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Abstract: A total Roman dominating function on a graphG is a function f : V (G)→
{0, 1, 2} such that for every vertex v ∈ V (G) with f(v) = 0 there exists a vertex

u ∈ V (G) adjacent to v with f(u) = 2, and the subgraph induced by the set {x ∈
V (G) : f(x) ≥ 1} has no isolated vertices. The total Roman domination number of G,
denoted γtR(G), is the minimum weight ω(f) =

∑
v∈V (G) f(v) among all total Roman

dominating functions f on G. It is known that γtR(G) ≥ γt2(G) + γ(G) for any graph

G with neither isolated vertex nor components isomorphic to K2, where γt2(G) and
γ(G) represent the semitotal domination number and the classical domination number,
respectively. In this paper we give a constructive characterization of the trees that

satisfy the equality above.
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1. Introduction

Throughout this paper we consider G = (V (G), E(G)) as a simple graph of order

n = |V (G)|. Given a vertex v of G, N(v) and N [v] represent the open neighbourhood

and the closed neighbourhood of v, respectively.

A dominating set of a graph G is a set D ⊆ V (G) such that every vertex not in D is

adjacent to at least one vertex in D. The minimum cardinality among all dominating

sets is called the domination number of G and is denoted by γ(G). We refer to [9, 10]

for numerous results on this parameter. Now, we consider a recent variant of the

concept of domination. A semitotal dominating set (STDS) of a graph G without

isolated vertices, is a dominating set D of G such that every vertex in D is within

distance two of another vertex of D. The semitotal domination number, denoted

by γt2(G), is the minimum cardinality among all STDSs of G. This parameter was

introduced by Goddard et al. in [8], and was also further studied in [11, 12].

Functions defined on graphs is another variant very studied in domination theory.

Let f : V (G)→ {0, 1, 2} be a function on a graph G. The function f generates three

sets V0, V1 and V2, where Vi = {v ∈ V (G) : f(v) = i} for i ∈ {0, 1, 2}. We will write

f(V0, V1, V2) so as to refer to the function f . For a set S ⊆ V (G), f(S) =
∑

v∈S f(v)

and we define the weight of f as ω(f) = f(V (G)) = |V1| + 2|V2|. In this sense, by

an f(V (G))-function, we mean a function of weight f(V (G)). We shall also use the

following notations: V1,2 = {v ∈ V1 : N(v) ∩ V2 6= ∅} and V1,1 = V1 \ V1,2.

One of the most remarkable dominating functions defined on graphs are the total

Roman dominating functions, which were introduced by Liu and Chang [13]. A

total Roman dominating function (TRDF) on a graph G without isolated vertices,

is a function f(V0, V1, V2) such that for every vertex v ∈ V0 there exists a vertex

u ∈ N(v) ∩ V2, and the subgraph induced by V1 ∪ V2 has no isolated vertices. The

total Roman domination number of G, denoted by γtR(G), is the minimum weight

among all TRDFs on G.

The total Roman domination number was first presented and deeply studied in [1].

Further results on total Roman domination can be found for example, in [2–7].

In [4], Cabrera et al. established the following lower bound for the total Roman

domination number of a graph.

Theorem 1. [4] For any graph G with neither isolated vertex nor components isomorphic
to K2,

γtR(G) ≥ γt2(G) + γ(G).

Also, the authors [4] posed the following open problem.

Problem 1. Characterize the graphs G satisfying γtR(G) = γt2(G) + γ(G).

In this article, we address this open problem by giving a constructive characterization

of trees satisfying the equality above.
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1.1. Some Additional Concepts and Notation

For a set D ⊆ V (G), as usual, its open neighbourhood and closed neighbourhood

are N(D) = ∪v∈DN(v) and N [D] = N(D) ∪ D, respectively. The boundary of

the set D is defined as ∂(D) = N(D) \ D. The private neighbourhood pn(v,D) of

v ∈ D ⊆ V (G) is defined by pn(v,D) = {u ∈ V (G) : N(u) ∩D = {v}}. Each vertex

in pn(v,D) is called a private neighbour of v with respect to D. The external private

neighbourhood epn(v,D) of v consists of the private neighbours of v in V (G) \ D.

Thus, epn(v,D) = pn(v,D) ∩ (V (G) \ D). Also, by G − D we denote the graph

obtained from G when removing all the vertices in D, and all the edges incident with

vertices in D. The subgraph induced by D ⊆ V (G) is denoted by G[D].

For any two vertices u and v, the distance d(u, v) between u and v is the minimum

length of a u − v path. The diameter of G, denoted by diam(G), is the maximum

distance among pairs of vertices of G.

A leaf vertex of a graph G is a vertex of degree one, and a support vertex of G is

a vertex adjacent to a leaf. The set of leaves and support vertices are denoted by

L(G) and S(G), respectively. Let SS(G) = N(S(G)) \ (L(G) ∪ S(G)), Sadj(G) =

S(G) ∩ N(S(G)) and Ss(G) = {v ∈ S(G) : |N(v) ∩ L(G)| ≥ 2}. Also, given a set

D ⊆ V (G) we denote I(D) as an independent set of maximum cardinality in G[D]

such that |I(D) ∩ S(G)| is maximum.

