Research Article

Twin signed total Roman domatic numbers in digraphs

Jafar Amjadi

Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, I.R. Iran j-amjadi@azaruniv.ac.ir

Received: 9 January 2020; Accepted: 13 March 2020 Published Online: 15 March 2020

Abstract: Let D be a finite simple digraph with vertex set V(D) and arc set A(D). A twin signed total Roman dominating function (TSTRDF) on the digraph D is a function $f: V(D) \to \{-1, 1, 2\}$ satisfying the conditions that (i) $\sum_{x \in N^-(v)} f(x) \ge 1$ and $\sum_{x \in N^+(v)} f(x) \ge 1$ for each $v \in V(D)$, where $N^-(v)$ (resp. $N^+(v)$) consists of all in-neighbors (resp. out-neighbors) of v, and (ii) every vertex u for which f(u) = -1 has an in-neighbor v and an out-neighbor w with f(v) = f(w) = 2. A set $\{f_1, f_2, \ldots, f_d\}$ of distinct twin signed total Roman dominating functions on D with the property that $\sum_{i=1}^d f_i(v) \le 1$ for each $v \in V(D)$, is called a twin signed total Roman dominating family (of functions) on D. The maximum number of functions in a twin signed total Roman domatic number of D, denoted by $d^*_{stR}(D)$. In this paper, we initiate the study of the twin signed total Roman domatic number in digraphs and present some sharp bounds on $d^*_{stR}(D)$. In addition, we determine the twin signed total Roman domatic number of some classes of digraphs.

Keywords: twin signed total Roman dominating function, twin signed total Roman domination number, twin signed total Roman domatic number, directed graph

AMS Subject classification: 05C69

1. Introduction

In this paper we continue the study of signed total Roman dominating functions in graphs and digraphs. Let G be a finite and simple graph with vertex set V(G), and let $N_G(v) = N(v)$ be the open neighborhood of the vertex v. A signed total Roman dominating function (STRDF) on a graph G is defined in [12] as a function $f: V(G) \longrightarrow \{-1, 1, 2\}$ such that $\sum_{x \in N(v)} f(x) \ge 1$ for each $v \in V(G)$, and every vertex $u \in V(G)$ for which f(u) = -1 is adjacent to a vertex v with f(v) = 2. The weight of an STRDF f is the value $\omega(f) = \sum_{v \in V(G)} f(v)$. The signed total Roman domination number $\gamma_{stR}(G)$ of G is the minimum weight of an STRDF on G. A set $\{f_1, f_2, \ldots, f_d\}$ of distinct signed total Roman dominating functions on G © 2021 Azarbaijan Shahid Madani University with the property that $\sum_{i=1}^{d} f_i(v) \leq 1$ for each $v \in V(G)$, is called a signed total Roman dominating family (of functions) on G. The maximum number of functions in a signed total Roman dominating family (STRD family) on G is the signed total Roman domatic number of G, denoted by $d_{stR}(G)$. This parameter was introduced and investigated in [11]. Following this idea, we initiate the study of twin signed total Roman domatic numbers on digraphs.

Let D be a finite simple directed graph with vertex set V(D) and arc set A(D) (briefly V and A). The integers n = n(D) = |V(D)| and m = m(D) = |A(D)| are the order and the size of the digraph D, respectively. A digraph without directed cycles of length 2 is an *oriented graph*. An oriented graph D is called a tournament when either $(u, v) \in A(D)$ or $(v, u) \in A(D)$ for each pair of distinct vertices $u, v \in V(D)$. By D^{-1} we denote the digraph obtained by reversing all arcs of D. If (u, v) is an arc of D, then we also write $u \to v$, and we say that v is an *out-neighbor* of u and u is an *inneighbor* of v. For every vertex v, we denote the set of in-neighbors and out-neighbors of v by $N^{-}(v) = N_{D}^{-}(v)$ and $N^{+}(v) = N_{D}^{+}(v)$, respectively. Let $N_{D}^{-}[v] = N^{-}[v] =$ $N^{-}(v) \cup \{v\}$ and $N_{D}^{+}[v] = N^{+}[v] = N^{+}(v) \cup \{v\}$. We write $d^{+}(v) = d_{D}^{+}(v)$ for the outdegree of a vertex v and $d^{-}(v) = d_{D}^{-}(v)$ for its in-degree. The minimum and maximum *in-degree* and *minimum* and *maximum* out-degree of D are denoted by $\delta^{-}(D) = \delta^{-}$, $\Delta^{-}(D) = \Delta^{-}, \ \delta^{+}(D) = \delta^{+} \ \text{and} \ \Delta^{+}(D) = \Delta^{+}, \ \text{respectively.} \ A \ \text{digraph} \ D \ \text{is } r\text{-out-}$ regular (r-in-regular) if $\delta^+(D) = \Delta^+(D) = r$ ($\delta^-(D) = \Delta^-(D) = r$). In addition, let $\delta = \delta(D) = \min\{\delta^+(D), \delta^-(D)\}$ and $\Delta = \Delta(D) = \max\{\Delta^+(D), \Delta^-(D)\}$ be the minimum and maximum degree of D, respectively. A digraph D is called regular or r-regular if $\delta(D) = \Delta(D) = r$. For a real-valued function $f: V \longrightarrow \mathbb{R}$ the weight of f is $\omega(f) = \sum_{v \in V} f(v)$, and for $S \subseteq V$, we define $f(S) = \sum_{v \in S} f(v)$, so $\omega(f) = f(V)$. Consult [7] for the notation and terminology which are not defined here.

