
CCO
Commun. Comb. Optim.

c© 2021 Azarbaijan Shahid Madani University

Communications in Combinatorics and Optimization

Vol. 6 No. 1, 2021 pp.155-169

DOI: 10.22049/CCO.2020.26901.1160

Research Article

On Zagreb energy and edge-Zagreb energy

Rakshith Billava Ramanna

Department of Mathematics, Vidyavardhaka College of Engineering, Mysuru 570002, India
ranmsc08@yahoo.co.in

Received: 8 August 2020; Accepted: 14 October 2020
Published Online: 19 October 2020

Abstract: In this paper, we obtain some upper and lower bounds for the general

extended energy of a graph. As an application, we obtain few bounds for the (edge)

Zagreb energy of a graph. Also, we deduce a relation between Zagreb energy and
edge-Zagreb energy of a graph G with minimum degree δ ≥ 2. A lower and upper

bound for the spectral radius of the edge-Zagreb matrix is obtained. Finally, we give

some methods to construct (edge) Zagreb equienergetic graphs and show that there are
(edge) Zagreb equienergetic graphs of order n ≥ 9.
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1. Introduction

Graphs considered here are simple and undirected. Let G be a graph with vertex

set V (G) = {v1, v2, . . . , vn}, edge set E(G) and vertex degrees ∆ = d1 ≥ d2 ≥ · · · ≥
dn = δ. Let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of A(G), the adjacency matrix

of G. Then the energy of the graph G [15] is defined as E(G) =
∑n
i=1 |λi|. Recent

research about graph energies can be found in the survey article by Gutman and

Ramane [10], and also see [2, 9]. The Zagreb matrix of G, denoted by Z1(G), is

the n × n matrix whose (i, j)th entry is di + dj if vivj ∈ E(G), 0 otherwise. This

matrix was first considered in [13], where it was named “first Zagreb matrix”. In

[13] the respective energy was called “first Zagreb energy”. The spectrum of Z1(G)

is called the Zagreb spectrum of G and is denoted by spec(Z1(G)) = {η1, η2, . . . , ηn},
where η1 ≥ η2 ≥ · · · ≥ ηn. The Zagreb energy of G (same as the first Zagreb energy

in [13]) is denoted by ZE1(G) and is defined as ZE1(G) =

n∑
i=1

|ηi|. The concept of

Zagreb energy was recently introduced by Rad, Jahanbani and Gutman [13]. Some

properties of Zagreb matrix and some upper and lower bounds for the Zagreb energy
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can be found in [4, 13]. The edge-Zagreb matrix of G, denoted by Z2(G), is the n×n
matrix whose (i, j)th entry is didj if vivj ∈ E(G), 0 otherwise. This matrix was first

considered in [13], where it was named “second Zagreb matrix”. In [13] the respective

energy was called “second Zagreb energy”. The spectrum of Z2(G) is called the

edge-Zagreb spectrum of G and is denoted by spec(Z2(G)) = {γ1, γ2, . . . , γn}, where

γ1 ≥ γ2 ≥ · · · ≥ γn. The edge-Zagreb energy of G (same as the second Zagreb energy

in [13]) is defined as ZE2(G) =

n∑
i=1

|γi|. The invariant ZE2(G) was introduced by Rad,

Jahanbani and Gutman in [13]. Following Zhan, Qiao and Cai [17], we shall refer to

it as the “edge-Zagreb energy”. In [17], the authors obtained several properties of the

edge-Zagreb matrix and some upper bounds for the spectral radius γ1, and also some

upper and lower bounds of the edge-Zagreb energy ZE2(G).

Let TI(G) be a degree based topological index of the form

TI =
∑

vivj∈E(G)

F(di, dj),

where F is an appropriately chosen function such that F(di, dj) = F(dj , di).

Some of the well-known degree based topological indices of this kind are first Zagreb

index M1, F(di, dj) = di + dj , second Zagreb index M2, F(di, dj) = didj , hyper

Zagreb index HM , F(di, dj) = (di + dj)
2, general Randić index Rα, F(di, dj) =

(didj)
α, harmonic index, F(di, dj) =

2

di + dj
, atom-bond connectivity index ABC,

F(di, dj) =

√
di + dj − 2

didj
, geometric-arithmetic index GA1, F(di, dj) =

2
√
didj

di + dj
, etc.

