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Abstract: Bell’s degree-variance VarB for a graph G, with the degree sequence

(d1, d2, . . . , dn) and size m, is defined as V arB(G) = 1
n

∑n
i=1

[
di − 2m

n

]2
. In this

paper, a new version of the irregularity measures of variance-type, denoted by V arq , is
introduced and discussed. Based on a comparative study, it is demonstrated that the

newly proposed irregularity measure V arq possess a better discrimination ability than

the classical Bell’s degree-variance in several cases.
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1. Introduction

In this paper, we consider only simple, connected and non-trivial graphs. For a graph

G, denote by V (G) and E(G) the sets of vertices and edges, respectively. Let dui(G)

(or simply di(G), when there is no confusion) be the degree of vertex ui, and denote

by uv an edge of G connecting vertices u and v. The minimum degree and maximum

degree of a graph G are denoted by δ(G) and ∆(G), respectively. The distance

dG(u, v) between two vertices u, v ∈ V (G) is the number of edges in a shortest u− v
path in a graph G. We drop the symbol “G” from the notations involving it whenever

the graph under consideration is clear – for example, we will write di, δ and d(u, v)

instead of di(G), δ(G) and dG(u, v) for simplicity.
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We use the standard terminology of graph theory, for notations not defined here,

we refer the reader to [5, 19]. The eccentricity ec(u) of a vertex u ∈ V (G) is the

greatest distance among all the distances from u to other vertices of G. The diameter

Diam(G) (respectively, radius Rad(G)) of a graph G is the maximum (respectively,

minimum) value among the eccentricities of all the vertices of G. Let A(G) (or simply

A, when there is no confusion) be the adjacency matrix of a graph G. We denote by

λ1(G) the largest eigenvalue of A(G) and call it the spectral radius of G.

The set consisting of (different) degrees of all the vertices of a graph G is called the

degree set of G. By a regular (respectively, bidegreed) graph, we mean a graph whose

degree set consists of only one element (respectively, two elements), and by a non-

regular graph we mean a graph that is not regular. By a semiregular graph, we mean

a bipartite bidegreed graph in which every partite set consists of the vertices of the

same degree.

The dual degree of a vertex u ∈ V (G) is the average value of the degrees of its

neighbors [16]. A graph G in which all the vertices have the same dual degree, say

p(G), is called a pseudo-regular graph or harmonic graph [8, 14, 32]. It is easy to

check that p(G) is always a positive integer and that λ1(G) = p(G). It is obvious that

any r-regular graph Gr is also a harmonic graph with p(Gr) = λ1(Gr) = r.

An irregularity measure (IM) of a (connected) graph G is a non-negative graph

invariant satisfying the property: IM(G) = 0 if and only if G is regular. In literature,

various irregularity measures have been proposed [12] and applied [15, 22, 33, 35, 36]

till date. The majority of irregularity measures belong to the family of degree-based

graph invariants [1, 2, 6, 7, 13, 18, 20, 24, 27, 29, 30, 34, 40], but there exist eigenvalue-

based irregularity measures as well [11, 34]. Bell’s degree-variance VarB is one of the

most popular degree-based irregularity measures. This irregularity measure for a

graph G, with the degree sequence (d1, d2, . . . , dn) and size m, is defined [4] as

V arB(G) =
1

n

n∑
i=1

[
di −

2m

n

]2
.

We remark here that, before the appearance of the Bell’s paper [4], the measure VarB
was appeared within the study of graph heterogeneity [37] (see the next section for

details). The properties and applications of VarB have been extensively studied and

discussed in several papers [4, 9, 12, 23, 36, 37].

While the irregularity measure VarB has several advantages, it also has some

disadvantages. One of the drawbacks of VarB is that its discriminatory performance

is limited in certain cases. In order to overcome this drawback, several attempts

have recently been made to devise some modified versions of VarB . This research

direction is focused primarily on the construction of novel graph invariants of

variance type, having a higher structural selectivity and an improved discriminating

sensitivity. In this paper, a new version of VarB , denoted by Varq and referred as the

normalized degree-variance, is introduced and discussed. Based on a comparative

study, it is demonstrated that the newly proposed irregularity measure Varq possess
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a better discrimination ability than the classical Bell’s degree-variance in several cases.

