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Abstract: A signed total double Roman dominating function (STDRDF) on an
isolated-free graph G = (V,E) is a function f : V (G) → {−1, 1, 2, 3} such that (i)

every vertex v with f(v) = −1 has at least two neighbors assigned 2 under f or one

neighbor w with f(w) = 3, (ii) every vertex v with f(v) = 1 has at least one neighbor
w with f(w) ≥ 2 and (iii)

∑
u∈N(v) f(u) ≥ 1 holds for any vertex v. The weight of

an STDRDF is the value f(V (G)) =
∑

u∈V (G) f(u). The signed total double Roman

domination number γtsdR(G) is the minimum weight of an STDRDF on G. In this

paper, we continue the study of the signed total double Roman domination in graphs
and present some sharp bounds for this parameter.

Keywords: Roman domination; signed double Roman domination; signed total dou-
ble Roman domination

AMS Subject classification: 05C69

1. Terminology and introduction

In this paper, G is a simple isolated-free graph with vertex set V = V (G) and edge

set E = E(G). The order |V | of G is denoted by n = n(G). For every vertex v ∈ V ,

the open neighborhood N(v) is the set {u ∈ V (G) : uv ∈ E(G)} and the closed
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neighborhood of v is the set N [v] = N(v) ∪ {v}. The degree of a vertex v ∈ V is

degG(v) = |N(v)|. The minimum and maximum degree of a graph G are denoted

by δ = δ(G) and ∆ = ∆(G), respectively. We write Pn for the path of order n, Cn

for the cycle of length n, Kn for the complete graph of order n and Km,n for the

complete bipartite graph. We refer the reader to [20] for some basic terminology in

graph theory.

A set S ⊆ V in a graph G is called a (total) dominating set if every vertex of V \ S (V )

is adjacent to a vertex of S. The (total) domination number γ(G) (γt(G)) equals the

minimum cardinality of a (total) dominating set in G.

A function f : V (G) → {0, 1, 2} is a Roman dominating function (RDF) on G if

every vertex u ∈ V for which f(u) = 0 is adjacent to at least one vertex v for

which f(v) = 2. The weight of an RDF is the value f(V (G)) =
∑

u∈V (G) f(u). The

Roman domination number γR(G) is the minimum weight of an RDF on G. Roman

domination was introduced by Cockayne et al. in [17] inspired by the work of ReVelle

and Rosing [18], and Stewart [19]. Since 2004, so many papers have been published on

this topic and its variations. The literature on Roman domination and its variations

has been surveyed and detailed in two book chapters and three surveys [12–16].

In 2016, Beeler et al. [11] introduced the double Roman domination defined as follows.

A function f : V → {0, 1, 2, 3} is a double Roman dominating function (DRDF) on a

graph G if the following conditions hold.

(i) If f(v) = 0, then v must have either at least one neighbor in V3 or at least two

neighbors in V2.

(ii) If f(v) = 1, then v must have at least one neighbor in V2 ∪ V3.
The double Roman domination number γdR(G) equals the minimum weight of an

DRDF on G. For an SDRDF f , let Vi(f) = {v ∈ V : f(v) = i}. In the context of

a fixed SDRDF, we suppress the argument and simply write V−1, V1, V2 and V3.

Since this partition determines f , we can equivalently write f = (V−1, V1, V2, V3). For

further results on double Roman domination see [1, 2, 5].

In 2014 Abdollahzadeh Ahangar et al. [8] introduced the concept of Signed Roman

domination. Also, the other variations of this concept have been introduced in [3, 4].

Abdollahzadeh Ahangar et al. [6], introduced the concept of a new variation of

double Roman domination as signed double Roman domination number. A signed

double Roman dominating function (SDRDF) on a graph G = (V,E) is a function

f : V (G) → {−1, 1, 2, 3} such that (i) every vertex v with f(v) = −1 is adjacent to

least two vertices assigned a 2 or to at least one vertex w with f(w) = 3, (ii) every

vertex v with f(v) = 1 is adjacent to at least one vertex w with f(w) ≥ 2 and (iii)

f(v) =
∑

u∈N [v] f(u) ≥ 1 holds for any vertex v. The weight of an SDRDF f is the

value ω(f) =
∑

u∈V (G) f(u). The signed double Roman domination number γsdR(G)

is the minimum weight of an SDRDF on G. For further results on signed double

Roman domination number see [7, 10, 21].