See [7, 8, 14] for more details. The general extended adjacency matrix associated with

the topological index TI(G) is denoted by T (G) and is defined as T (G) = (tij)n×n,

where

tij =

{
F(di, dj), if vivj ∈ E(G)

0, otherwise.

If F(di, dj) = 1, then T (G) = A(G), the adjacency matrix of G and if F(di, dj) =

di + dj , then T (G) = Z1(G). Also, T (G) = Z2(G) if F(di, dj) = didj . Let f1 ≥
f2 ≥ · · · ≥ fn be the eigenvalues of the topological matrix T , Then the energy of the

general extended adjacency matrix T , ET (G), is defined as

ET (G) =

n∑
i=1

|fi|.

Studies on general extended adjacency matrix and its energy can be found be in [6].

Two non-isomorphic graphs of same order are said to be equienergetic if their energies

are equal. Similarly, two graphs are said to be (edge) Zagreb equienergrtic if their

(edge) Zagreb energies are same. More details on equienergetic graphs can be found
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in [1, 15]. As usual, we denote by Pn, Cn, Kn and Kn,m, the path graph, the cycle,

the complete graph and the complete bipartite graph of order n+m.

In Section 2 of the paper, we obtain some upper and lower bounds for the general

extended energy of a graph. As an application, we obtain few bounds for the (edge)

Zagreb energy of a graph. Also, we obtain a relation between Zagreb and edge-Zagreb

energy of a graph G with minimum degree δ ≥ 2. In Section 3, we obtain a lower

and upper bound for the spectral radius γ1 of Z2(G). In Section 4, we give some

methods to construct (edge) Zagreb equienergetic graphs and show that there are

(edge) Zagreb equienergetic graphs of order n ≥ 9.

2. Some bounds for the (edge) Zagreb energy of a graph

Let M be a m × n matrix and let the singular values of M be denoted by s1(M) ≥
s2(M) ≥ · · · ≥ sm(M). We need the following two lemmas (see, [16]) to prove one of

our results.

Lemma 1. [16] If A and B are n× n complex matrices. Then

k∑
i=1

si(A+B) ≤
k∑

i=1

si(A) +

k∑
i=1

si(B), k = 1, 2, . . . , n.

Lemma 2. [16] If A1, A2, . . . , Am are n× n complex matrices. Then

k∑
i=1

si(A1A2 . . . Am) ≤
k∑

i=1

si(A1)si(A2) . . . si(Am), k = 1, 2, . . . , n.

In the following theorem, we obtain an upper bound for the energy of the general

extended adjacency matrix in terms of ordinary energy when F(di, dj) = f(di) +

f(dj) + g(di)g(dj) and f(di) and g(di) are non-negative real numbers.

Theorem 1. Let f(di) and g(di) be non-negative real numbers. If F(di, dj) = f(di) +
f(dj) + g(di)g(dj). Then

ET (G) ≤ (2fm + g2m)E(G) (1)

where fm = max{f(d1), f(d2), . . . , f(dn)} and gm = max{g(d1), g(d2), . . . , g(dn)}. Equality
in (1) is attained if and only if f(d1) = f(d2) = · · · = f(dn) and g(d1) = g(d2) = · · · = g(dn).

Proof. Let D1 be the diagonal matrix with diagonal entries f(d1), f(d2), . . . , f(dn)

and let D2 be the diagonal matrix with diagonal entries g(d1), g(d2), . . . , g(dn). Since

F(di, dj) = f(di) + f(dj) + g(di)g(dj), the matrix T can be written as

T (G) = D1A(G) +A(G)D1 +D2A(G)D2.
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Therefore by Lemma 1 and Lemma 2, we get

n∑
i=1

si(T (G)) ≤
n∑
i=1

si(D1A(G) +A(G)D1) +

n∑
i=1

si(D2A(G)D2)

≤
n∑
i=1

si(D1A(G)) + si(A(G)D1) +

n∑
i=1

si(D2A(G)D2)

= 2

n∑
i=1

si(D1A(G)) +

n∑
i=1

si(D2A(G)D2)

≤ 2

n∑
i=1

si(D1)si(A(G)) +

n∑
i=1

si(D2)si(A(G))si(D2)

≤ 2fm

n∑
i=1

si(A(G)) + g2m

n∑
i=1

si(A(G)) (2)

= 2fmE(G) + g2mE(G).

