2× (0)× (0), v13 = (0)× (0)×F3× (0), v14 = (0)× (0)× (0)×F4} and the graph

ξR is illustrated in Figure 7. This implies that λ(ξR) = 1 and the proof is complete.

Conversely, let λ(ξR) = 1. It follows from Corollary 3 that n ≥ 4. If n ≥ 5, then ξR
contains K3,7 whose bipartite sets are

X = {(0)×F2×F3×· · ·×Fn, (0)× (0)×F3×· · ·×Fn, F1× (0)×F3×· · ·×Fn} and
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Y = {F1 × F2 × (0) × · · · × (0), F1 × F2 × F3 × (0) × · · · × (0), F1 × F2 × (0) × F4 ×
(0) × · · · × (0), F1 × F2 × (0) × (0) × F5 × · · · × Fn, F1 × F2 × F3 × (0) × F5 × · · · ×
Fn, F1×F2× (0)×F4×· · ·×Fn, F1×F2×F3×F4× (0)×F6×· · ·×Fn} which leads

to a contradiction by Theorem E. Thus n = 4, and the proof is complete.
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Figure 7. toroidal embedding of ξ(F1 × F2 × F3 × F4)

The following results are very useful in the subsequent sections.

Theorem 10. Let R = R1 × R2 × · · · × Rn be a commutative ring with identity where
each (Ri,mi) is a local ring with mi 6= 0 and n ≥ 2. Let ni be the nilpotency of mi. Then
λ(ξR) = 1 if and only if n = 2 and one of the following conditions hold:

(i) n1 = 2, n2 = 3,m1 is the only non-trivial ideal in R1 and m2,m
2
2,m

3
2 are the only non-

trivial ideals in R2;

(ii) n1 = 3, n2 = 3,m1,m
2
1,m

3
1 are the only non-trivial ideals in R1 and m2 is the only

non-trivial ideal in R2;

(iii) n1 = n2 = 2,m1 is the only non-trivial ideal in R1 and R2 has exactly three non-trivial
ideal I, J and K different from m2;

(iv) n1 = n2 = 2,m2 is the only non-trivial ideal in R2 and R1 has exactly three non-trivial
ideal I, J and K different from m1.

Proof. Assume that λ(ξR) = 1. If n ≥ 3, then ξR contains K3,7 whose bipartite sets

are X = {R1 × R2 ×m3 × R4 × · · · × Rn, R1 ×m2 × R3 × R4 × · · · × Rn, R1 ×m2 ×
m3 ×R4 × · · · ×Rn} and Y = {(0)×R2 ×R3 ×R4 × · · · ×Rn,m1 ×R2 ×R3 ×R4 ×
· · ·×Rn, (0)×R2×R3×R4×· · ·×Rn,m1×R2×m3×R4×· · ·×Rn, (0)×m2×R3×
R4× · · · ×Rn,m1×m2×R3×R4× · · · ×Rn, (0)×m2×m3×R4× · · · ×Rn} which is

a contradiction. Hence n = 2. It follows by Theorem 8, that |I∗(R1)|+ |I∗(R2)| ≥ 4.
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Claim 1 |I∗(R1)| ≤ 3 or |I∗(R2)| ≤ 3.

Proof of claim 1. Let, to contrary, |I∗(R1)| ≥ 4 and |I∗(R2)| ≥ 4. Let I1, J1 and

I2, J2 be non-trivial ideals in R1 and R2 different from m1 and m2 respectively. Then

the subgraph induced by {u1 = R1×m2, u2 = R1×J2, u3 = R1×I2, v1 = J1×m2, v2 =

m1×R2, v3 = I1×R2, v4 = J1×R2, v5 = (0)×m2, v6 = m1×m2, v7 = I1×m2} contains

K3,7 whose bipartite sets are X = {u1, u2, u3} and Y = {v1, v2, v3, v4, v5, v6, v7}. By

Theorem E, λ(ξR) > 1 which is a contradiction, which proves that claim.

Claim 2 |I∗(R1)| 6= 2 and |I∗(R2)| 6= 2.

