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Abstract: Let G = (V,E), V = {v1, v2, . . . , vn}, be a simple graph with n vertices,
m edges and a sequence of vertex degrees ∆ = d1 ≥ d2 ≥ · · · ≥ dn = δ, di = d(vi). If

vertices vi and vj are adjacent inG, it is denoted as i ∼ j, otherwise, we write i � j. The
first Zagreb index is vertex-degree-based graph invariant defined as M1(G) =

∑n
i=1 d

2
i ,

whereas the first Zagreb coindex is defined as M1(G) =
∑

i�j(di + dj). A couple of

new upper and lower bounds for M1(G), as well as a new upper bound for M1(G), are
obtained.
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1. Introduction

Let G = (V,E), V = {v1, v2, . . . , vn}, be a simple graph with n vertices, m edges

and a sequence of vertex degrees ∆ = d1 ≥ d2 ≥ · · · ≥ dn = δ > 0, di = d(vi). The

complement of G has the same vertex set V (G), and two vertices are adjacent in G if

and only if they are not adjacent in G, that is G = (V,E). If vertices vi and vj of G

are adjacent, we write i ∼ j. On the other hand, if vi and vj are adjacent in G, we

write i � j.

A topological index of a graph is a numerical quantity which is invariant under

automorphisms of the graph. Topological indices are important and useful tools in

mathematical chemistry, used for quantifying physical and chemical properties of

molecules. A vertex-degree-based graph invariant, later named the first Zagreb index
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[3], M1(G), is defined as [14]

M1(G) =

n∑
i=1

d2i .

The first Zagreb index is the oldest and most extensively studied topological index

and one of the most popular and most extensively studied graph-based molecular

structure descriptors. Details of their theory and applications can be found in surveys

[1, 4, 5, 12] and in the references quoted therein.

In [17] it was shown that M1(G) can be also represented as

M1(G) =
∑
i∼j

(di + dj).

Inspired by the above identity, in [10] a concept of coindices was introduced. In this

case the sum runs over the edges of the complement of G. Thus, the first Zagreb

coindex is defined as

M1(G) =
∑
i�j

(di + dj).

The inverse degree index [11] is defined as

ID(G) =

n∑
i=1

1

di
.

Considering the fact that obtaining the exact and easy to compute formula for various

topological indices is not always possible, it is useful to know approximating expres-

sions. In this paper we obtain some inequalities related to the first Zagreb index

and coindex that establish new upper and lower bounds for these invariants in terms

of some of the structural graph parameters (number of vertices, number of edges,

maximal and minimal vertex degree) and ID(G).

2. Preliminaries

In this section we recall some results for M1(G) and M1(G), as well as one analytical

inequality for real number sequences that will be used later in the paper.

In [9] the following inequality was proven

M1(G) ≤ 2m(∆ + δ)− n∆δ, (1)

with equality if and only if di ∈ {δ,∆} for every i, i = 1, 2, . . . , n.

Let us note that inequality (1) is the best possible upper bound for M1(G) determined

in terms of parameters n, m, ∆ and δ.
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Let T be an arbitrary tree with n ≥ 2 vertices. In [8] it was proven

M1(T ) ≤ n(n− 3) + 2(∆ + 1). (2)

In [18] the following upper bound for M1(T ) was obtained. If n ≡ p (mod ∆ − 1)

then

M1(T ) ≤


(∆ + 2)n− 4∆ + 4, if p = 0

(∆ + 2)n− 3∆, if p = 1

(∆ + 2)n− 2∆− 2, if p = 2

(∆ + 2)n− p∆ + p(p− 3), if p ≥ 3

. (3)

Let p = (pi), i = 1, 2, . . . , n, be a sequence of non-negative real numbers, and a = (ai),

i = 1, 2, . . . , n, a sequence of positive real numbers. Then for any real r, r ≤ 0 or

r ≥ 1, the following holds [15, 16]

(
n∑

i=1

pi

)r−1 n∑
i=1

pia
r
i ≥

(
n∑

i=1

piai

)r

. (4)

When 0 ≤ r ≤ 1, the opposite inequality is valid. Equality holds if and only if either

r = 0, or r = 1, or a1 = a2 = · · · = an, or p1 = p2 = · · · = pt = 0 and at+1 = · · · = an,

for some t, 1 ≤ t ≤ n− 1.

3. Main results

In the next theorem we establish bounds for M1(G) depending on parameters n, m,

∆ and δ, and graph invariant ID(G).