Thus ET (G) ≤ (2fm+g2m)E(G). Suppose the equality in (1) holds. Then the inequality

in (2) must be equality. Thus f(d1) = f(d2) = · · · = f(dn) and g(d1) = g(d2) = · · · =
g(dn). Conversely, if f(d1) = f(d2) = · · · = f(dn) and g(d1) = g(d2) = · · · = g(dn),

then T (G) = (2fm + g2m)A(G). Hence ET (G) = (2fm + g2m)E(G). This completes the

proof.

As an application of Theorem 1, we obtain the following corollary which gives an

upper bound for (edge) Zagreb energy in terms of ordinary energy.

Corollary 1. Let G be a graph of order n, Then ZE1(G) ≤ 2∆E(G) and ZE2(G) ≤
∆2E(G). Equality is attained only if G is a regular graph.

Proof. Setting f(di) = di, g(di) = 0 and f(di) = 0, g(di) = di in Theorem 1 we

obtain the desired result.

The following theorem gives an upper bound for the energy of general extended ad-

jacency matrix in terms of F(di, dj).

Theorem 2. Let G be a graph on n vertices. Then

ET (G) ≤
n∑

i=1

√ ∑
vivj∈E(G)

F2(di, dj).

Proof. We have 2T =

n∑
i=1

Ti, where Ti is the n×n matrix obtained from T by letting

all the entries equal to 0 expect the ith row and ith column entries. By Lemma 1,

2ET (G) ≤
n∑
i=1

E(Ti). (3)
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Claim: E(Ti) = 2
√∑

vivj∈E(G) F2(di, dj).

From the definition of Ti, we see that the matrix Ti is similar to the matrix STi =(
0 X

XT 0

)
, where the jth entry of the row vector X is F(di, dj) if vivj ∈ E(G), 0

otherwise. It is straightforward that the rank of STi is either 0 or 2. If rank(STi) = 0,

then we are done. Suppose rank(STi) = 2. Since trace(STi) = 0, it follows that µ and

−µ are the only non-zero eigenvalues of STi, where µ is an unknown positive number.

Thus 2µ2 = trace(ST 2
i ) = 2

∑
vivj∈E(G)

F2(di, dj) and so µ =
√∑

vivj∈E(G) F2(di, dj).

Hence spec(Ti) = {±
√∑

vivj∈E(G) F2(di, dj), 0, 0, . . . , 0}. Therefore

E(Ti) = 2

√ ∑
vivj∈E(G)

F2(di, dj). (4)

From equations (3) and (4), we get the desired result.

From Theorem 2, we obtain the following two corollaries which give an upper bound

for the (edge) Zagreb energy in terms of vertex degrees.

Corollary 2. Let G be a graph on n vertices. Then

ZE1(G) ≤
n∑

i=1

√ ∑
vivj∈E(G)

(di + dj)2. (5)

Proof. Setting F(di, dj) = di + dj in Theorem 2, we obtain (5).

Corollary 3. [17] Let G be a graph on n vertices. Then

ZE2(G) ≤
n∑

i=1

√ ∑
vivj∈E(G)

(didj)2. (6)

Proof. Setting F(di, dj) = didj in Theorem 2, we obtain (6).

Let M be a Hermitian matrix of order p. We denote the eigenvalues of M by θ1(M) ≥
θ2(M) ≥ · · · ≥ θp(M). The following lemmas are useful to prove our next theorem.

Lemma 3. [11] Let A = (aij) and B = (bij) be symmetric, non-negative matrices of
order n. If A ≥ B, i.e., aij ≥ bij for all i, j, then θ1(A) ≥ θ1(B).