Recently, Abdollahzadeh Ahangar et al. [9] introduced the concept of signed total

double Roman domination number defined as follows. A signed total double Roman

dominating function (STDRDF) on a graph G = (V,E) is a function f : V (G) →
{−1, 1, 2, 3} such that (i) every vertex v with f(v) = −1 is adjacent to least two
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vertices assigned a 2 or to at least one vertex w with f(w) = 3, (ii) every vertex v

with f(v) = 1 is adjacent to at least one vertex w with f(w) ≥ 2 and (iii) f(v) =∑
u∈N(v) f(u) ≥ 1 holds for any vertex v. The weight of an STDRDF f is the value

ω(f) =
∑

u∈V (G) f(u). The signed total double Roman domination number γtsdR(G)

is the minimum weight of an STDRDF on G.

In this paper we study the signed total double Roman domination and present some

sharp bounds for this parameter in general graphs. In addition, we determine the

signed total double Roman domination number of some classes of graphs.

2. A lower bounds

In this section we present some sharp bounds on the signed total double Roman

domination number in graphs. First we present a lower bound in terms of the order

and size. To do this, we introduce some notation for convenience.

Let V ′−1 = {v ∈ V−1 | N(v) ∩ V3 6= ∅} and V ′′−1 = V−1 − V ′−1. For a subset S ⊆ V ,

we let dS(v) denote the number of vertices in S that are adjacent to v. In particular,

dV (v) = deg(v). For disjoint subsets U and W of vertices, we let [U,W ] denote the set

of edges between U and W . For notational convenience, we let V12 = V1 ∪ V2, V13 =

V1 ∪ V3, V123 = V1 ∪ V2 ∪ V3 and let |V12| = n12, |V13| = n13, |V123| = n123, and

let |V1| = n1, |V2| = n2 and |V3| = n3. Then, n123 = n1 + n2 + n3. Further, we

let |V−1| = n−1, and so n−1 = n − n123. Let G123 = G[V123] be the subgraph

induced by the set V123 and let G123 have size m123. For i = 1, 2, 3, if Vi 6= ∅, let

Gi = G[Vi] be the subgraph induced by the set Vi and let Gi have size mi. Hence,

m123 = m1 +m2 +m3 + |[V1, V2]|+ |[V1, V3]|+ |[V2, V3]|.

Theorem 1. Let G be a connected graph of order n ≥ 3 and size m. Then

γt
sdR(G) ≥ 11n− 12m

3
.

Proof. Let L = {v ∈ V (G) | deg(v) = 1} and let f = (V−1, V1, V2, V3) be a

γtsdR(G)-function having the property that |V2 ∩L| is minimized. Let V−1 = ∅. Then

γtsdR(G) ≥ n + 1 ≥ 11n−12m
3 since m ≥ n − 1. So, from now on we assume that

V−1 6= ∅. We consider the following cases.

Case 1. V3 6= ∅.
We distinguish the following.

Subcase 1.1. V2 6= ∅.
By the definition of an STDRDF, each vertex in V−1 is adjacent to at least one vertex

in V3 or to at least two vertices in V2, and so

|[V−1, V3]|+ |[V−1, V2]| ≥ |V ′−1|+ 2|V ′′−1| ≥ n−1.
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Furthermore we have

2n−1 ≤ 2|[V−1, V3]|+ |[V−1, V2]| = 2
∑
v∈V3

dV−1
(v) +

∑
u∈V2

dV−1
(u).

For each vertex v ∈ V3, we have that 3dV3
(v)+2dV2

(v)+dV1
(v)−dV−1

(v) = f(N(v)) ≥
1, and so dV−1(v) ≤ 3dV3(v) + 2dV2(v) + dV1(v)− 1. Similarly, for each vertex u ∈ V2,

we have that dV−1
(u) ≤ 3dV3

(u) + 2dV2
(u) + dV1

(u)− 1. Now, we have

2n−1 ≤ 2
∑

v∈V3
dV−1

(v) +
∑

u∈V2
dV−1

(u)

≤ 2
∑

v∈V3
(3dV3

(v) + 2dV2
(v) + dV1

(v)− 1)

+
∑

u∈V2
(3dV3

(u) + 2dV2
(u) + dV1

(u)− 1)

= (12m3 + 4|[V2, V3]|+ 2|[V1, V3]| − 2n3)

+ (3|[V2, V3]|+ 4m2 + |[V1, V2]| − n2)

= 12m3 + 4m2 + 7|[V2, V3]|+ 2|[V1, V3]|+ |[V1, V2]| − 2n3 − n2
= 12m123 − 12m1 − 8m2 − 5|[V2, V3]| − 10|[V1, V3]| − 11|[V1, V2]| − 2n3 − n2,

which implies that

m123=
1

12
(2n−1 + 12m1 + 8m2 + 5|[V2, V3]|+ 10|[V1, V3]|+ 11|[V1, V2]|+ 2n3 + n2).