Theorem 1. Let G be a simple (n,m)-graph, n ≥ 2, without isolated vertices. Then

M1(G) ≥ 2m(2∆ + δ) + ∆2δID(G) − n∆(∆ + 2δ) (5)

and

M1(G) ≤ 2m(∆ + 2δ) + ∆δ2ID(G) − nδ(2∆ + δ). (6)

Equalities hold if and only if ∆ = d1 = · · · = dt ≥ dt+1 = · · · = dn = δ, for some t,
1 ≤ t ≤ n− 1.

Proof. For every vertex vi in graph G we have that

(∆− di)(di − δ) ≥ 0,
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i.e.

di +
∆δ

di
≤ ∆ + δ. (7)

After multiplying the above inequality by ∆− di and summing over i, i = 1, 2, . . . , n,

we get
n∑

i=1

(∆− di)di + ∆δ

n∑
i=1

∆− di
di

≤ (∆ + δ)

n∑
i=1

(∆− di), (8)

that is

2m∆−M1(G) + ∆δ(∆ID(G)− n) ≤ (∆ + δ)(n∆− 2m),

from which (5) is obtained.

Similarly, after multiplying (7) by di−δ and summing over i, i = 1, 2, . . . , n, we obtain

n∑
i=1

di(di − δ) + ∆δ

n∑
i=1

di − δ
di

≤ (∆ + δ)

n∑
i=1

(di − δ), (9)

that is

M1(G)− 2mδ + ∆δ(n− δID(G)) ≤ (∆ + δ)(2m− nδ),

from which (6) is obtained.

Equalities in (8) and (9) hold if and only if di ∈ {δ,∆} for every i, i = 1, 2, . . . , n, and

consequently equalities in (5) and (6) hold if and only if ∆ = d1 = · · · = dt ≥ dt+1 =

· · · = dn = δ, for some t, 1 ≤ t ≤ n− 1.

Remark 1. After summing up the inequality (7) over i, i = 1, 2, . . . , n, we get

2m+ ∆δID(G) ≤ n(∆ + δ). (10)

According to the above and (6), it follows

M1(G) ≤ 2m(∆ + 2δ) + ∆δ2ID(G) − nδ(2∆ + δ)

≤ 2m(∆ + 2δ) + δ(n(∆ + δ) − 2m) − nδ(2∆ + δ)

= 2m(∆ + δ) − nδ∆,

which means that the inequality (6) is stronger than (1).

In the following lemma we determine lower bound for M1(G) in terms of parameters

n, m, ∆, δ and dn−1.
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Lemma 1. Let G be a simple (n,m)-graph of size n ≥ 4. Then

M1(G) ≥ ∆2 + d2n−1 + δ2 +
(2m− ∆ − dn−1 − δ)2

n− 3
. (11)

Equality holds if and only if ∆ = d1 ≥ d2 = · · · = dn−2 ≥ dn−1 ≥ dn = δ.

Proof. For r = 2, the inequality (4) can be considered in the following form

n−2∑
i=2

pi

n−2∑
i=2

pia
2
i ≥

(
n−2∑
i=2

piai

)2

.

Now, for pi = 1, ai = di, i = 2, . . . , n− 2, the above inequality transforms into

n−2∑
i=2

1

n−2∑
i=2

d2i ≥

(
n−2∑
i=2

di

)2

, (12)

that is

(n− 3)(M1(G)−∆2 − d2n−1 − δ2) ≥ (2m−∆− dn−1 − δ)2,

from which we obtain (11).

Equality in (12) holds if and only if d2 = · · · = dn−2, which implies that equality in

(11) holds if and only if ∆ = d1 ≥ d2 = · · · = dn−2 ≥ dn−1 ≥ dn = δ.

In the following corollary of Theorem 1 and Lemma 1 we obtain bounds for M1(T ),

where T is an arbitrary tree, in terms of parameters n and ∆.

Corollary 1. Let T be an arbitrary tree with n vertices. If n ≥ 2, then

M1(T ) ≤ 2(n− 1) + (n− 2)∆, (13)

with equality holding if and only if T is a tree with the property ∆ = d1 = · · · = dt ≥ dt+1 =
· · · = dn = δ = 1, for some t, 1 ≤ t ≤ n− 1.
If n ≥ 4, then

M1(T ) ≥ ∆2 + 2 +
(2n− 4 − ∆)2

n− 3
. (14)

Equality is attained if and only if tree T is such that ∆ = d1 ≥ d2 = · · · = dn−2 ≥ dn−1 =
dn = δ = 1.