A tree is a connected and acyclic graph. A star K1,n−1 is a tree of order n ≥ 3 with

a central vertex of degree n− 1 and the remaining vertices are leaves. A double star

is a tree with exactly two vertices that are not leaves. A rooted tree T is a tree with a

distinguished special vertex r, called the root. For each vertex v 6= r of T , the parent

of v is the neighbour of v on the unique r − v path, while a child of v is any other

neighbour of v. A descendant of v is a vertex u 6= v such that the unique r − u path

contains v. Thus, every child of v is a descendant of v. The set of descendants of v is

denoted by D(v), and we define D[v] = D(v) ∪ {v}. The maximal subtree at v is the

subtree of T induced by D[v], and is denoted by Tv.

2. Trees T with γtR(T ) = γt2(T ) + γ(T )

We begin with a useful result which provides some properties that satisfies a specific

TRDF for the trees T with γtR(T ) = γt2(T )+γ(T ). Before, we shall need the following

lemma.

Lemma 1. [1] If G is a graph with no isolated vertex, then there exists a γtR(G)-
function f(V0, V1, V2) such that either V2 is a dominating set in G, or the set S of vertices
not dominated by V2 satisfies G[S] = kK2 for some k ≥ 1, where S ⊆ V1 and ∂(S) ⊆ V0.

Theorem 2. Let T be a tree with diam(T ) ≥ 3 such that γtR(T ) = γt2(T ) + γ(T ). Then
there exists a γtR(T )-function f(V0, V1, V2) satisfying the following conditions.

(i) Either V2 is a dominating set of T , or the set V1,1 satisfies T [V1,1] = kK2 for some
k ≥ 1, where ∂(V1,1) ⊆ V0.
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(ii) V2 ∪ I(V1,1) is a γ(T )-set and V2 ∪ V1,2 ∪ I(V1,1) is a γt2(T )-set.

(iii) V1,2 = ∅ or T [V1,2] is isomorphic to an edgeless graph. Furthermore, if v ∈ V1,2, then
|N(v) ∩ V2| = 1.

(iv) If v ∈ V2, then V0 ∩ epn(v, V2) 6= ∅.

(v) If v ∈ V2 ∩N(V1,2), then N(v) ∩ V2 = ∅.

(vi) If v ∈ L(T ), then v ∈ V0 ∪ V1,1.

(vii) If v ∈ Ss(T ), then v ∈ V2 and N(v) ∩ L(T ) ⊆ V0.

Proof. Let f(V0, V1, V2) be a γtR(T )-function which satisfies Lemma 1 such that

f(L(T )) is minimum. Observe that the set S ⊆ V1 of vertices not dominated by V2 is

V1,1, i.e., S = V (T ) \N [V2] = V1,1. Hence, condition (i) holds.

Now, we proceed to prove (ii). First, we notice that A = V2 ∪ I(V1,1) and B = V2 ∪
V1,2∪I(V1,1) are a dominating set and a semitotal dominating set, respectively. Hence,

γ(T ) ≤ |A| and γt2(T ) ≤ |B|. Since |A|+ |B| = γtR(T ) and γtR(T ) = γt2(T ) + γ(T ),

we obtain that |B| + |A| = γt2(T ) + γ(T ). If |A| > γ(T ), then |B| < γt2(T ), which

is a contradiction. Therefore, |A| = γ(T ) and so, |B| = γt2(T ), which completes the

proof of (ii).

Next, we proceed to prove (iii). Let v ∈ V1,2. Clearly, N(v)∩V2 6= ∅. If N(v)∩V1,2 6= ∅
or |N(v) ∩ V2| > 1, then (V2 ∪ V1,2 ∪ I(V1,1)) \ {v} is a semitotal dominating set of

T , which is a contradiction with the fact that V2 ∪ V1,2 ∪ I(V1,1) is a γt2(T )-set by

(ii). Therefore, N(v) ∩ V1,2 = ∅ and |N(v) ∩ V2| = 1, which implies that T [V1,2] is

isomorphic to an edgeless graph, and that |N(v)∩V2| = 1, which completes the proof

of (iii).

In order to prove (iv), let v ∈ V2 and suppose that V0 ∩ epn(v, V2) = ∅. Let

f ′(V ′0 , V
′
1 , V

′
2) be a function defined on T as follows: V ′2 = V2 \ {v}, V ′1 = V1 ∪ {v}

and V ′0 = V0. We claim that f ′ is a TRDF on T . Since f is a TRDF on T , then

by the definition of f ′, we only need to prove that every vertex x ∈ N(v) ∩ V ′0 has

a neighbour in V ′2 . Let x ∈ N(v) ∩ V ′0 . As V0 ∩ epn(v, V2) = ∅ and V ′0 = V0, then

there exists a vertex y ∈ N(x) ∩ (V2 \ {v}) ⊆ V ′2 , as desired. Hence, f ′ is a TRDF

on T and satisfies that ω(f ′) < ω(f) = γtR(T ), which is a contradiction. Therefore,

V0 ∩ epn(v, V2) 6= ∅, as desired.