Hence,

m = m123 + |[V−1, V123]|+m−1

≥ m123 + |[V−1, V123]|

≥ 1

12
(2n−1 + 12m1 + 8m2 + 5|[V2, V3]|+ 10|[V1, V3]|+ 11|[V1, V2]|+ 2n3 + n2)

+ |[V−1, V1]|+ n−1

=
1

12
(14n−1 + 2n123 − 2n1 − n2 + 12m1 + 8m2 + 5|[V2, V3]|+ 10|[V1, V3]|

+ 11|[V1, V2]|+ 12|[V−1, V1]|)

=
1

12
(14n− 12n123 − 2n1 − n2 + 12m1 + 8m2 + 5|[V2, V3]|+ 10|[V1, V3]|+

11|[V1, V2]|+ 12|[V−1, V1]|)

and so

n123 ≥
1

12
(−12m+ 14n− 2n1 − n2 + 12m1 + 8m2 + 5|[V2, V3]|+ 10|[V1, V3]|

+ 11|[V1, V2]|+ 12|[V−1, V1]|).
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Now, we have

γtsdR(G) = 3n3 + 2n2 + n1 − n−1
= 4n3 + 3n2 + 2n1 − n
= 4n123 − n− n2 − 2n1

≥ 1

3
(−12m+ 14n− 2n1 − n2 + 12m1 + 8m2 + 5|[V2, V3]|+ 10|[V1, V3]|

+ 11|[V1, V2]|+ 12|[V−1, V1]|)− n− n2 − 2n1

=
1

3
(11n− 12m) +

1

3
(−8n1 − 4n2 + 12m1 + 8m2 + 5|[V2, V3]|

+ 10|[V1, V3]|+ 11|[V1, V2]|+ 12|[V−1, V1]|).

Let Θ = −8n1−4n2+12m1+8m2+5|[V2, V3]|+10|[V1, V3]|+11|[V1, V2]|+12|[V−1, V1]|.
If n1 = 0, then Θ = −4n2 + 8m2 + 5|[V2, V3]|. By definition of an STDRDF of G, we

have dV23
(v) ≥ 1 for each v ∈ V2. Then

Θ = −4n2 + 8m2 + 5|[V2, V3]|

= 4
∑
v∈V2

dV2
(v) + 4

∑
v∈V2

dV3
(v) + (−4n2 + |[V2, V3]|)

= 4
∑
v∈V2

dV23
(v) + (−4n2 + |[V2, V3]|)

≥ 4n2 − 4n2 + |[V2, V3]|
= |[V2, V3]|
> 0.

Therefore γtsdR(G) > 11n−12m
3 .

Suppose now that n1 ≥ 1. Let H1, H2, . . . ,Ht be the components of the induced

subgraph G[V1] of order h1, h2, . . . , ht, respectively. Since G is connected, each com-

ponent Hi contains a vertex adjacent to a vertex of V2 ∪ V3 or to a vertex of V−1 for

1 ≤ i ≤ t. This implies

m1 + |[V1, V23]|+ |[V1, V−1]| ≥ (h1 − 1) + (h2 − 1) + · · ·+ (ht − 1) + t

= h1 + h2 + · · ·+ ht = n1.
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By the definition of an STDRDF of G we have dV23
(v) ≥ 1 for each v ∈ V1. Then

Θ = −4n2 − 8n1 + 12m1 + 8m2 + 5|[V2, V3]|+ 10|[V1, V3]|+ 11|[V1, V2]|
+ 12|[V−1, V1]|
≥ (8m1 + 8|V1, V3|+ 8|V1, V2|+ 8|V1, V−1|) + (5|V2, V3|+ 3|V1, V2|
+ 4|V2, V2|+ 4|[V−1, V1]|)− 4n2 − 8n1

≥ 4
∑
v∈V2

(dV3(v) + dV2(v)) + 3
∑
v∈V2

dV1(v) + 4
∑
v∈V1

dV−1(v)− 4n2. (1)

Note that if dV23
(v) ≥ 1 or dV1

(v) ≥ 2 for each v ∈ V2, then 4
∑

v∈V2
(dV3

(v)+dV2
(v))+

3
∑

v∈V2
dV−1

(v) ≥ 4n2. So we assume that there exists a vertex v ∈ V2 for which

dV23(v) = 0 and dV1(v) = 1. This implies that v is a leaf which is adjacent to a support

vertex u with f(u) = 1. If f(N(u)) ≥ 2, then by assigning 2 to u and 1 to v we obtain

an STDRDF h of G which contradicts our choice of f . Therefore, f(N(u)) = 1. Since

u is adjacent to v with f(v) = 2, it follows that u has a neighbor with weight −1

under f . So, the vertex v is counted at least four times in 4
∑

v∈V2
dV−1(v). All in

all, we have shown that

4
∑
v∈V2

(dV3
(v) + dV2

(v)) + 3
∑
v∈V2

dV1
+ 4

∑
v∈V1

dV−1
(v) ≥ 4n2.