Proof of claim 2. Let, to contrary, |I∗(R1)| = 2 or |I∗(R2)| = 2. Without loss of

generality suppose that |I∗(R1)| = 2. Then |I∗(R2)| ≥ 2. Let |I∗(R2)| = 3. If

dimmi/m
2
i ≥ 2, for i = 1, 2, then it follows from Observation 1 that there are distinct

non-trivial ideals I, J,K of R2 such that I, J,K /∈ {mji |j ∈ N}. By Nakayama’s lemma,

we get mi 6= m2
i . This implies that {I, J,K,mi,m2

i } ⊆ I∗(Ri) and so, |I∗(Ri)| ≥ 5 for

i = 1, 2. This is in contradiction to the assumption that |I∗(R1)| = 2 or |I∗(R2)| =

3. Therefore, dimmi/m
2
i = 1 for i = 1, 2. Then it follows from Theorem A that

I∗(R1) = {m1,m
2
1} and I∗(R2) = {m2,m

2
2,m

3
2}. Then the subgraph induced by {u1 =

m1×m2, u2 = m1×R2, u3 = R1×m2, v1 = m2
1×m3

2, v2 = m2
1×R2, v3 = R1×m2

2, v4 =

R1 × m3
2, v5 = m1 × m3

2, v6 = m1 × m2
2, v7 = m2

1 × m2
2, v8 = m2

1 × m2} contains

K3,8 whose bipartite sets are X = {u1, u2, u3} and Y = {v1, v2, v3, v4, v5, v6, v7, v8}.
Hence by Theorem E, λ(ξR) > 1, a contradiction. Let |I∗(R2)| ≥ 4. Consider I, J

and K are non-trivial ideals different from m2 in R2, Then the subgraph induced

by {u1 = R1 × I, u2 = R1 × J, u3 = R1 × K,u4 = R1 × m2, v1 = (0) × m2, v2 =

m1 × m2, v3 = m2
1 × m2, v4 = (0) × R2, v5 = m2

1 × R2} contains K4,5 whose bipartite

sets areX = {u1, u2, u3} and Y = {v1, v2, v3, v4, v5}. Hence by Theorem E, λ(ξR) > 1,

a contradiction.

Now let |I∗(R2)| = 2, then it can be shown as in Claim 2 that m1,m
2
1 and m2,m

2
2

are the only non-trivial ideals in R1 and R2 respectively. Consider the subgraph G

of ξR induced by the non-trivial ideals u1 = m1 × R2, u2 = R1 × m2, u3 = m1 ×
m2, v1 = m2

1 × m2, v2 = m2
1 × R2, v3 = R1 × m2

2, v4 = m2
1 × m2

2, v5 = m1 × m2
2, x1 =

(0) × R2, x2 = R1 × (0), x3 = m1 × (0), x4 = (0) × m2. Let G′ = (G − {x3, x4}) −
{u1u2, u1u3, u2u3, v1v3, v1v5, v2v3, v2v5} and G′′ = G′ − {x1, x2}. Then G′′ ∼= K3,5

and so λ(G′′) = 1. Since λ(G′′) ≤ λ(G′) ≤ λ(G) and λ(G) = 1, λ(G′) = 1. Note

that |V (G)| = 10 and |E(G)| = 20. Then by Euler,s formula, there are 10 faces

when drawing G′ on a torus. Fix a representation of G′ and let {F ′1, . . . , F ′10} be

of faces of G′ corresponding to the representation. Let {F ′′1 , . . . , F ′′r } be the set of

faces of G′′ obtained by deleting x1, x2 and all the edges incident with x1, x2 from

the representation of G′. Notice that G′′ ∼= K3,5. From the fact that n −m + f =

2− 2g, K3,5 has 7 faces, six with 4 boundary edges and one with 6 boundary edges.