Now, we proceed to prove (v). Let v ∈ V2 ∩ N(V1,2) and u ∈ V1,2 ∩ N(v). By

(iii) we have that N(u) ∩ V2 = {v}. If N(v) ∩ V2 6= ∅, then as f is a TRDF on

T and N(u) ∩ V2 = {v}, we deduce that the function f ′′ defined by f ′′(u) = 0

and f ′′(x) = f(x) whenever x ∈ V (T ) \ {u}, is a TRDF on T and satisfies that

ω(f ′′) < ω(f) = γtR(T ), which is a contradiction. Therefore, N(v) ∩ V2 = ∅, as

desired.

Next, we proceed to prove (vi). Let v ∈ L(T ). If v ∈ V2, then as T [V1 ∪ V2] has

no isolated vertex, we obtain that V0 ∩ epn(v, V2) = ∅, which is a contradiction

with condition (iv). Now, if v ∈ V1,2, then the support associated to v, namely u,

satisfies that u ∈ V2. Let z ∈ N(u) ∩ V0. We consider the function g, defined by
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g(v) = 0, g(z) = 1 and g(x) = f(x) whenever x ∈ V (T ) \ {v, z}. Notice that g is a

γtR(T )-function as well and satisfies that g(L(T )) < f(L(T )), which is a contradiction.

Therefore, v /∈ V1,2 ∪ V2, i.e. v ∈ V0 ∪ V1,1 as desired.

Finally, we proceed to prove (vii). Let v ∈ Ss(T ). Hence, |N(v) ∩ L(T )| ≥ 2. Notice

that every support vertex has positive weight under f . Hence v ∈ V1 ∪ V2. If v ∈ V1,

then for every h ∈ N(v) ∩ L(T ) we have that h ∈ V1. Let w ∈ N(v) \ L(T ) (notice

that w exists because diam(T ) ≥ 3). Now, the function g, defined by g(v) = 2,

g(h) = 0 if h ∈ N(v) ∩ L(T ), g(w) = max{1, f(w)} and g(x) = f(x) otherwise, is a

γtR(T )-function as well and satisfies that g(L(T )) < f(L(T )), which is a contradiction.

Therefore, v ∈ V2 and N(v) ∩ L(T ) ⊆ V0, which completes the proof.

Remark 1. If T ′ is a subtree of a tree T , then γ(T ′) ≤ γ(T ) and γt2(T ′) ≤ γt2(T ).

We next provide a constructive characterization of the trees T satisfying γtR(T ) =

γt2(T ) + γ(T ). To this end, we need to introduce some additional terminology.

An almost semitotal dominating set of a tree T relative to a vertex v (ASTDS of T

relative to v) is a dominating set S of T (with |S| ≥ 2) such that every vertex in

S \N [v] is within distance 2 of another vertex of S. The almost semitotal domination

number of T relative to v, denoted γt2(T ; v), is the minimum cardinality among all

ASTDSs of T relative to v. An ASTDS of T relative to v of cardinality γt2(T ; v) we

call a γt2(T ; v)-set. Notice that for any vertex v of a tree T , we have that any STDS

is an ASTDS relative to v. Hence, γt2(T ; v) ≤ γt2(T ) for any vertex v of T .

We define a vertex v ∈ V (T ) to be a stable vertex if γ(T − v) ≥ γ(T ) and γt2(T ; v) =

γt2(T ). Also, we define a vertex v ∈ V (T ) to be a semi-stable vertex if γt2(T ; v) =

γt2(T ). Finally, we consider the following sets.

W 1
t2(T ) = {v ∈ V (T ) : v belongs to some γt2(T )-set}.

W a
t2(T ) = {v ∈ V (T ) : v belongs to some γt2(T ; v)-set}.

S2(T ) = {v ∈ S(T ) : f(v) = 2 for some γtR(T )-function f}.

Next, we show an example of some definitions above. For the tree T given in the

Figure 1 we have the following.

• The set {s1, s2, s3} is the only γt2(T )-set and the only γt2(T ; v)-set.

• The sets {h, s2, s3} and {s1, s2, s3} are the only γt2(T ;h)-sets.

• W 1
t2(T ) = {s1, s2, s3} and W a

t2(T ) = {h, s1, s2, s3}.

For integers a, b, c with a ≥ 1, b ∈ {0, 1} and c ≥ 0, the graph Ta,b,c is defined as the

graph obtained from P4, P3, P2 and N1 by taking one copy of N1, a copies of P4, b

copies of P3 and c copies of P2 and joining by an edge one support vertex of each

copy of P4 and one leaf vertex of each copy of P3 and P2 with the vertex of N1. The

vertex associated to the copy of N1 is called the special vertex of Ta,b,c. In Figure 2

we show the tree T1,1,1.
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h s1 v s2 s3

Figure 1. A tree T where h ∈ Wa
t2(T ) \W 1

t2(T ) and v ∈ V (T ) \ (W 1
t2(T ) ∪Wa

t2(T )).

w

Figure 2. The structure of the tree T1,1,1, where w is the special vertex.

Remark 2. For any integers a, b, c with a ≥ 1, b ∈ {0, 1} and c ≥ 0,

γtR(Ta,b,c) = γt2(Ta,b,c) + γ(Ta,b,c).