Consequently, Θ ≥ 0 by (1). Therefore γsdR(G) ≥ 11n−12m
3 .

Subcase 1.2. V2 = ∅.
By definition of an STDRDF, each vertex in V−1 is adjacent to at least one vertex in

V3, and so

|[V−1, V3]| ≥ |V−1| = n−1.

Furthermore we have

n−1 ≤ |[V−1, V3]| =
∑
v∈V3

dV−1
(v).

For each vertex v ∈ V3, we have that 3dV3(v) + dV1(v)− dV−1(v) = f(N(v)) ≥ 1, and

so dV−1
(v) ≤ 3dV3

(v) + dV1
(v)− 1. Now, we have

n−1 ≤
∑
v∈V3

dV−1
(v)

≤
∑
v∈V3

(3dV3
(v) + dV1

(v)− 1)

= 6m3 + |[V1, V3]| − n3
= 6m13 − 6m1 − 5|[V1, V3]| − n3,
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which implies that

m13 ≥
1

6
(n−1 + 6m1 + 5|[V1, V3]|+ n3).

Hence,

m=m13 + |[V−1, V3]|+ |[V−1, V1]|+m−1

≥ m13 + |[V−1, V3]|+ |[V−1, V1]|

≥ 1

6
(n−1 + 6m1 + 5|[V1, V3]|+ n3) + n−1 + |[V−1, V1]|

=
1

6
(7n−1 + n3 + 6m1 + 5|[V1, V3]|+ 6|[V−1, V1]|)

=
1

6
(7n−1 + n13 − n1 + 6m1 + 5|[V1, V3]|+ 6|[V−1, V1]|)

=
1

6
(7n− 6n13 − n1 + 6m1 + 5|[V1, V3]|+ 6|[V−1, V1]|)

and so

n13 ≥
1

6
(−6m+ 7n− n1 + 6m1 + 5|[V1, V3]|+ 6|[V−1, V1]|).

Now, we have

γtsdR(G) = 3n3 + n1 − n−1
= 4n3 + 2n1 − n
= 4n13 − n− 2n1

≥ 4

6
(−6m+ 7n− n1 + 6m1 + 5|[V1, V3]|+ 6|[V−1, V1]|)− n− 2n1

=
2

3
(−6m+ 7n− 3

2
n) +

2

3
(−4n1 + 6m1 + 5|[V1, V3]|+ 6|[V−1, V1]|)

=
1

3
(11n− 12m) +

2

3
(−4n1 + 6m1 + 5|[V1, V3]|+ 6|[V−1, V1|]).

Let Θ = −4n1+6m1+5|[V−1, V3]|+ 6|[V−1, V1]|. We show that Θ ≥ 0. If n1 = 0, then

Θ = 0. Suppose that n1 ≥ 1. As above, we let H1, H2, . . . ,Ht be the components of

the induced subgraph G[V1] of order h1, h2, . . . , ht, respectively. Since G is connected,

each component Hi contains a vertex adjacent to a vertex of V2 ∪V3 or to a vertex of

V−1 for 1 ≤ i ≤ t. This implies m1 + |[V1, V23]|+ |[V1, V−1]| ≥ n1. It follows that

Θ = −4n1 + 6m1 + 5|[V1, V3]|+ 6|[V−1, V1]|
≥ −4n1 + 5m1 + 5|[V1, V3]|+ 5|[V−1, V1]|
> 0.
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Therefore γtsdR(G) > 11n−12m
3 .

Case 2. V3 = ∅.
Since V−1 6= ∅, we conclude that V2 6= ∅. By definition of an STDRDF, each vertex

in V−1 is adjacent to at least two vertices in V2, and so

|[V−1, V12]| ≥ |[V−1, V2]| ≥ 2|V−1| = 2n−1.

Furthermore, we have

2n−1 ≤ |[V−1, V2]| =
∑
v∈V2

dV−1(v).

For each vertex v ∈ V2, we have that 2dV2
(v) + dV1

(v)− dV−1
(v) = f(N(v)) ≥ 1, and

so dV−1
(v) ≤ 2dV2

(v) + dV1
(v)− 1. Now, we have

2n−1 ≤
∑
v∈V2

dV−1
(v)

≤
∑
v∈V2

(2dV2
(v) + dV1

(v)− 1)

= 4m2 + |[V1, V2]| − n2
= 4m12 − 4m1 − 3|[V1, V2]| − n2,

which implies that

m12 ≥
1

4
(2n−1 + 4m1 + 3|[V1, V2]|+ n2).