So r = 7. Moreover, for every i, each boundary of F ′′ cannot have consecutive

repetition of a single edge. Therefore in K3,5, the only way to have a closed walk

of length 6 without consecutive repetition of single edge is to have 6-cycle. Then in

K3,5, all faces boundaries are 4-cycle but with one 6-cycle. We may assume that the
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boundary of F ′′7 is 6. Now {F ′1, . . . , F ′10} can be recovered by inserting x1, x2 onto the

representation corresponds to {F ′′1 , . . . , F ′′7 }. Note that x1x2 ∈ E(G′). Hence x1, x2

v2v3

u2 u1

x1 x2

v3

u2

u1

x2

v2

(b)(a)

x1

Figure 8.

should be inserted to the same face say F ′′m of G′′ to avoid crossing. Also note that

x1v3, x1u2, x2u1, x2v2 ∈ E(G′) and therefore v3, u2, u1, v2 are the boundary vertices

of F ′′m. Consider the following edges of G: e1 = x1v3, e2 = x1u2, e3 = x2u1, e4 =

x2v2, e5 = x1x2, e6 = v3u1, e7 = v2u2. After inserting x1, x2 and ei, i = 1 to 5 into

the face F ′′m,m 6= 7, we obtain Fig 8 (a) as above. Then the edge e6 can be inserted

into the face F ′′7 . But there is no other face with v2 and u2 as the boundary vertices

and so there is no way to insert the edge e7 without crossing in the embedding if

G. After inserting x1, x2 and ei, i = 1 to 5 into the face F ′′7 , we obtain Fig 8 (b) as

above. Then the edge e5 can be inserted in to the face F ′′m where m 6= 7. But there

is no other face with v2 and u2 as the boundary vertices and so there is no way to

insert the edge e7 without crossing in the embedding of G. Hence we conclude that

λ(ξR) > 1, a contraction.

Now without loss of generality, suppose that |I∗(R1)| ≤ 3. Then |I∗(R1)| = 1 or

|I∗(R1)| = 3 . We consider two cases.

Case 1 |I∗(R1)| = 1. If |I∗(R2)| ≥ 5, then let I, J,K and L are non-trivial ideals

different from m2 in R2. Then the subgraph induced by {u1 = R1 × I, u2 = R1 ×
J, u3 = R1 × K,u4 = R1 × L, v1 = (0) × m2, v2 = R1 × m2, v3 = m1 × m2, v4 =

m1 × R2, v5 = (0) × R2} contains K4,5 whose bipartite sets are X = {u1, u2, u3, u4}
and Y = {v1, v2, v3, v4, v5}, By Theorem E, γ(ξR) > 1 which is a contradiction.

Therefore 3 ≤ |I∗(R2)| ≤ 4.

Let |I∗(R2)| = 4. We claim that m2
2 = 0. Suppose to the contrary that m2

2 6= 0. By

Nakayama’s lemma m2 6= m2
2. If dim(m2/m

2
2) ≥ 2, then it follows from Observation 1

that there are distinct non-trivial ideals I, J,K of R2 such that I, J,K /∈ {mi|i ∈ N}.
This implies that {I, J,Km2,m

2
2} ⊆ I∗(R2) and so |I∗(R2)| ≥ 5, a contradiction with

the assumption that |I∗(R2)| = 4. Therefore, dim(m2/m
2
2) = 1. Then it follows from
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Theorem A that I∗(R2) = {mi | i ∈ {1, 2, 3, 4}}. Then the subgraph induced by

{u1 = m1 × m2
2, u2 = R1 × m2

2, u3 = R1 × m3
2, u4 = R1 × m4

2, v1 = (0) × m2, v2 =

m1 ×m2, v3 = m1 × R2, v4 = (0) × R2, v5 = R1 × m2, w1 = R1 × m3
2, w2 = R1 × m2

2}
contains a subdivision of K4,5 (see Figure 9). By Theorem E, γ(ξR) > 1 which is a

contradiction. Then m2
2 = 0 and R2 has exactly three non-trivial ideal I, J and K

different from m2 and so R satisfies in (iv). Moreover if |I∗(R2)| = 3, then R satisfies

in (i), as desired.