Lemma 4. [5] Let G be a graph of order n. Then |f1| = |f2| = · · · = |fn| if and only if

G ∼= Kn or G ∼=
n

2
K2.
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Lemma 5. [3] Let G be a connected graph of order n and size m. Then λ1 ≥ 2m/n.
Equality holds if and only if G is a regular graph.

Theorem 3. Let G be a connected graph on n vertices with m edges. Suppose F(di, dj) > 0
and s is the smallest positive element in T(G). Then

ET (G) ≤ t+

√√√√√(n− 1)

2
∑

vivj∈E(G)

F2(di, dj)− t2

, (7)

where t = max


√

2
∑

vivj∈E(G) F
2(di, dj)

n
,

2ms

n

. Moreover the equality holds if and only

if G is a compete graph or a strongly regular graph with two non-trivial eigenvalues whose

absolute values are equal to

√√√√(2m−
(

2m

n

)2
)
/(n− 1).

Proof. From the Cauchy–Schwarz inequality, we have

n∑
i=2

|fi| ≤

√√√√(n− 1)

n∑
i=2

f2i =

√√√√(n− 1)

(
n∑
i=1

f2i − f21

)
(8)

=

√√√√√(n− 1)

2
∑

vivj∈E(G)

F2(di, dj)− f21

.
Thus

ET (G) ≤ f1 +

√√√√√(n− 1)

2
∑

vivj∈E(G)

F2(di, dj)− f21

.
Let f(t) := t +

√
(n− 1)

(
2
∑
vivj∈E(G) F2(di, dj)− t2

)
. Then f has maximum at

t0 =

√
2
∑
vivj∈E(G) F2(di, dj)

n
. Since T (G) ≥ sA(G), from Lemma 3 and Lemma 5,

we get f1 ≥ sλ1 ≥
2ms

n
. Now, if f1 ≤ t0, then

E(G) ≤ t0 +

√√√√√(n− 1)

2
∑

vivj∈E(G)

F2(di, dj)− t20

. (9)
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Also, if
2ms

n
≥ t0, then

E(G) ≤ 2ms

n
+

√√√√√(n− 1)

2
∑

vivj∈E(G)

F2(di, dj)−
(

2ms

n

)2
. (10)

The first part of the proof is done. Suppose the equality in (7) holds. Then the

inequality (8) must be equality. Thus |f2| = |f3| = · · · = |fn|. If the equality in

(9) holds, then f1 = t0. Therefore, nf21 =
∑n
i=1 f

2
i and so |f1| = |f2| = |f3| =

· · · = |fn|. Thus by Lemma 4, we must have G ∼= K1 or G ∼= K2. Now, if the

equality in (10) holds then f1 =
2ms

n
, i.e., λ1 = 2m/n and so by Lemma 5, G must

be a regular graph. Now, since G is regular and |f2| = |f3| = · · · = |fn|, we must

have |λ2| = |λ3| = · · · = |λn|. Hence G is a regular graph with at most 3 distinct

eigenvalues. First, if G has exactly one distinct eigenvalue, then G ∼= K1 and also if

G has exactly two distinct eigenvalues, then G ∼= Kn (see, [3]). Next, if G has exactly

three distinct eigenvalues, then G is a strongly regular graph (see, [3]) with two non-

trivial eigenvalues whose absolute values are equal to

√√√√(2m−
(

2m

n

)2
)
/(n− 1).

Conversely, one can easily check that the equality in (7) holds for the graphs Kn and

the strongly regular graph with two non-trivial eigenvalues whose absolute values are

equal to

√√√√(2m−
(

2m

n

)2
)
/(n− 1).

Employing Theorem 3 for the (edge) Zagreb energy of a connected graph, we obtain

the following upper bounds for the (edge) Zagreb energy.