Proof. Let Ta,b,c be the tree defined above with special vertex w ∈ V (Ta,b,c). Let

Sb(Ta,b,c) = {x ∈ S(Ta,b,c) \ Sadj(Ta,b,c) : d(x,w) = 2}. Now, we define a function

f(V0, V1, V2) on Ta,b,c as follows: V2 = Sadj(Ta,b,c) ∪ Sb(Ta,b,c), V0 = ∂(Sadj(Ta,b,c)) ∪
(N(Sb(Ta,b,c)) ∩ L(Ta,b,c)) and V1 = V (Ta,b,c) \ (V2 ∪ V0). It is easy to see that f is a

TRDF on Ta,b,c, which implies that γtR(Ta,b,c) ≤ ω(f) = 2|V2| + |V1| = γt2(Ta,b,c) +

γ(Ta,b,c). The result follows by Theorem 1.

Lemma 2. Let T2 be a tree obtained from a tree T by attaching a path P2 to a stable
vertex v of T . Then γ(T2) = γ(T ) + 1 and γt2(T2) = γt2(T ) + 1.

Proof. Assume T2 is obtained from T by adding the path uu1 and the edge uv,

where v is a stable vertex of T . Notice that any dominating set of T can be extended

to a dominating set of T2 by adding the vertex u. Hence, γ(T2) ≤ γ(T ) + 1. Let D be

a γ(T2)-set containing u. If D \ {u} is a dominating set of T , then γ(T ) ≤ γ(T2)− 1.

Conversely, if D\{u} is not a dominating set of T , then D\{u} is a dominating set of

T − v, and as v is a stable vertex of T , we deduce that γ(T ) ≤ γ(T − v) ≤ γ(T2)− 1.

Therefore, in both cases, we obtain that γ(T2) = γ(T ) + 1.

Moreover, observe that any semitotal dominating set of T can be extended to a

semitotal dominating set of T2 by adding the vertex u. Hence, γt2(T2) ≤ γt2(T ) + 1.

Let S be a γt2(T2)-set containing u. Notice that D \ {u} is an ASTDS of T relative

to v. Since v is a stable vertex of T , we have that γt2(T ) = γt2(T ; v) ≤ γt2(T2) − 1,

which implies that γt2(T2) = γt2(T ) + 1.
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Let H be the family of trees T that can be obtained from a sequence of trees

T0, . . . , Tk = T , with k ≥ 0 in the following way. First, we consider T0 = P4. Then,

for any i ∈ {1, . . . , k}, the tree Ti can be obtained from the tree T ′ = Ti−1 by one of

the following operations.

Operation O1: Add a new vertex u to T ′ and join u to a vertex v ∈ S2(T ′).

Operation O2: Add a path P2, and join a leaf of the path to a stable vertex v of T ′.

Operation O3: Add a path P3, and join a leaf of the path to a semi-stable vertex

v ∈ V (T ′) \ (W 1
t2(T ′) ∪W a

t2(T ′)).

Operation O4: Add a tree Ta,b,c with special vertex u, and join u to an arbitrary

vertex v of T ′.

For instance, notice the tree T given in Figure 1 belongs to the family H. First,

we consider the subtree T ′ = T [N [{s2, s3}]]. Observe that T ′ ∈ H because can be

obtained from P4 by repeatedly applying Operation O1 three times. Now, note that

v ∈ L(T ′) is a stable vertex of T ′. Therefore, T can be obtained from T ′ by Operation

O2, which implies that T ∈ H, as required.

We will now show that every tree T of the family H satisfies that γtR(T ) = γt2(T ) +

γ(T ).

Theorem 3. If T ∈ H, then γtR(T ) = γt2(T ) + γ(T ).

Proof. We proceed by induction on the number r(T ) of operations required to

construct the tree T . If r(T ) = 0, then T = P4 and satisfies that γtR(T ) =

4 = γt2(T ) + γ(T ). This establishes the base case. Hence, we now assume that

k ≥ 1 is an integer and that each tree T ′ ∈ H with r(T ′) < k satisfies that

γtR(T ′) = γt2(T ′) + γ(T ′).

Let T ∈ H be a tree with r(T ) = k, which is obtained from a tree T ′ ∈ H with

r(T ′) = k − 1 by one of the operations defined above. We shall prove that T satisfies

that γtR(T ) = γt2(T ) + γ(T ). For this, we consider the following cases, depending on

which operation is used to construct the tree T from T ′.

Case 1. T is obtained from T ′ by Operation O1. Assume T is obtained

from T ′ by adding a new vertex u and the edge uv, where v ∈ S2(T ′). Thus,

there exists a γtR(T ′)-function f ′ satisfying that f ′(v) = 2. Observe that the

function f , defined by f(u) = 0 and f(x) = f ′(x) whenever x ∈ V (T ′), is a

TRDF on T . Hence, γtR(T ) ≤ ω(f) = ω(f ′) = γtR(T ′). Thus, by Theorem

1, the inequality above, the inductive hypothesis and Remark 1, it follows that

γt2(T ) + γ(T ) ≤ γtR(T ) ≤ γtR(T ′) = γt2(T ′) + γ(T ′) ≤ γt2(T ) + γ(T ). Therefore,

we must have equalities throughout the inequality chain above. In particular,

γtR(T ) = γt2(T ) + γ(T ).
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Case 2. T is obtained from T ′ by Operation O2. Assume T is obtained from

T ′ by adding a path uu1 and the edge uv where v is a stable vertex of T ′.