2. Preliminary Considerations

We have mentioned in the previous section that the measure VarB was also appeared

within the study of graph heterogeneity [37], before the appearance of the Bell’s paper

[4]. Moreover, the degree variance is mentioned by Coleman [10] as an intermediate

step in the construction of a measure of hierarchization (in a sociometric context,

graph heterogeneity can be interpreted as hierarchization), see [37]. Snijders [37] also

proposed the following general variance for a graph G

V arg(G) =
1

n

n∑
i=1

[g(ui)− µ(G)]
2
, (1)

where V (G) = {u1, u2, · · · , un}, g is a convex non-decreasing (and non-negative real)

function, and

µ(G) =
1

n

n∑
i=1

g(ui). (2)

The function g can be taken in various ways: for example, g(ui) = log(d(ui)) gives

entropy-based measure of hierarchization [10] or g(ui) = d(ui) gives the traditional

degree-variance VarB suggested by Bell [4] for characterizing the irregularity of a

graph, or we can take g(ui) = ec(ui), where ec(ui) is the eccentricity of a vertex

ui ∈ V (G).

The Bell’s degree-variance VarB belongs to the family of those graph invariants that

can be determined unambiguously by the degree sequence of the considered graph. In

fact, in addition to VarB , there are many irregularity measures that can be determined

by the degree sequence of a graph. Some of them, which will be used in forthcoming

sections, are listed below [12, 13, 20, 33, 34].

IRV1(G) = nV arB(G) = M1(G)− 4m2

n
,

IRV2(G) = n2V arB(G) = nM1(G)− 4m2,

IRV3(G) =

√
M1(G)

n
− 2m

n
= V arB(G)

(√
M1(G)

n
+

2m

n

)−1
,

IRMA(G) =
IRV1(G)

2m
=
M1(G)

2m
− 2m

n
,

IRMB(G) = F (G)− 2m

n
M1(G),
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irrt(G) =
1

2

n∑
i=1

n∑
j=1

|di − dj | =
n∑

i=1

n∑
j=i+1

|di − dj | ,

where irrt(G) is the total irregularity of G introduced by Abdo et al. [13], M1(G) is

the first Zagreb index of a graph G defined [21, 25, 28, 38, 39] as

M1(G) =

n∑
i=1

d2i

and F (G) is the so-called forgotten topological index [17] formulated as F (G) =∑n
i=1 d

3
i . It needs to be emphasized that a common property of each of the irregularity

measures listed above is that if graphs Ga and Gb have the same degree sequence,

then the values of the considered irregularity measure of Ga and Gb will also be the

same.

3. The Normalized Degree-Variance Irregularity Measures

In what follows, we introduce a novel variance-type irregularity measure. For a graph

G with the degree sequence (d1, d2, . . . , dn) and the size m, consider the graph invari-

ants formulated as

D1,q(G) =

n∑
i=1

pid
q
i = (2m)q

n∑
i=1

p
(1+q)
i ,

D2,q(G) =

n∑
i=1

pid
2q
i = (2m)2q

n∑
i=1

p
(1+2q)
i ,

where q is a positive number and pi is the normalized degree of a vertex ui of the

graph G, defined as

pi =
di∑n
i=1 di

=
di
2m

.

Based on the above formulas, we define the following variant of the Bell’s degree

variance

V arq(G) = D2,q(G)−D2
1,q(G) = (2m)2q


n∑

i=1

p
(1+2q)
i −

(
n∑

i=1

p
(1+q)
i

)2
 . (3)

In what follows, we prove that V arq is an irregularity measure. For this, we need to

prove the following elementary lemma first.

Lemma 1. Let B1, B2, · · · , Bn are non-negative numbers. If w1, w2, · · · , wn are the
non-negative numbers satisfying w1 + w2 + · · · + wn = 1, then it holds that{

n∑
i=1

wiBi

}2

≤
n∑

i=1

wiB
2
i

with equality if and only if B1 = B2 = · · · = Bn.
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Proof. Using the Cauchy-Schwartz inequality, one gets that

{
n∑

i=1

√
wi(Bi

√
wi)

}2

≤

{
n∑

i=1

wi

}{
n∑

i=1

wiB
2
i

}
=

n∑
i=1

wiB
2
i .