Hence,

m=m12 + |[V−1, V12]|+m−1

≥ m12 + |[V−1, V12]|

≥ 1

4
(2n−1 + 4m1 + 3|[V1, V2]|+ n2) + 2n−1 + |[V1, V−1]|

=
1

4
(10n−1 + n12 − n1 + 4m1 + 3|[V1, V2]|+ 4|[V1, V−1]|)

=
1

4
(10n− 9n12 − n1 + 4m1 + 3|[V1, V2]|+ 4|[V1, V−1]|)

and so

n12 ≥
1

9
(−4m+ 10n− n1 + 4m1 + 3|[V1, V2]|+ 4|[V1, V−1]|).
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Now, we have

γtsdR(G) = 2n2 + n1 − n−1
= 3n2 + 2n1 − n
= 3n12 − n− n1

≥ 1

3
(−4m+ 10n− n1 + 4m1 + 3|[V1, V2]|+ 4|[V1, V−1]|)− n− n1

=
1

3
(−4m+ 10n− 4n) +

1

3
(−4n1 + 4m1 + 3|[V1, V2]|+ 4|[V1, V−1]|+ n)

≥ 1

3
(−4m+ 6n) +

1

3
(−3n1 + 4m1 + 3|[V1, V2]|+ 4|[V1, V−1]|).

Since every vertex in V1 has at least one neighbor in V2, we have 3|[V1, V2]| ≥ 3n1.

Therefore, γtsdR(G) ≥ 1
3 (6n− 4m) ≥ 1

3 (11n− 12m). This completes the proof.

In the next example, we present an infinite family of graphs that attain the bound of

Theorem 1.

Example 1. For t ≥ 2, let Ft be the graph obtained from a connected graph F of order
t by adding 3dF (v)− 1 pendant edges to each vertex v of F . Then

n(Ft) = n(F ) +
∑

v∈V (F )

(3dF (v)− 1) = 6m(F )

and

m(Ft) = m(F ) +
∑

v∈V (F )

(3dF (v)− 1) = 7m(F )− n(F ).

Assigning a 3 to every vertex in V (F ) and a -1 to every vertex in V (Ft) − V (F ) produces
an STDRDF f of weight

ω(f) = 3n(F )−
∑

v∈V (F )

(3dF (v)− 1) = 4n(F )− 6m(F ) =
11n(Ft)− 12m(Ft)

3
,

and so γt
tdR(Ft) ≤ 11n(Ft)−12m(Ft)

3
. Using Theorem 1, we obtain γt

tdR(Ft) = 11n(Ft)−12m(Ft)
3

.

Next we establish a lower bound on the signed total double Roman domination number

in terms of the order.

Theorem 2. Let G be a graph of order n. Then

γt
sdR(G) ≥

⌈
3

√
n

2
+

1

2

⌉
− n+ 1.

This bound is sharp for K2,K3.
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Proof. Let f = (V−1, V1, V2, V3) be a γtsdR(G)-function. If |V−1| = 0, then

γsdR(G) ≥ n + 1 ≥ d3
√

n
2 + 1

2e − n + 1. Hence, let |V−1| ≥ 1. We consider the

following cases.

Case 1. |V3| > 0.

Since V3 6= ∅, we have V ′−1 6= ∅. Since each vertex in V ′−1 is adjacent to at least

one vertex in V3, we conclude that at least one vertex v of V3 is adjacent to at

least
n′−1

n3
vertices of V ′−1. Also, since each vertex in V ′′−1 (if any) is adjacent to at

least two vertices in V2, we conclude that at least one vertex u of V2 is adjacent to

at least
2n′′−1

n2
vertices of V ′′−1. Then 1 ≤ f(N(v)) ≤ 3(n3 − 1) + 2n2 + n1 −

n′−1

n3

which implies that 0 ≤ 3n23 + 2n2n3 + n1n3 − n′−1 − 4n3. Similarly, we have 0 ≤
3n3n2 + 2n22 + n1n2 − 2n′′−1 − 3n2 (note that this holds even if n2 = 0). Then 0 ≤
3n23+2n22+5n2n3+n1n3+n1n2−n′−1−2n′′−1−3n2−4n3. Since n = n3+n2+n1+n−1,

we have

0 ≤ 3n23 + 2n22 + 5n2n3 + n1n3 + n1n2 + n1 − 3n3 − 2n2 − n′′−1 − n

≤ 32

9
n23 + 2n22 +

16

3
n2n3 +

8

9
n21 +

32

9
n1n3 +

8

3
n1n2 −

8

3
n3 −

4

3
n1 − 2n2 − n′′−1 − n.