Proof. Let T be a tree with n ≥ 2 vertices. Then m = n− 1 and δ = 1. Therefore

according to (6) and (10) we get

M1(T ) ≤ 2(n− 1)(∆ + 2) + ∆ID(T )− n(2∆ + 1)
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and

∆ID(T ) ≤ n(∆ + 1)− 2(n− 1),

wherefrom we arrive at (13).

Let T be a tree with n ≥ 4 vertices. Since every tree has at least two vertices of

degree 1, for m = n− 1, dn−1 = dn = δ = 1, from (11) we obtain (14).

Remark 2. Since

M1(T ) ≤ 2(n− 1) + (n− 2)∆ ≤ n(n− 3) + 2(∆ + 1),

the upper bound for M1(T ) given by (13) is stronger than (2).

Remark 3. For the bounds given by (3) and (13) for M1(T ) the following applies

- For p = 0 and ∆ = 4, or p = 1 and ∆ = 3, or p ≥ 3 and ∆ ≥ p, the inequality (3) is
stronger than (13);

- For p = 0 and ∆ = 3, or p = 1 and ∆ = 2, or p = 2 regardless of ∆, or p ≥ 3 and
∆ = p− 1, the inequalities (3) and (13) coincide;

- For p = 0 and ∆ = 2, or p = 1 and δ = 2, or p ≥ 3 and 2 ≤ ∆ ≤ p− 2, the inequality
(13) is stronger than (3).

Corollary 2. Let T be an arbitrary tree with n vertices. If n ≥ 4, then

M1(T ) ≤ 2n(n− 2) − ∆2 − (2n− 4 − ∆)2

n− 3
.

Equality is attained if and only if tree T is such that ∆ = d1 ≥ d2 = · · · = dn−2 ≥ dn−1 =
dn = δ = 1.
If n ≥ 2, then

M1(T ) ≥ (n− 2)(2n− 2 − ∆).

Equality holds if and only if T is a tree with the property ∆ = d1 = · · · = dt ≥ dt+1 = · · · =
dn = δ = 1, for some t, 1 ≤ t ≤ n− 1.

Proof. The following equality is valid [2, 7]

M1(G) +M1(G) = 2m(n− 1),

i.e.

M1(T ) +M1(T ) = 2(n− 1)2.

The desired result follows from the above and (13) and (14).
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A vertex-degree-based topological index, known as the Narumi-Katayama index, is

defined as [13]

NK(G) =

n∏
i=1

di .

In the next theorem we determine a relationship between M1(G) and NK(G).

Theorem 2. Let G be a simple connected graph with n ≥ 5 vertices. Then

M1(G) ≥ ∆2 + d2n−1 + δ2 + (n− 3)

(
NK(G)

∆δdn−1

)2/(n−3)

+ (d2 − dn−2)2 .

Equality holds if ∆ = d1 ≥ d2 = · · · = dn−2 ≥ dn−1 ≥ dn = δ, or d3 = · · · = dn−3 =
d2+dn−2

2
.

Proof. Let a1 ≥ a2 ≥ · · · ≥ an ≥ 0 be positive real numbers. In [6] it was proven

that
n∑

i=1

ai ≥ n

(
n∏

i=1

ai

)1/n

+ (
√
a1 −

√
an)

2
,

with equality if a2 = · · · = an−1 = a2+an

2 . This inequality can be considered in the

following form

n−2∑
i=2

ai ≥ (n− 3)

(
n−2∏
i=2

ai

)1/(n−3)

+
(√
a2 −

√
an−2

)2
.

Now, for ai = d2i , i = 1, 2, . . . , n− 2, the above inequality transforms into

n−2∑
i=2

d2i ≥ (n− 3)

(
n−2∏
i=2

d2i

)1/(n−3)

+

(√
d22 −

√
d2n−2

)2

,

that is

n∑
i=1

d2i ≥ d21 + d2n−1 + d2n + (n− 3)

( ∏n
i=1 di

d1dn−1dn

)2/(n−3)

+ (d2 − dn−2)2 ,

wherefrom we obtain the assertion of the theorem.

When G is a tree, G ∼= T , with n vertices, we have the following corollary of Theorem

2.
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Corollary 3. Let T be a tree with n ≥ 5 vertices. Then we have

M1(T ) ≥ ∆2 + 2 + (n− 3)

(
NK(T )

∆

)2/(n−3)

+ (d2 − dn−2)2 .