Corollary 4. Let G be a connected graph on n vertices with m edges and s be the smallest
positive element in Z1(G). Then

ZE1(G) ≤ t+
√

(n− 1) (2HM(G)− t2),

where t = max{
√

2HM/n, 2ms/n}. Moreover the equality holds if and only if G is a complete
graph or a strongly regular graph with two non-trivial eigenvalues whose absolute values are

equal to

√√√√(2m−
(

2m

n

)2
)
/(n− 1).

Corollary 5. Let G be a connected graph on n vertices with m edges and s be the smallest
positive element in Z2(G). Then

ZE2(G) ≤ t+
√

(n− 1) (2R2(G)− t2),
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where t = max{
√

2R2(G)/n, 2ms/n}. Moreover the equality holds if and only if G is a
complete graph or a strongly regular graph with two non-trivial eigenvalues whose absolute

values are equal to

√√√√(2m−
(

2m

n

)2
)
/(n− 1).

Lemma 6. [11] Let M be a symmetric matrix of order n, and let Mk be its leading k× k
submatrix. Then θn−k+i(M) ≤ θi(Mk) ≤ θi(M) for i = 1, 2, . . . , k.

Lemma 7. [3] Let G be a graph of order n ≥ 2. Then n0(G) = n − 2 if and only if
G ∼= Kp,q ∪ (n− p− q)K1, where p+ q ≤ n.

Theorem 4. Let G be a connected graph on n vertices with m edges. Suppose
F(di, dj) > 0 and s > 0, l be the smallest element and largest element in T (G), respec-

tively. Then ET (G) ≥ min{EaT , EbT }, where EaT = s +
√

4
∑

vivj∈E(G)

F2(di, dj)− 3s2 and

EbT = tλ1 +
√

4
∑

vivj∈E(G)

F2(di, dj)− 3t2λ2
1. Equality holds if and only if G ∼= K3 or Kp,q,

where p+ q = n.

Proof. We have

(
n−1∑
i=1

|fi|

)2

=

n−1∑
i=1

f2i + 2
∑
i<j

|fi||fj | ≥
n−1∑
i=1

f2i +

∣∣∣∣∣∣2
∑
i<j

fifj

∣∣∣∣∣∣ (by triangle inequality)

(11)

=

n−1∑
i=1

f2i +

∣∣∣∣∣
n−1∑
i=1

f2i − f2n

∣∣∣∣∣ = 2

n−1∑
i=1

f2i − f2n

= 2

n∑
i=1

f2i − 3f2n. (12)

From (12), we get

ET (G) ≥ |fn|+

√√√√2

n∑
i=1

f2i − 3f2n

= |fn|+
√

4
∑

vivj∈E(G)

F2(di, dj)− 3f2n. (13)

By Lemma 6, fn ≤ θ2(M2), where M2 is a principal submatrix of the matrix T . Thus

fn ≤ −s. Also, by Lemma 3, we have |fn| ≤ f1 ≤ lλ1.
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Let f(t) := t +

√
4

∑
vivj∈E(G)

F2(di, dj)− 3t2. Then f has maximum at t0 =

√
(1/3)

∑
vivj∈E(G)

F2(di, dj). Thus if s ≤ |fn| ≤ t0, by (13), we get

ET (G) ≥ s+

√
4

∑
vivj∈E(G)

F2(di, dj)− 3s2

and if t0 ≤ |fn| ≤ lλ1, then

ET (G) ≥ lλ1 +

√
4

∑
vivj∈E(G)

F2(di, dj)− 3l2λ21.

Suppose ET (G) = min{EaT , EbT }. Then the equality in (11) holds and so f2 = f3 =

. . . = fn−2 = 0.

Case 1: If ET (G) = EaT . Then |fn| = s. Suppose n = 2, 3. Then G ∼= K2 or

K3. Let n ≥ 4. Assume that G has P3 as its induced subgraph then by Lemma 6,

−s
√

2 ≥ f3(P3) ≥ fn = −s, a contradiction. Thus P3 is not an induced subgraph of

G. Hence G ∼= Kn. Therefore, 0 > f2 = −s, a contradiction.

Case 2: If ET (G) = EbT , then f1 = |fn| = lλ1. Since f1 = lλ1, we must have

T (G) = lA(G). Suppose n = 2, 3. Then G ∼= K2 or K1,2. Let n ≥ 4. Since T (G) =

lA(G), f1 = |fn|, f2 = f3 = · · · = fn−2 = 0, we have λ2 = λ3 = · · · = λn−1 = 0. Hence

by Lemma 7, we get G ∼= Kp,q, where p+ q = n.