Again, notice that any γtR(T ′)-function can be extended to a TRDF on T by

assigning the weight 1 to u and u1. Hence, γtR(T ) ≤ γtR(T ′) + 2. Thus, by

Theorem 1, the inequality above, the inductive hypothesis and Lemma 2, we obtain

γt2(T ) + γ(T ) ≤ γtR(T ) ≤ γtR(T ′) + 2 = γt2(T ′) + γ(T ′) + 2 = γt2(T ) + γ(T ).

Thus, we must have equalities throughout the above inequality chain. In particular,

γtR(T ) = γt2(T ) + γ(T ).

Case 3. T is obtained from T ′ by Operation O3. Assume T is obtained from T ′ by

adding a path uu1u2 and the edge uv where v is a semi-stable vertex and belongs to

V (T ′)\ (W 1
t2(T ′)∪W a

t2(T ′)). Observe that any γtR(T ′)-function can be extended to a

TRDF on T by assigning the weight 1 to u, u1 and u2. Hence, γtR(T ) ≤ γtR(T ′) + 3.

Moreover, notice that γt2(T ′) ≤ γt2(T )− 1. Now, suppose that γt2(T ′) = γt2(T )− 1

and let S be a γt2(T )-set such that v, u1 ∈ S. If S′ = S \ {u1} is a STDS

of T ′, then S′ is a γt2(T ′)-set containing v, which is a contradiction with the

fact that v /∈ W 1
t2(T ′). Hence, S′ is not a STDS of T ′, however S′ is an

ASTDS of T ′ relative to v and as v is a semi-stable vertex of T ′, it follows

that γt2(T ′) = γt2(T ′; v) ≤ |S′| = |S \ {u1}| = γt2(T ) − 1 = γt2(T ′). Thus,

S′ is a γt2(T ′; v)-set containing v, which is a contradiction with the fact that

v /∈ W a
t2(T ′). So, γt2(T ′) ≤ γt2(T ) − 2. Also, it is clear that γ(T ) = γ(T ′) + 1.

Hence, by Theorem 1, the inequalities above and the inductive hypothesis we obtain

γt2(T ) + γ(T ) ≤ γtR(T ) ≤ γtR(T ′) + 3 = γt2(T ′) + γ(T ′) + 3 ≤ γt2(T ) + γ(T ).

Thus, we must have equalities throughout the inequality chain above. In particular,

γtR(T ) = γt2(T ) + γ(T ).

Case 4. T is obtained from T ′ by Operation O4. Assume T is obtained from T ′ by

adding the tree Ta,b,c with special vertex u, and join u to an arbitrary vertex v of T ′.

Let Sb(Ta,b,c) = {x ∈ S(Ta,b,c) \ Sadj(Ta,b,c) : d(x, u) = 2}. Notice that any γtR(T ′)-

function f ′(V ′0 , V
′
1 , V

′
2) can be extended to a TRDF f(V0, V1, V2) on T as follows:

V2 = V ′2∪Sadj(Ta,b,c)∪Sb(Ta,b,c), V0 = V ′0∪∂(Sadj(Ta,b,c))∪(N(Sb(Ta,b,c))∩L(Ta,b,c))

and V1 = V (T ) \ (V2 ∪ V0). Hence, γtR(T ) ≤ ω(f) = γtR(T ′) + (4a+ 3b+ 2c). Notice

that the definition of f is similar to the one given in the proof of Remark 2, where

we deduce that γtR(Ta,b,c) = γt2(Ta,b,c) + γ(Ta,b,c). In that a sense, it is easy to

see that γt2(T ) = γt2(T ′) + (2a + 2b + c) and γ(T ) = γ(T ′) + (2a + b + c). Thus,

by Theorem 1, the inequalities above and the inductive hypothesis we obtain that

γt2(T )+γ(T ) ≤ γtR(T ) ≤ γtR(T ′)+(4a+3b+2c) = γt2(T ′)+γ(T ′)+(4a+3b+2c) =

γt2(T ) + γ(T ). Thus, we must have equalities throughout this inequality chain. In

particular, γtR(T ) = γt2(T ) + γ(T ).

Now, we prove that any tree T with γtR(T ) = γt2(T ) +γ(T ) belongs to the family H.

Theorem 4. Let T be a tree with diam(T ) ≥ 3. If γtR(T ) = γt2(T ) + γ(T ), then T ∈ H.