Hence

0 ≤ 16n23 + 9n22 + 24n2n3 + 4n21 + 16n1n3 + 12n1n2 − 6n1 − 12n3 − 9n2 +
9

4
− 9

2
n

= (4n3 + 3n2 + 2n1 −
3

2
)2 − 9

2
n

which implies that 3
√

n
2 ≤ 4n3 + 3n2 + 2n1 − 3

2 . Therefore

γsdR(G) = 3n3 + 2n2 + n1 − n−1
= 4n3 + 3n2 + 2n1 − n

≥ 3

√
n

2
+

3

2
− n.

Case 2. V3 = ∅.
Since |V−1| > 0, we conclude that V2 6= ∅. As in Case 1, at least one vertex u of V2 is

adjacent to at least 2n−1

n2
vertices of V−1. Then 0 ≤ 2n22 + n1n2 − 2n−1 − 3n2. Since

n = n2 + n1 + n−1, we have

0 ≤ 2n22 + n1n2 + n1 − 2n2 − n

≤ 2n22 +
8

9
n21 +

8

3
n1n2 − 2n2 −

4

3
n1 − n.
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Hence

0 ≤ 9n22 + 4n21 + 12n1n2 − 6n1 − 9n2 +
9

4
− 9

2
n = (3n2 + 2n1 −

3

2
)2 − 9

2
n

which implies that 3
√

n
2 ≤ 3n2 + 2n1 − 3

2 . Therefore

γsdR(G) = 2n2 + n1 − n−1
= 3n2 + 2n1 − n

≥ 3

√
n

2
+

3

2
− n.

This leads to the desired bound since γsdR(G) is an integer. This completes the

proof.

Theorem 3. If G is a graph of order n ≥ 3 with δ ≥ 1, then

γt
sdR(G) ≥ max{∆− n+ 1, δ − n+ 4}.

This bound is sharp for Kn.

Proof. Let f be a γtsdR(G)-function. If f(x) ≥ 1 for all x ∈ V (G), then by definition

f(y) ≥ 2 for some y ∈ V (G) and so γtsdR(G) = n + 1 ≥ max{∆ − n + 1, δ − n + 4}.
Now assume that there exists a vertex u with f(u) = −1. Then u has a neighbor w

with f(w) ≥ 2 and so

γtsdR(G) = f(w) + f(N(w)) +
∑

x∈V (G)−N [w] f(x) ≥ 2 + 1− (n− d(w)− 1)

= 4− n+ d(w)

≥ 4− n+ δ.

On the other hand, for any vertex v with maximum degree ∆, we have

γtsdR(G)=f(v) + f(N(v)) +
∑

x∈V (G)−N [v]

f(x) ≥ −1 + 1− (n−∆− 1) = 1− n+ ∆,

and the proof is complete.

3. Trees

In this section we present bounds on the signed total double Roman domination

number in trees. A double star is a tree containing exactly two vertices that are not

leaves. A double star with respectively p and q leaves attached at each support vertex

is denoted by DSp,q.
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Observation 4. For q ≥ p ≥ 1,

γt
sdR(DSp,q) <

4(p+ q + 2)

3
.

Proof. Let u and v be the support vertices of the double star DSp,q which are

adjacent to leaves u1, . . . , us, and v1, . . . , vs, respectively. Define f : V (DSp,q) →
{−1, 1, 2, 3} by f(u) = f(v) = 3 and f(ui) = f(vj) = −1 for i, j ≤ 2, f(ui) = (−1)i+1

for i ≥ 3 and f(vi) = (−1)i+1 for i ≥ 3. Clearly, f is an STDRDF of DSp,q of weight

at most 4 and γtsdR(DSp,q) ≤ 4 < 4(p+q+2)
3 .

Proposition 1. ([9]) For n ≥ m ≥ 1,

γt
sdR(Km,n) =


4, (m = n = 2, 4), (m = 2, n = 4), or (m = 1, n ≥ 2)
2, (m = 3, n 6= 4) or m ≥ 5
3 otherwise.

Theorem 5. Let T be a tree of order n ≥ 3. Then

γt
sdR(T ) ≤ 4n

3
.

This bound is sharp for P3.

Proof. The proof is by induction on n. If n = 3, then clearly γtsdR(T ) = 4. Let

n ≥ 4 and let the statement hold for all trees of order 3 ≤ n′ < n. Assume T a

tree of order n. If diam(T ) = 2, then T is a star and by Proposition 1, we have

γtsdR(T ) = 4 < 4n
3 . If diam(T ) = 3, then T is a double star DSp,q with q ≥ p ≥ 1 and

by Proposition 4, we have γtsdR(T ) < 4n
3 . Therefore, we assume that diam(T ) ≥ 4.

Let f = (V−1, V1, V2, V3) be a γtsdR(T )-function. Let v1v2 . . . vk (k ≥ 5) be a diametral

path in T such that dT (v2) is as large as possible and root T at vk. Let dT (v2) ≥ 3.