Conversely, one can easily check that the equality holds when G ∼= K3 or Kp,q, where

p+ q = n.

From Theorem 4, we have the following lower bounds for the edge (Zagreb) energy of

a connected graph.

Corollary 6. Let G be a connected graph on n vertices with m edges. Let s > 0
and l be the smallest element and largest element in Z1(G), respectively. Then ZE1(G) ≥
min{ZEa1 , ZEb1}, where ZEa1 = s +

√
4HM(G)− 3s2 and ZEb1 = tλ1 +

√
4HM − 3t2λ2

1.
Equality holds if and only if G ∼= K3 or Kp,q, where p+ q = n.

Corollary 7. Let G be a connected graph on n vertices with m edges. Let s > 0 and l be the
smallest element and largest element in T (G), respectively. Then ZE2(G) ≥ min{ZEa2 , ZEb2},
where ZEa2 = s+

√
4R2(G)− 3s2 and ZEb2 = tλ1 +

√
4R2(G)− 3t2λ2

1. Equality holds if and
only if G ∼= K3 or Kp,q, where p+ q = n.

In the following theorem, we give a comparison between Zagreb energy and edge-

zagreb energy of a graph G with minimum degree δ ≥ 2.
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Theorem 5. Let G be a graph on n vertices with minimum degree δ ≥ 2. Then

ZE2(G) ≥
√

2

n
ZE1(G).

Proof. We have

ZE2
2
(G) =

(
n∑
i=1

|γi|

)2

=

n∑
i=1

γ2i + 2
∑
i<j

|γi||γj |

≥
n∑
i=1

γ2i + 2|
∑
i<j

γiγj | (by triangle inequality)

= 2

n∑
i=1

γ2i

because

n∑
i=1

γ2i = −2
∑
i<j

γiγj


= 4

∑
vivj∈E(G)

(didj)
2

≥ 4
∑

vivj∈E(G)

(di + dj)
2. (14)

Now, from Cauchy-Schwarz inequality, we get

ZE21 (G) =

(
n∑
i=1

|ηi|

)2

≤ n
n∑
i=1

η2i

= 2n
∑

vivj∈E(G)

(di + dj)
2. (15)

Thus from (14) and (15), we obtain

ZE2(G) ≥
√

2

n
ZE1(G).

3. A lower and upper bound for the spectral radius of edge
-Zagreb matrix

In [4], a novel lower and upper bound for the spectral radius of Zagreb matrix is

given in terms of minimum degree δ, maximum degree ∆, order n and size m of the

graph. Motivated by this, we give a lower and upper bound for the spectral radius

of edge-Zagreb matrix in terms of minimum degree δ, maximum degree ∆, order n

and size m of the graph. We need the following lemma to prove our bounds for the

spectral radius γ1 of the edge-Zagreb matrix.
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Lemma 8. [11] Let A = (ai,j) be an n× n irreducible non-negative matrix with spectral
radius θ1 and let Ri(A) =

∑n
j=1 aij be the ith row sum of A. Then

min{Ri(A) : 1 ≤ i ≤ n} ≤ θ1 ≤ max{Ri(A) : 1 ≤ i ≤ n}.

Moreover, if the row sums of A are not all equal, then both of the inequalities are strict.

Theorem 6. Let G be a graph of order n, m edges with minimum degree δ and maximum
degree ∆. Then

δ (2m− (n− 1− δ)∆− δ) ≤ γ1(G) ≤ ∆ (2m− (n− 1−∆)δ −∆) , (16)

with both equalities hold if and only if G is a regular graph.