A. Cabrera Mart́ınez, A. Mart́ınez Arias, M. Menendez Castillo 205

Proof. We proceed by induction on the order n ≥ 4 of the trees T with diam(T ) ≥ 3

that satisfy γtR(T ) = γt2(T ) + γ(T ). We observe that if diam(T ) = 3, then T is a

double star and so, γtR(T ) = γt2(T ) + γ(T ). Thus, either T is a path P4 or T can

be obtained from P4 by repeatedly applying Operation O1. Therefore, T ∈ H. This

establishes the base case. We assume now that diam(T ) ≥ 4. Also, we consider an

integer n > 4 such that each tree T ′ with |V (T ′)| < n and γtR(T ′) = γt2(T ′) + γ(T ′)

satisfies that T ′ ∈ H. Let T be a tree with |V (T )| = n and γtR(T ) = γt2(T ) + γ(T ).

We shall prove that T ∈ H. For this, we root the tree T at a leaf vertex r belonging

to a longest path in T . Let h be a vertex at maximum distance from r. Clearly, h is

a leaf. Let s be the parent of h, let v be the parent of s, let w be the parent of v, and

let z be the parent of w (note that it could happen z = r). We now proceed with the

following claims.

Claim I. If δT (s) ≥ 3, then T ∈ H.

Proof. Let f be a γtR(T )-function which satisfies Theorem 2. Since δT (s) ≥ 3, it

follows that s ∈ Ss(T ), and so, by Theorem 2 (vii), f(s) = 2 and f(h) = 0. Let T ′ =

T − h. Hence, f restricted to V (T ′) is a TRDF on T ′, which implies that γtR(T ′) ≤
γtR(T ). Also, since s ∈ S(T ′), we have that γt2(T ) = γt2(T ′) and γ(T ) = γ(T ′) by

Remark 1. Thus, by Theorem 1, inequalities above and the hypothesis of the theorem

we obtain that γt2(T ′)+γ(T ′) ≤ γtR(T ′) ≤ γtR(T ) = γt2(T )+γ(T ) = γt2(T ′)+γ(T ′).

Consequently, we must have equality throughout this inequality chain. In particular

γtR(T ′) = γt2(T ′) + γ(T ′). Applying the hypothesis inductive to T ′, it follows that

T ′ ∈ H.

Another consequence of the equalities given in the inequality chain above is that

γtR(T ′) = γtR(T ). This implies that f restricted to V (T ′) is a γtR(T ′)-function.

Hence, s ∈ S2(T ′). Therefore, T can be obtained from T ′ by Operation O1, and

consequently, T ∈ H. (�)

Notice that the position of vertex s in T with respect to r is not important in the

presented proof of Claim I. Hence, we may henceforth assume that Ss(T ) = ∅.

Claim II. If δT (s) = 2 and δT (v) ≥ 3, then T ∈ H.

Proof. In this case, we have that v ∈ SS(T ) ∪ S(T ). Let f(V0, V1, V2) be a γtR(T )-

function which satisfies Theorem 2. Now, we analyse the following two cases.

Case 1. v ∈ SS(T ). In this case we have that v /∈ S(T ), and as |N(v) ∩ S(T )| ≥ 2,

Theorem 2 (iii) leads to f(v) 6= 1. Hence, if f(v) = 0, then f(s) = f(h) = 1.

Otherwise, if f(v) = 2, then f(s) = 2 and f(h) = 0. Let T ′ = T −{s, h}. Notice that,

in both cases, f restricted to V (T ′) is a TRDF on T ′, and so γtR(T ′) ≤ γtR(T ) − 2.

Also, since v ∈ SS(T ′), it is easy to check that γt2(T ) ≤ γt2(T ′) + 1 and γ(T ) ≤
γ(T ′) + 1. Thus, by Theorem 1, the inequalities above and the hypothesis of the

theorem, we obtain that

γt2(T ′) + γ(T ′) ≤ γtR(T ′) ≤ γtR(T )− 2 = γt2(T ) + γ(T )− 2 ≤ γt2(T ′) + γ(T ′). (1)

As a consequence, we must have equalities throughout the inequality chain (1). In
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particular, γtR(T ′) = γt2(T ′) + γ(T ′) and by the inductive hypothesis, T ′ ∈ H. Also,

we obtain that γt2(T ) = γt2(T ′)+1 and γ(T ) = γ(T ′)+1. Notice that any dominating

set of T ′−v (respectively, ASTDS of T ′ relative to v ) can be extended to a dominating

set (respectively, STDS) of T by adding the vertex s. Hence γ(T ) ≤ γ(T ′−v)+1 and

γt2(T ) ≤ γt2(T ′; v)+1. If v is not a stable vertex of T ′, then we obtain a contradiction

with at least one of the equalities γt2(T ) = γt2(T ′) + 1 and γ(T ) = γ(T ′) + 1. So, v

is a stable vertex of T ′. Therefore, T can be obtained from T ′ by Operation O2, and

consequently, T ∈ H.

Case 2. v ∈ S(T ). Let N(v)∩L(T ) = {h′} (recall that Ss(T ) = ∅). Since v, s ∈ S(T ),

we have that f(v) = f(s) = 2 and f(h) = f(h′) = 0. We analyse the following two

subcases.