u1

v1 v2 v3 v4 v5

u2 u3 u4

w1

w2

Figure 9. A subdivision of K4,5

Case 2 |I∗(R1)| = 3. If |I∗(R2)| ≥ 3, then let I and J are non-trivial ideals of R2

different from m2. Then the sub graph induced by {u1 = R1 ×m2, u2 = R1 × I, u3 =

R1 × J, v1 = m2
1 ×m2, v2 = m3

1 ×m2, v3 = m1 ×m2, v4 = m2
1 ×R2, v5 = m1 ×R2, v6 =

m3
1 × R2, v7 = (0) × R2} contains K3,7 whose bipartite sets are X = {u1, u2, u3}

and Y = {v1, v2, v3, v4, v5, v6, v7}. By Theorem E λ(ξR) > 1, a contradiction. Hence

|I∗(R2)| = 1. Therefore R satisfies (ii).

Conversely if R satisfies (i) or (iii), then it is easy to verify that ξR is the graphs

illustrated in Figures 10 and Figure 11 with vertex sets {v1 = R1 × m2, v2 = m1 ×
m2, v3 = m1 × m2

2, v4 = m1 × m3
2, v5 = m1 × R2, v6 = R1 × m2

2, v7 = (0) × m2, v8 =

R1×m3
2, v9 = (0)×R2, v10 = R1× (0), v11 = (0)×m2

2, v12 = m1× (0), v13 = (0)×m3
2}

and {v1 = R1 × m2, v2 = R1 × J, v3 = R1 × I, v4 = R1 × K, v5 = m1 × R1, v6 =

m1× I, v7 = m1×K, v8 = m1× J, v9 = m1×m2, v10 = R1× (0), v11 = (0)×R2, v12 =

(0)×m2, v13 = (0)× I, v14 = (0)×K, v15 = (0)× J, v16 = m1 × (0)} respectively.

The following result is very useful in the subsequent sections.

Theorem 11. Let R = R1×· · ·×Rn×F1×· · ·×Fm be a commutative ring with identity,
where each (Ri,mi) is a local ring with mi 6= 0 and each Fj is a field, n ≥ 1,m ≥ 1 and
n+m ≥ 3. Then λ(ξR) = 1 if and only if one of the following conditions hold:

(i) R = R1 × F1 × F2 and m1 and m2
1 are the only non-trivial ideals in R1;

(ii) R = R1 × R2 × F1 and m1 and m2 are the only non-trivial ideals in R1 and R2

respectively.

Proof. Let λ(ξR) = 1. If n + m ≥ 5, then an argument similar to that describe in

the proof of 1 shows that ξR contains K3,7 which is a contradiction. Thus m+n ≤ 4.
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Figure 10. Torus embedding of ξR1×R2
with n1 = 2, n2 = 4
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v14

v15

v13

v12v16

Figure 11. Torus embedding of ξR1×R2
with m1 is the only non-trivial ideals in R1 and I, J,K are the

only non-trivial ideal in R2 different from m2

Let n + m = 4 and assume without loss of generality, that n = 1 and m = 3. Then

ξR contains a subdivision of K4,5 whose vertices are u1 = (0) × F1 × F2 × F3, u2 =

m1 ×F1 ×F2 ×F3, u3 = R1 ×F1 ×F2 × (0), u4 = m1 ×F1 ×F2 × (0), v1 = m1 ×F1 ×
(0)×F3, v2 = m1×(0)×F2×F3, v3 = R1×F1×(0)×F3, v4 = R1×(0)×F2×F3, v5 =

R1 × (0)× (0)× F3, w1 = R1 × F1 × F2 × (0), w2 = R1 × F1 × (0)× (0)} (see Figure

9 ) implying that λ(ξR) ≥ 2 by Theorem E, a contradiction.

Hence n+m ≤ 3. Consider two cases.

Case 1 n = 1,m = 2.