Proof. Let G1, G2, . . . , Gk be the connected components of G. Let ni and mi

be the order and size of the component Gi (1 ≤ i ≤ k). Then γ1(G) =

max{γ1(G1), γ1(G2), . . . , γ1(Gk)}. Suppose γ1(G) = γ1(Gl). Let δl and ∆l be the

minimum degree and maximum degree of a vertex in Gl. Also, let di be the average

degree of the vertices adjacent to the vertex vi in G.

Lower bound:

Since didi ≥ 2ml − di − (nl − di − 1)∆l, from Lemma 8 we have

γ1(Gl) ≥ min
vi∈V (Gl)

∑
vivj∈E(Gl)

didj

= min
vi∈V (Gl)

d2i di

≥ min
vi∈V (Gl)

di(2ml − di − (nl − di − 1)∆l)

= min
vi∈V (Gl)

di(2ml − (nl − 1)∆l + (∆l − 1)di)

≥ δl(2ml − (nl − 1− δl)∆l − δl)

≥ δl

2ml − (nl − 1− δl)∆− δl −
k∑
i6=l
i=1

(ni∆− 2mi)


= δl (2m− (n− 1)∆ + (∆− 1)δl)

≥ δ (2m− (n− 1− δ)∆− δ) .

Suppose the left inequality in (16) holds. Then all the inequalities in the above

argument must be equalities. Thus δl = δ, ∆l = ∆ and ni∆ = 2mi, for 1 ≤ i ≤
k, i 6= l. Also, if d1, d2, . . . , dl are the degrees of the vertices in Gl. Then by Lemma

8, we must have d21d1 = d22d2 = . . . = d2l dl. Note that δ2l dn ≤ δ2l ∆l ≤ δl∆
2
l ≤ ∆2

l d1.

Therefore δ2l ∆l = ∆2
l δl. Hence ∆l = δl. i.e., G is a regular graph.
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Upper bound:

Since didi ≤ 2ml − di − (nl − di − 1)δl, from Lemma 8 we have

γ1(Gl) ≤ max
vi∈V (Gl)

 ∑
vivj∈E(Gl)

didj


≤ max
vi∈V (Gl)

d2i di

≤ max
vi∈V (Gl)

di(2ml − di − (nl − di − 1)δl)

= max
vi∈V (Gl)

di(2ml − (nl − 1)δl + (δl − 1)di)

≤ ∆l(2ml − (nl − 1−∆l)δl −∆l)

≤ ∆l

2ml − (nl − 1−∆l)δ −∆l +

k∑
i 6=l
i=1

(2mi − niδ)


= ∆l (2m− (n− 1)δ + (δ − 1)∆l)

≤ ∆ (2m− (n− 1−∆)δ −∆) .

Similar to the case of lower bound, we can conclude that the right equality in (16)

holds only if G is regular.

4. Some (edge) Zagreb equienergetic graphs

Let G and H be two graphs with vertex set V (G) = {u1, u2, . . . , un1} and V (H) =

{v1, v2, . . . , vn2
}, respectively. The direct product of G and H, denoted by G × H,

is the graph with vertex set V (G) × V (H) and two vertices (ui, vj) and (uk, vl) are

adjacent if and only if uiuk ∈ E(G) and vjvl ∈ E(H). For details, see [12]. Let

A = (aij) be a n ×m matrix and B = (bij) be a p × q matrix. Then the Kronecker

product A⊗B of A and B is the np×mq matrix obtained by replacing each entry aij
of A by aijB. Let A and B be square matrices of order n and m, respectively. If the

eigenvalues of A are λi ; i = 1, 2, . . . , n and the eigenvalues of B are µj j = 1, 2, . . . ,m,

then the spectrum of A ⊗ B consists of the products λiµj for i = 1, 2, . . . , n and

j = 1, 2, . . . ,m [3].

Proposition 1. Let G be a graph of order n1 and H be a r-regular graph of order n2.
Then ZE1(G×H) = rZE1(G)E(H).