Subcase 2.1. f(w) > 0. In this subcase, f restricted to V (T ) \ {s, h} is a TRDF on

T ′ = T−{s, h}. Hence γtR(T ′) ≤ γtR(T )−2. Also, since v ∈ S(T ′), it is easy to check

to γt2(T ) ≤ γt2(T ′) + 1 and γ(T ) = γ(T ′) + 1. Thus, by Theorem 1, the inequalities

above and the hypothesis of the theorem, we obtain Inequality chain (1). So, we must

have equalities throughout this inequality chain. In particular, γt2(T ) = γt2(T ′) + 1

and also, γtR(T ′) = γt2(T ′) + γ(T ′), which implies that T ′ ∈ H by the inductive

hypothesis,. By proceeding analogously to the Case 1 of Claim II, we deduce that v is

a stable vertex of T ′. Hence, T can be obtained from T ′ by Operation O2. Therefore,

T ∈ H.

Subcase 2.2. f(w) = 0. First, we observe that w /∈ S(T ). Now, we notice that w

does not have two children v1 and v2 such that Tv1 = Tv2 = P3 (otherwise, the set

(V2 ∪ V1,2 ∪ I(V1,1) ∪ {w}) \ {v1, v2} is a STDS of T , which is a contradiction with

Theorem 2 (ii)). Hence, by Theorem 2 we have that Tw ∼= Ta,b,c. Let T ′ = T −V (Tw).

Since f(w) = 0, we have that f restricted to V (T ′) is a TRDF on T ′. So, γtR(T ′) ≤
ω(f)−f(V (Tw)) = γtR(T )− (4a+3b+2c). Also, by Theorem 2, it is easy to check to

γt2(T ) = γt2(T ′)+(2a+2b+ c) and γ(T ) = γ(T ′)+(2a+ b+ c). Thus, by Theorem 1,

the inequalities above and the hypothesis of the theorem, we obtain γt2(T ′)+γ(T ′) ≤
γtR(T ′) ≤ γtR(T )− (4a+ 3b+ 2c) = γt2(T ) + γ(T )− (4a+ 3b+ 2c) = γt2(T ′) + γ(T ′).

So, we must have equalities throughout the inequality chain above. In particular,

γtR(T ′) = γt2(T ′) + γ(T ′).

If diam(T ′) ≥ 3, then by the inductive hypothesis, T ′ ∈ H. Therefore, T can be

obtained from T ′ by Operation O4, and consequently, T ∈ H.

Now, we suppose that diam(T ′) ∈ {1, 2}. This implies that T ′ ∈ {P2, P3}. Since

Tw ∼= Ta,b,c and γtR(T ) = γt2(T ) + γ(T ), we deduce that T ∼= Ta,b′,c′ , and so, by the

structure of T , it is easy to check that T ∈ H. (�)

Claim III. If δT (s) = δT (v) = 2 and δT (w) ≥ 3, then T ∈ H.

Proof. Let f(V0, V1, V2) be a γtR(T )-function which satisfies Theorem 2. Let v′ ∈
N(w) \ {z, v}. Notice that v′ ∈ L(T ) ∪ S(T ) ∪ SS(T ). Suppose that f(v) = 2. If

v′ ∈ L(T ) ∪ S(T ), then the set (V2 ∪ I(V1,1)) \ {v} is a dominating set of T , which is

a contradiction with Theorem 2 (ii). So, v′ ∈ SS(T ), which implies that f(v′) = 1 as



A. Cabrera Mart́ınez, A. Mart́ınez Arias, M. Menendez Castillo 207

consequence of Theorem 2. Notice that the set (V2 ∪ V1,2 ∪ I(V1,1) ∪ {w}) \ {v′, v} is

a STDS of T , which is again a contradiction with Theorem 2 (ii). Thus, f(v) ≤ 1.

Now, we analyse the following two cases.

Case 1. f(v) = 0. Notice that f(w) = 2 and f(s) = f(h) = 1. Let T ′ = T − {h, s}.
By proceeding analogously to the Case 1 of Claim II, we deduce that T ′ ∈ H and

that v is a stable vertex of T ′. Hence, T can be obtained from T ′ by Operation O2,

and consequently, T ∈ H.

Case 2. f(v) = 1. In this case, Theorem 2 leads to f(s) = 2 and f(h) = f(w) = 0.

If w ∈ S(T ) then f(w) = 2, which is a contradiction with Theorem 2 (ii) because the

set (V2 ∪ I(V1,1)) \ {v} is a dominating set of T . Hence, w /∈ S(T ). If there exists

a child of w different from v, belonging to SS(T ), then, as proceeding as before, we

can obtain a STDS of T of cardinality less than γt2(T ), which is a contradiction. So,

N(w) \ {v, z} ⊆ S(T ). Next, we consider the following two subcases.

Subcase 2.1. There exists x ∈ N(w) \ {v, z} such that f(x) = 2. In this subcase, it

is easy to see that Tw ∼= Ta,1,c. Hence, by proceeding analogously to the Subcase 2.2

(Case 2) of Claim II, we deduce that T ∈ H.

Subcase 2.2. N(w)\{v, z} ⊆ V1,1. This implies that f(z) = 2. Let N(v′)∩L(T ) = {s′}
and T ′′ = T − {v′, s′}. Again, by proceeding analogously to the Case 1 of Claim II,

we deduce that T ′′ ∈ H and that w is a stable vertex of T ′′. Hence, T can be obtained

from T ′′ by Operation O2, and consequently, T ∈ H. (�)

Claim IV. If δT (s) = δT (v) = δT (w) = 2, then T ∈ H.