Now, we are able to prove that the graph invariant V arq satisfies both the properties

of an irregularity measure.

Proposition 1. If G is a connected graph with the degree sequence (d1, d2, . . . , dn) and
the size m, then it holds that

V arq(G) = (2m)2q
{

n∑
i=1

p
(1+2q)
i −

(
n∑

i=1

p
(1+q)
i

)2}
≥ 0

with equality if and only if G is a regular graph.

Proof. It suffices to show that

(
n∑

i=1

p
(1+q)
i

)2

≤
n∑

i=1

p
(1+2q)
i .

Taking wi = pi and Bi = (pi)
q for i = 1, 2, · · · , n, we have

(
n∑

i=1

wiBi

)2

=

(
n∑

i=1

p
(1+q)
i

)2

and
n∑

i=1

wiB
2
i =

n∑
i=1

p
(1+2q)
i .

Thus, by using Lemma 1, we have

n∑
i=1

wiB
2
i −

(
n∑

i=1

wiBi

)2

=

n∑
i=1

p
(1+2q)
i −

(
n∑

i=1

p
(1+q)
i

)2

≥ 0,

where the equality sign in the last inequality holds if and only if (p1)q = (p2)q = · · · =
(pn)q, which is true if and only if G is a regular graph.
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From Proposition 1, it follows that the graph invariant V arq is actually an irregularity

measure. We note that the irregularity measure V arq can be rewritten as

V arq(G) = D2,q(G)−D2
1,q(G) =

1

2m

n∑
i=1

d
(1+2q)
i −

(
1

2m

n∑
i=1

d
(1+q)
i

)2

. (4)

The substitutions q = 1/2 and q = 1 in Equation (4) yield

V ar1
2
(G) =

1

2m

n∑
i=1

d2i −

(
1

2m

n∑
i=1

d
3/2
i

)2

=
1

2m
M1(G)−

(
1

2m

n∑
i=1

d
3/2
i

)2

and

V ar1(G) = D2,1(G)−D2
1,1(G) =

F (G)

2m
−
(
M1(G)

2m

)2

,

respectively. In what follows, we focus our attention to the irregularity measure Var1.

We propose to call this irregularity measure as the normalized degree variance.

Proposition 2. The irregularity measures VarB and Var1 are incomparable.

Proof. For the 4-vertex path P 4, one has

V arB(P4) =
M1(P4)

n
−
(

2m

n

)2

=
10

4
−
(

6

4

)2

=
40− 36

16
=

1

4
,

and hence

V ar1(P4) =
2mF (P4)−M2

1 (P4)

4m2
=

6 ∗ 18− 102

36
=

2

9
<

1

4
= V arB(P4).

On the other hand, for the 4-vertex star graph S4 it holds that

V arB(S4) =
M1(S4)

n
−
(

2m

n

)2

=
12

4
−
(

6

4

)2

=
48− 36

16
=

3

4
.

Hence

V ar1(S4) =
2mF (S4)−M2

1 (S4)

4m2
=

6× 30− 122

36
= 1 >

3

4
= V arB(S4).



T. Réti, A. Ali 175

Finally, we show that for harmonic graphs there exists a strong correspondence be-

tween the sigma index σ(G) =
∑

uv∈E(G)(d(u) − d(v))2, introduced in [24], and the

normalized degree-variance Var1(G). For this purpose, we need the following lemma.

Lemma 2. [14, 32] If G is a harmonic graph with m edges and with the spectral radius
λ1(G) then

λ1(G) =
M1(G)

2m
=

2M2(G)

M1(G)
,

where M2(G) is the second Zagreb index [25, 28] of G.

Proposition 3. If G is a harmonic graph with m edges then

V ar1(G) =
1

2m
(F (G) − 2M2(G)) =

1

2m
σ(G).