Proof. Let spec(Z1(G)) = {η1, η2, . . . , ηn1
} and spec(A(H)) = {λ1, λ2, . . . , λn2

}.
Since H is r-regular graph, from the definition of G × H, we get Z1(G × H) =

Z1(G)⊗ rA(H). Therefore, the spec(Z1(G×H)) consists of rηiλj , for i = 1, 2, . . . , n1

and j = 1, 2, . . . , n2. Thus ZE1(G×H) = rZE1(G)E(H).
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Corollary 8. Let G be a graph and let H1 and H2 be two r-regular equienergetic graphs.
Then the graphs G×H1 and G×H2 are Zagreb equienergetic.

The following proposition gives the edge-Zagreb energy of G×H. We omit the details

of the proof as it is similar to Proposition 1.

Proposition 2. Let G and H be graphs. Then ZE2(G×H) = ZE2(G)ZE2(H).

Corollary 9. Let G be a graph and let H1 and H2 be edge-Zagreb equienergetic graphs.
Then the graphs G×H1 and G×H2 are edge-Zagreb equienergetic.

Let Jn1×n2
be a n1 × n2 matrix having all its entries equal to 1.

Lemma 9. [1] For i = 1, 2, let Mi be a normal matrix of order ni having all its row
sums equal to ri. Suppose ri, θi2, θi3, . . . , θini are the eigenvalues of Mi, then for any two
constants a and b, the eigenvalues of

M :=

[
M1 aJn1×n2

bJn2×n1 M2

]

are θij for i = 1, 2, j = 2, 3, . . . , ni and the two roots of the quadratic equation (x− r1)(x−
r2)− abn1n2 = 0.

Theorem 7. Let G1 be a r1-regular graph of order n1 and let G2 be a r2-regular graph of
order n2. Then the spectrum of Z1(G1∨G2) consists of 2(r1+n2)λi(G1) and 2(r2+n1)λj(G2)
for i = 2, 3, . . . , n1 and j = 2, 3, . . . , n2, and the two roots of the quadratic equation (x −
2(r1 + n2)r1)(x− 2(r2 + n1)r2)− (n1 + n2 + r1 + r2)2n1n2.

Proof. Since G1 and G2 are regular graphs, the Zagreb matrix of G1 ∨ G2 can be

obtained as follows:

Z1(G1 ∨G2) =

(
2(r1 + n2)A(G1) (n1 + n2 + r1 + r2)Jn1×n2

(n1 + n2 + r1 + r2)Jn2×n1 2(r2 + n1)A(G2)

)
.

Setting a = b = (n1 + n2 + r1 + r2) in Lemma 9, we arrive at the desired result.

Theorem 8. There exists a pair of Zagreb equienergetic graphs of order n ≥ 9.

Proof. Let H1 and H2 be graphs as depicted in Figure 1. Then H1 and H2 are

equienergetic 4- regular graphs of order 9 with energy 16. Employing Theorem 7 for

the graphs Km∨H1 and Km∨H2, we see that ZE1(Km∨H1) = ZE1(Km∨H2). This

completes the proof.
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H1 H2

Figure 1. Equienergetic 4-regular graphs on 9 vertices with energy 16.

Theorem 9. Let G1 be a r1-regular graph of order n1 and let G2 be a r2-regular graph of
order n2. Then the spectrum of Z2(G1∨G2) consists of (r1+n2)2λi(G1) and (r2+n1)2λj(G2)
for i = 2, 3, . . . , n1 and j = 2, 3, . . . , n2, and the two roots of the quadratic equation (x −
(r1 + n2)2r1)(x− (r2 + n1)2r2)− (n2 + r1)2(n1 + r2)2n1n2.

Proof. Since G1 and G2 are regular graphs, the Zagreb matrix of G1 ∨ G2 can be

obtained as follows:

Z2(G1 ∨G2) =

(
(r1 + n2)2A(G1) (n1 + r2)(n2 + r1)Jn1×n2

(n1 + r2)(n2 + r1)Jn2×n1 (r2 + n1)2A(G2)

)
.

Setting a = b = (n1 + r2)(n2 + r1) in Lemma 9, we arrive at the desired result.

The proof of the following theorem is similar to that of Theorem 8.

Theorem 10. There exists a pair of edge-Zagreb equienergetic graphs of order n ≥ 9.
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