Proof. Let f(V0, V1, V2) be a γtR(T )-function which satisfies Theorem 2. If f(v) = 0,

then f(s) = f(h) = 1, f(w) = 2 and f(z) > 0. If f(z) = 2, then (V2 ∪ I(V1,1)) \ {w}
is a dominating set of T , which is a contradiction with Theorem 2 (ii). Otherwise, if

f(z) = 1, then (V2∪V1,2∪I(V1,1))\{z} is a STDS of T , which is again a contradiction

with Theorem 2 (ii). Thus f(v) ∈ {1, 2} and we analyse the following two cases.

Case 1. f(v) = 1. In this case, we obtain that f(s) = f(z) = 2 and f(h) = f(w) = 0.

Let T ′ = T−{h, s, v}. Since f(z) = 2 and by Theorem 2 (vi), we have that diam(T ) ≥
6. Notice that f restricted to V (T ′) is a TRDF on T ′. Hence, γtR(T ′) ≤ γtR(T )− 3.

Moreover, it is clear that γ(T ) = γ(T ′) + 1. Also, every STDS of T ′ can be extended

to a STDS of T by adding the vertices v and s. So, γt2(T ) ≤ γt2(T ′) + 2. Therefore,

by Theorem 1, the inequalities above and the hypothesis of the theorem, we obtain

γt2(T ′)+γ(T ′) ≤ γtR(T ′) ≤ γtR(T )−3 = γt2(T )+γ(T )−3 ≤ γt2(T ′)+γ(T ′). Hence,

we must have equalities throughout this inequality chain. In particular, γtR(T ′) =

γt2(T ′) + γ(T ′) and by the inductive hypothesis, T ′ ∈ H.

Another consequence of equalities above is that γt2(T ) = γt2(T ′)+2. Notice that any

ASTDS of T ′ relative to w can be extended to a STDS of T by adding the vertices v

and s. Hence γt2(T ) ≤ γt2(T ′;w) + 2. If w is not a semi-stable vertex of T ′, then we

obtain a contradiction with the fact that γt2(T ) = γt2(T ′) + 2. So, w is a semi-stable

vertex of T ′.
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Moreover, if w ∈ W 1
t2(T ′) ∪W a

t2(T ′), then there exists either a γt2(T ′;w)-set S or a

γt2(T ′)-set D containing to w. Observe that the sets S ∪ {s} and D ∪ {s} are STDSs

of T . This implies, in both cases, that γt2(T ) ≤ γt2(T ′) + 1, which is a contradiction.

So, w ∈ V (T ′) \ (W 1
t2(T ′) ∪W a

t2(T ′)).

Thus, as diam(T ′) ≥ 3, we have that T can be obtained from T ′ by Operation O3.

Therefore, T ∈ H.

Case 2. f(v) = 2. In this case, we obtain that f(s) = 2 and f(h) = f(w) = 0.

Theorem 2 (iv) leads to f(z) 6= 2. Let T ′ = T − {h, s}. Notice that the function f ′,

defined by f ′(x) = f(x) if x ∈ V (T ′) \ {v, w} and f ′(v) = f ′(w) = 1, is a TRDF on

T ′. Hence, γtR(T ′) ≤ ω(f ′) = γtR(T ) − 2. Also, every dominating set (respectively,

STDS) of T ′ can be extended to a dominating set (respectively, STDS) of T by adding

the vertex s. So, γ(T ) ≤ γ(T ′)+1 and γt2(T ) ≤ γt2(T ′)+1. Therefore, by Theorem 1,

the inequalities above and the hypothesis of the theorem, we obtain γt2(T ′)+γ(T ′) ≤
γtR(T ′) ≤ γtR(T ) − 2 = γt2(T ) + γ(T ) − 2 ≤ γt2(T ′) + γ(T ′). Hence, we must have

equalities throughout this inequality chain. In particular, γtR(T ′) = γt2(T ′) + γ(T ′)

and by the inductive hypothesis, T ′ ∈ H.

Another consequence of equalities above is that γ(T ) = γ(T ′) + 1 and γt2(T ) =

γt2(T ′) + 1. By proceeding analogously to the Case 1 of Claim II, it is easy to see

that v is a stable vertex of T ′. Thus, T can be obtained from T ′ by Operation O2.

Therefore, T ∈ H, which completes the proof.

As an immediate consequence of Theorems 3 and 4, we have the desired characteri-

zation.

Theorem 5. A tree T of order n ≥ 3 satisfies that γtR(T ) = γt2(T ) + γ(T ) if and only
if T ∼= K1,n−1 or T ∈ H.

Finally, the examples given in the Figure 3 show that the operations O1, O2, O3 and

O4 are required in the previous characterization.

(I) (II) (III)

Figure 3. The tree (I) can only be obtained from P4 by a sequence of operations O1, O3; the tree (II) can
only be obtained from P4 by the Operation O2 and the tree (III) can only be obtained from
P4 by the Operation O4 (using the tree T1,1,0).
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