Equality holds if ∆ = d1 ≥ d2 = · · · = dn−2 ≥ dn−1 = dn = δ = 1, or ∆ = d1, d3 = · · · =
dn−3 =

d2+dn−2

2
, dn−1 = dn = δ = 1.

Theorem 3. Let G be a simple connected graph with n ≥ 5 vertices and m edges. Then

M1(G) ≤ ∆2 + δ2 + d2n−1 + (2m− ∆ − δ − dn−1)2 − (n− 3)(n− 4)

(
NK(G)

∆δdn−1

)2/(n−3)

.

Equality holds if and only if d2 = d3 = · · · = dn−2.

Proof. The following identity is valid

(
n−2∑
i=2

di

)2

=

n−2∑
i=2

d2i + 2
∑

2≤i<j≤n−2

didj .

According to the arithmetic–geometric mean inequality, AM–GM inequality (see e.g.

[16]), for real number sequences we have

(
n−2∑
i=2

di

)2

≥
n−2∑
i=2

d2i + (n− 3)(n− 4)

 ∏
2≤i<j≤n−2

didj

 2
(n−3)(n−4)

=

n−2∑
i=2

d2i + (n− 3)(n− 4)

(
n−2∏
i=2

dn−4
i

) 2
(n−3)(n−4)

=

n−2∑
i=2

d2i + (n− 3)(n− 4)

(
n−2∏
i=2

di

)2/(n−3)

From the above inequality we have that

n∑
i=1

d2i−∆2−δ2−d2n−1 ≤

(
n∑

i=1

di −∆− δ − dn−1

)2

−(n−3)(n−4)

(∏n
i=1 di

∆δdn−1

)2/(n−3)

,

from which we obtain the required result.

If G is a tree, G ∼= T , with n ≥ 5 vertices we have the following corollary of Theorem

3.
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Corollary 4. Let T be a tree with n ≥ 5 vertices. Then we have that

M1(T ) ≤ ∆2 + 2 + (2n− ∆ − 4)2 − (n− 3)(n− 4)

(
NK(T )

∆

)2/(n−3)

.

Equality holds if and only if ∆ = d1, d2 = d3 = · · · = dn−2, dn−1 = dn = δ = 1.

In the next theorem we establish an upper bound for M1(G) and lower bound for

M1(G) depending on parameters n, m, ∆ and δ, and graph invariant ID(G).

Theorem 4. Let G be a simple (n,m)-graph, n ≥ 2, without isolated vertices. Then

M1(G) ≤ (∆ + δ)(n(n− 1) − 2m) − ∆δ((n− 1)ID(G) − n) (15)

and

M1(G) ≥ ∆δ((n− 1)ID(G) − n) − (∆ + δ − n+ 1)(n(n− 1) − 2m). (16)

Equalities hold if and only if ∆ = d1 = · · · = dt ≥ dt+1 = · · · = dn = δ, for some t,
1 ≤ t ≤ n− 1.

Proof. After multiplying (7) by n − 1 − di and summing over i, i = 1, 2, . . . , n, we

get
n∑

i=1

di(n− 1− di) + ∆δ

n∑
i=1

n− 1− di
di

≤ (∆ + δ)

n∑
i=1

(n− 1− di), (17)

that is

M1(G) + ∆δ((n− 1)ID(G)− n) ≤ (∆ + δ)(n(n− 1)− 2m),

from which (15) is obtained.

According to (7) we have that

di − n+ 1 +
∆δ

di
≤ ∆ + δ − n+ 1,

i.e.

(n− 1− di)−
∆δ

di
≥ n− 1−∆− δ.

Similarly, after multiplying the above inequality by n − 1 − di and summing over i,

i = 1, 2, . . . , n, we obtain

n∑
i=1

(n− 1− di)2 −∆δ

n∑
i=1

n− 1− di
di

≥ (n− 1−∆− δ)
n∑

i=1

(n− 1− di), (18)
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that is

M1(G)−∆δ((n− 1)ID(G)− n) ≥ (n− 1−∆− δ)(n(n− 1)− 2m),

from which (16) is obtained.

Equalities in (17) and (18), and consequently in (15) and (16), hold if and only if

∆ = d1 = · · · = dt ≥ dt+1 = · · · = dn = δ, for some t, 1 ≤ t ≤ n− 1.
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