Proof. The normalized degree-variance can be rewritten as

V ar1(G) =
M1(G)

2m

(
F (G)

M1(G)
− M1(G)

2m

)
.

By using Lemma 2, we get

V ar1(G) =
M1(G)

2m

(
F (G)

M1(G)
− 2M2(G)

M1(G)

)
=

1

2m
(F (G)− 2M2(G)) .

4. Discriminatory Performance of the Normalized
Degree -Variance

The discriminatory performance of the Bell’s degree-variance VarB and the normalized

degree-variance Var1 are compared and evaluated in the following examples.

G1 G4G2 G3

Figure 1. Four 6-vertex non-regular graphs with the same total irregularity.
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Example 1. Consider the 6-vertex connected non-regular graphs depicted in Figure 1.
It can be easily checked that all these graphs have the same value of the total irregularity,
which is 26. Comparing the irregularity measures VarB and Var1 of the graphs shown in
Figure 1, the following results are obtained.
It is easy to check that VarB(G1) ≈ 1.667, while the other graphs have the identical Bell’s
degree-variance: V arB(G2) = V arB(G3) = V arB(G4) ≈ 1.889. On the other hand, for
the normalized degree-variance Var1, we get: V ar1(G1) ≈ 1.3580, V ar1(G2) ≈ 2.2653,
V ar1(G3) ≈ 1.9844 and V ar1(G4) ≈ 1.6094. Thus, it can be stated that the irregularity
measure Var1 is more discriminative (more selective) than the Bell’s degree variance for the
considered graphs.

An n-vertex graph whose degree set consists of exactly n − 2 elements is called an

antiregular graph [3, 26, 31]. Following the references [2, 6, 7, 13], we take antiregular

graphs as the graphs opposite to the regular graphs. It is interesting to note in

Example 1 that the minimum values of both the measures VarB and Var1 are attained

by the antiregular graph G1. Thus, both of these irregularity measures may be useful

in designing some irregularity measure(s) satisfying the constraints mentioned in the

open problem given in [31].

H1 H2

Figure 2. Two 9-vertex non-regular graphs with 18 edges.

Example 2. Consider the non-regular graphs H1 and H2 depicted in Figure 2. The de-
gree sequences of the graphs H1 and H2 are (8, 8, 5, 3, 3, 3, 2, 2, 2) and (8, 5, 5, 5, 5, 5, 1, 1, 1),
respectively. These graphs have identical first Zagreb index, M1(H1) = M1(H2) = 192,
and different forgotten topological index, that is F (H1) = 1254 and F (H2) = 1140. Con-
sequently, although the Bell’s degree variance of these graphs are identical, VarB(H1) =
V arB(H2) ≈ 5.333, the normalized degree variance of the graphs H1 and H2 are strongly
different: Var1(H1) ≈ 6.389 and Var1(H2) ≈ 3.222. Comparing the discriminatory ability
of the irregularity measures VarB and Var1, we can conclude that the normalized degree
variance Var1 possesses a better discriminatory performance for the considered graphs.
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[15] E. Estrada, Randić index, irregularity and complex biomolecular networks, Acta

Chim. Slov. 57 (2010), no. 3, 597–603.

[16] S. Fajtlowicz, On conjectures of Graffiti. II, Congr. Numer. 60 (1987), 187–197.

[17] B. Furtula and I. Gutman, A forgotten topological index, J. Math. Chem. 53

(2015), no. 4, 1184–1190.

[18] A. Ghalavand and T. Sohail, On some variations of the irregularity, Discrete

Math. Lett. 3 (2020), 25–30.

[19] C. Godsil and v Royle, Algebraic Graph Theory, Springer-Verlag, New York, 2001.

[20] I. Gutman, Topological indices and irregularity measures, Bulletin of the Inter-

national Mathematical Institute 8 (2018), 469–475.

[21] I. Gutman and K.C. Das, The first Zagreb index 30 years after, MATCH Com-

mun. Math. Comput. Chem. 50 (2004), no. 1, 83–92.
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years after, Croat. Chem. Acta 76 (2003), no. 2, 113–124.
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