Consider T ′ = T − v1 and let f ′ be a γtsdR(T ′)-function. We have f ′(v2) ≥ 1 since

f ′ is an STDRDF and v2 is adjacent to at least one leaf of T ′. Suppose first that

f ′(v2) = 1. This shows that f ′(x) ≥ 2 for each leaf adjacent to v2. Suppose that

y 6= v1 is a leaf adjacent to v2. It is easy to see that the function g defined by

g(y) = f ′(y)− 1, g(v2) = 2, g(v1) = 1 and g(v) = f ′(v) for the other vertices v, is an

STDRDF of T with weight ω(f ′)+1. So, γtsdR(T ) ≤ ω(f ′)+1 ≤ 4(n−1)/3+1 < 4n/3.

Suppose now that f ′(v2) ≥ 2. It is then easily observed that f ′ can be extended to

an STDRDF of T by assigning 1 to v1. So, we deduce again that γtsdR(T ) < 4n
3 .

Let dT (v2) = 2. Suppose first that dT (v3) = 2. Let T ′ = T−{v1, v2, v3}. If n(T ′) = 2,

then T = P5 with γtsdR(P5) = 6 < 4n
3 . So, we let n(T ′) ≥ 3. By the induction

hypothesis, γtsdR(T ′) ≤ 4(n−3)/3. It is easily seen that any γtsdR(T ′)-function can be

extended to an STDRDF of T by assigning 2, 3 and −1 to v3, v2 and v1, respectively,

with weight γtsdR(T ′) + 4. So, γtsdR(T ) ≤ γtsdR(T ′) + 4 ≤ 4n/3.
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Now let dT (v3) ≥ 3. Note that all children of v3 are leaves or support vertices which

are adjacent to only one leaf, by our choice of the diametral path. We distinguish two

cases depending on the behavior of children of v3.

Case 1. Let v3 have a child leaf w.

Let f ′′ be a γtsdR(T ′′)-function in which T ′′ = T − v1 − v2. Since v3 is adjacent to a

leaf, it follows that f ′′(v3) ≥ 1. We need to consider two more possibilities depending

on f ′′(v3).

Subcase 1.1. f ′′(v3) ≥ 2.

This shows that the function g′′ defined by (g′′(v1), g′′(v2)) = (−1, 3) and g′′(v) =

f ′′(v) for the other vertices v gives us an STDRDF of T with weight γtsdR(T ′′) + 2.

Therefore, γtsdR(T ) ≤ γtsdR(T ′′) + 2 ≤ 4(n− 2)/3 + 2 < 4n/3.

Subcase 1.2. f ′′(v3) = 1.

This implies that f ′′(w) ≥ 2. Now, the function h′′ defined by

(h′′(w), h′′(v3), h′′(v2), h′′(v1)) = (f ′′(w)−1, 2, 3,−1) and h′′(v) = f ′′(v) for the other

vertices v, is an STDRDF of T with weight γtsdR(T ′′) + 2. Therefore, γtsdR(T ) < 4n/3

by a similar fashion.

Case 2. Suppose that all children of v3 are support vertices and k ≥ 2 is the number

of them.

We let Lv3
be the subtree of T induced by the vertices v3 and its descendants. Let

T ′′′ = T − Lv3 . If V (T ′′′) = {v4, v5}, we assign 3 to the children of v3, −1 to the

grandchildren of v3, 2 to v3 and v4, and 1 to v5. It is then easily checked that

γtsdR(T ) ≤ 2k + 5 < 4(2k + 3)/3 = 4n/3. So, we may assume that n(T ′′′) ≥ 3. Let

f ′′′ be a γtsdR(T ′′′)-function. Then, n(T ′′′) = n(T )−2k−1 and therefore γtsdR(T ′′′) ≤
4(n − 2k − 1)/3 by the induction hypothesis. It is a routine matter to see that the

function g′′′ defined by g′′′(v3) = 2, g′′′(v) = 3 for all removed support vertices v,

g′′′(u) = −1 for all removed leaves u, and g′′′(x) = f ′′′(x) for the other vertices x, is

an STDRDF of T with weight γtsdR(T ′′′) + 2k + 2. Therefore, we end up in

γtsdR(T ) ≤ ω(g′′′) ≤ 4(n− 2k − 1)

3
+ 2k + 2 <

4n

3
.

This completes the proof.

Theorem 6. If T is a tree of order n and maximum degree ∆(T ) ≥ 3, then

γt
sdR(T ) ≥ ∆(T ) + 5− n.