If R1 has at least three ideals I, J and K different from m1, then ξR contains K3,7
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whose bipartite sets are X = {m1 × (0)× F2, R1 × (0)× F2,m1 × F1 × F2} and Y =

{R1×F1×(0),m1×F1×(0), I×F1×(0), J×F1×(0),K×F1×(0), I×F1×F2, J×F1×F2}
which is a contradiction. If R1 has exactly three non-trivial ideal, then it can be shown

as in the proof of Theorem 10 that m1,m
2
1,m

3
1 are the only non-trivial ideals in R1

and m4
1 = (0). Consider S = {u1 = R1× (0)× (0), u2 = R1× (0)×F2, u3 = m1× (0)×

(0), v1 = m2
1×F1×F2, v2 = m1×F1×F2, v3 = m3

1×F1×F2, w1 = m1× (0)×F2, w2 =

m2
1 × (0)× F2, z1 = m1 × F1 × (0), z2 = R1 × F1 × (0), z3 = m2

1 × F1 × (0)}. Then the

subgraph induced by S in ξR contains two block, both isomorphic to K3,3 as in Figure

12. Then λ(S) = λ(K3,3) + λ(K3,3) ≥ 2 and it implies that λ(ξR) ≥ 2, a contraction.

Thus R1 has at most two non-trivial ideal. We conclude from Theorem 11 (part i)

that R1 has exactly two non-trivial ideal and so R satisfies (i).
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Figure 12. H

Case 2 n = 2,m = 1. If Ri has an ideal I different from mi for some i ∈ {1, 2}, say

i = 1, then ξR contains K4,5 whose bipartite sets are X = {R1 ×R2 × (0),m1 ×R2 ×
(0), R1 ×m2 × (0),m1 ×m2 × (0)} and Y = {m1 ×R2 × F1, R1 ×m2 × F1,m1 ×m2 ×
F1, I × R2 × F1, I × m2 × F1} that leads to a contradiction by Theorem E. Hence R

satisfies (ii).

Conversely, if R satisfies (i), then the vertex set of ξR is {v1 = m1 × F1 × F2, v2 =

m2
1×F1×F2, v3 = R1×(0)×F2, v4 = m1×(0)×F2, v5 = R1×F1×(0), v6 = m1×F1×

(0), v7 = m1×(0)×(0), v8 = R1×(0)×(0), v9 = m2
1×(0)×F2, v10 = m2

1×F1×(0), v11 =

m2
1 × (0) × (0), v12 = (0) × F1 × F2, v13 = (0) × (0) × F2, v14 = (0) × F1 × (0)} and

Figure 13 implies that λ(ξR) = 1.

If R satisfies (ii), then the vertex set of ξR is V (ξR) = {v1 = m1 × R2 × F1, v2 =

R1 × m2 × F1, v3 = R1 × R2 × (0), v4 = (0) × R2 × F1, v5 = R1 × (0) × F1, v6 =

m1 × (0) × F1, v7 = (0) × m2 × F1, v8 = m1 × m2 × (0), v9 = m1 × m2 × F1, v10 =

R1 ×m2 × (0), v11 = m1 ×R2 × (0), v12 = m1 × (0)× (0), v13 = (0)×m2 × (0), v14 =

(0)× (0)× F1, v15 = (0)×R2 × (0), v16 = R1 × (0)× (0)} and it follows from Figure

14 that λ(ξR) = 1 and the proof is the complete.

We have the following corollary which gives a characterization for ξR to be has genus

one for a commutative non-local Artinian ring R with R � F ×R1 .

Corollary 4. Let R be a non-local Artinian ring and R � F ×R1 where F is a field and
R1 is a ring . Then λ(ξR) = 1 if and only if one of the following conditions is fulfilled:

(a) R = F1 × F2 × F3 × F4, where Fi is a field for i = 1, 2, 3, 4.
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Figure 14. ξ(F1 × R2 × R3)

(b) R = F1 × F2 ×R3, where Fi is a field for i = 1, 2 and |I(R3)| = {m3,m
2
3}.

(c) R = F1 ×R2 ×R3, where F1 is a field and |I(R1)| = |I(R2)| = 1.
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