Proof. Let f = (V−1, V1, V2, V3) be a γtsdR(T )-function, v a vertex of maximum

degree ∆(T ) and ∆i = |N(v)∩Vi| for i ∈ {−1, 1, 2, 3}. If f(v) = 1, then by definition

∆2 + ∆3 ≥ 1 and each vertex x in V−1 ∩N(v) must have a neighbor x′ with label at
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least two. Note that x′ 6= y′ when x 6= y. Thus we have

γtsdR(T ) ≥ f(v) + 3∆3 + 2∆2 + ∆1

+
∑

x∈N(v)∩V−1
(f(x) + f(x′))− (n−∆−∆−1 − 1)

≥ 2 + ∆ + 3∆3 + 2∆2 + ∆1 + 2∆−1 − n
= 2 + 2∆ + 2∆3 + ∆2 + ∆−1 − n
> 5 + ∆− n.

If f(v) = 2, then each vertex x in V−1∩N(v) must have a neighbor x′ with label at least

two. Note that x′ 6= y′ when x 6= y. As above we can see that γtsdR(T ) > 5 + ∆− n.

If f(v) = 3, then we have

γtsdR(T ) ≥ f(v) + 3∆3 + 2∆2 + ∆1 −∆−1 − (n−∆− 1)

= 4 + ∆ + 3∆3 + 2∆2 + ∆1 −∆−1 − n
= 4 + ∆− n+ f(N(v))

≥ 5 + ∆− n.

If f(v) = −1, then by definition ∆2 ≥ 2 or ∆3 ≥ 1 and each vertex x in V−1 ∩N(v)

must have a neighbor x′ with label at least two.

γtsdR(T ) ≥ f(v) + 3∆3 + 2∆2 + ∆1

+
∑

x∈N(v)∩V−1
(f(x) + f(x′))− (n−∆−∆−1 − 1)

≥ ∆ + 3∆3 + 2∆2 + ∆1 + 2∆−1 − n
= 2∆ + 2∆3 + ∆2 + ∆−1 − n
≥ 5 + ∆− n

as desired.

Example 2. Let t ≥ 1 be an integer, and let T be the tree formed by subdividing exactly
t edges of the star K1,4t−1. Assign −1 to all leaves of T and to the remaining vertices the
weight 3. This is an STDRDF on T of weight

3(t+ 1)− (4t− 1) = −t+ 4 = ∆(T ) + 5− n.
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V. Samodivkin, Signed Roman domination in graphs, J. Comb. Optim. 27 (2014),

no. 2, 241–255.

[9] H. Abdollahzadeh Ahangar, R. Khoeilar, L. Shahbazi, and S.M. Sheikholeslami,

Signed total double Roman domination, Ars Combin. (to appea).

[10] H. Amjadi, J.and Yang, S. Nazari-Moghaddam, S.M. Sheikholeslami, and

Z. Shao, Signed double Roman k-domination in graphs., Australas. J Comb. 72

(2018), 82–105.

[11] R.A. Beeler, T.W. Haynes, and S.T. Hedetniemi, Double Roman domination,

Discrete Appl. Math. 211 (2016), 23–29.

[12] M. Chellali, N. Jafari Rad, S.M. Sheikholeslami, and L. Volkmann, A survey on

Roman domination parameters in directed graphs, J. Combin. Math. Combin.

Comput. (to appear).

[13] , The Roman domatic problem in graphs and digraphs: A survey, Discuss.

Math. Graph Theory (in press).

[14] , Varieties of Roman domination II, AKCE Int. J. Graphs Comb. (in

press).

[15] , Structures of Domination in Graphs, (eds), T.W. haynes, S.T. hedet-

niemi and M.A. henning, ch. Varieties of Roman domination, Springer, 2020.

[16] , Topics in Domination in Graphs, (eds), T.W. haynes, S.T. hedetniemi

and M.A. henning, ch. Roman domination in graphs, Springer, 2020.

[17] E.J. Cockayne, P.A. Dreyer Jr, S.M. Hedetniemi, and S.T. Hedetniemi, Roman



206 Bounds on signed total double Roman domination

domination in graphs, Discrete Math. 278 (2004), no. 1-3, 11–22.

[18] C.S. ReVelle and K.E. Rosing, Defendens imperium romanum: a classical problem

in military strategy, Amer. Math. Monthly 107 (2000), no. 7, 585–594.

[19] I. Stewart, Defend the Roman empire!, Sci. Amer. 281 (1999), no. 6, 136–138.

[20] D.B. West, Introduction to Graph Theory, Prentice Hall, USA, 2001.

[21] H. Yang, P. Wu, S. Nazari-Moghaddam, S.M. Sheikholeslami, X. Zhang, Z. Shao,

and Y.Y. Tang, Bounds for signed double Roman k-domination in trees, RAIRO,

Oper. Res. 53 (2019), no. 2, 627–643.


	Terminology and introduction
	A lower bounds
	Trees
	References