A signed total Roman dominating function (abbreviated STRDF) on D is defined in [13] as a function $f: V \longrightarrow \{-1, 1, 2\}$ such that (i) $f(N^-(v)) = \sum_{x \in N^-(v)} f(x) \ge 1$ for each vertex $v \in V$ and (ii) every vertex u for which f(u) = -1 has an in-neighbor v for which f(v) = 2. The signed total Roman domination number $\gamma_{stR}(D)$ of D is the minimum weight of an STRDF on D. A $\gamma_{stR}(D)$ -function is an STRDF on D of weight $\gamma_{stR}(D)$.

In [2], an STRDF of D is called a *twin signed total Roman dominating function* (briefly TSTRDF) if it also is a signed total Roman dominating function of D^{-1} , i.e., $f(N^+(v)) \ge 1$ for every $v \in V$ and every vertex u for which f(u) = -1 has an out-neighbor v for which f(v) = 2. The *twin signed total Roman domination number* for a digraph D is $\gamma_{stR}^*(D) = \min\{\omega(f) \mid f \text{ is a TSTRDF of } D\}$. A $\gamma_{stR}^*(D)$ -function is a twin signed total Roman dominating function on D of weight $\gamma_{stR}^*(D)$. As the assumption $\delta(D) \ge 1$ is necessary, we always assume that when we discuss $\gamma_{stR}^*(D)$, all digraphs involved satisfy $\delta(D) \ge 1$. Since every TSTRDF of D is an STRDF on both D and D^{-1} and since the constant function 1 is a TSTRDF of D, we have

$$\max\{\gamma_{stR}(D), \gamma_{stR}(D^{-1})\} \le \gamma^*_{stR}(D) \le n.$$
(1)

The corresponding concepts have been defined and studied for twin domination number [3, 9], twin signed domination number [6], twin signed total domination number [4], twin minus domination number [5], twin minus total domination number [10], and twin signed Roman domination number [8].

A set $\{f_1, f_2, \ldots, f_d\}$ of distinct twin signed total Roman dominating functions on Dwith the property that $\sum_{i=1}^d f_i(v) \leq 1$ for each $v \in V(D)$, is called a *twin signed total Roman dominating family* (of functions) on D. The maximum number of functions in a twin signed total Roman dominating family (TSTRD family) on D is the *twin signed total Roman domatic number* of D, denoted by $d_{stR}^*(D)$. Since the set consisting of the TSTRDF with constant value 1 forms an TSTRD family on D, the twin signed total Roman domatic number is well-defined and

$$d_{stR}^*(D) \ge 1 \tag{2}$$

for all digraphs D. Since every TSTRD family of D is an STRD family on both D and D^{-1} , we have

$$d_{stR}^*(D) \le \min\{d_{stR}(D), d_{stR}(D^{-1})\}.$$
(3)

In this paper, we initiate the study of the twin signed total Roman domatic number in digraphs and present some sharp bounds on $d_{stR}^*(D)$. In addition, we determine the twin signed total Roman domatic number of some classes of digraphs.

An orientation of a graph G is an assignment of orientations to its edges. The associated digraph G^* of a graph G is obtained by replacing each edge of G by a pair of two mutually opposite oriented edges. Since $N_{G^*}^-(v) = N_{G^*}^+(v) = N_G(v)$ for each $v \in V(G) = V(G^*)$, the following useful observation is valid.

Observation 1. For any graph G, $\gamma_{stR}(G) = \gamma^*_{stR}(G^*)$ and $d_{stR}(G) = d^*_{stR}(G^*)$.

We make use of the following results in this paper.

Propsotion A. ([12]) If K_n is the complete graph of order $n \ge 3$, then $\gamma_{stR}(K_n) = 3$.

Propsotion B. ([11]) If $k \ge 0$ is an integer, then $d_{stR}(K_{9k+6}) = 3k+2$.

Observations 1, Propositions A and B lead to the next results immediately.

Corollary 1. If K_n^* is the complete digraph of order $n \ge 3$, then $\gamma_{stR}^*(K_n^*) = 3$.

Corollary 2. If $k \ge 0$ is an integer, then $d_{stR}^*(K_{9k+6}^*) = 3k+2$.

Propsotion C. ([11]) If D is an r-out-regular digraph of order n with $r \ge 1$, then $\gamma_{stR}(D) \ge \lceil n/r \rceil$.

Inequality (1) and Proposition C imply the next result immediately.

Corollary 3. If D is an r-out-regular or r-in-regular digraph of order n with $r \ge 1$, then $\gamma_{stR}^*(D) \ge \lceil n/r \rceil$.

Propsotion D. ([12]) Let C_n be a cycle of order $n \ge 3$. Then $\gamma_{stR}(C_n) = n/2$ when $n \equiv 0 \pmod{4}$, $\gamma_{stR}(C_n) = (n+3)/2$ when $n \equiv 1, 3 \pmod{4}$ and $\gamma_{stR}(C_n) = (n+6)/2$ when $n \equiv 2 \pmod{4}$.

Propsotion E. ([11]) If C_n is a cycle of length $n \ge 3$. Then $d_{stR}(C_n) = 2$, when $n \equiv 0 \pmod{4}$ and $d_{stR}(C_n) = 1$ when $n \not\equiv 0 \pmod{4}$.

Corollary 4. Let C_n^* be the associated digraph of cycle C_n of order $n \ge 3$. Then

- 1. $\gamma_{stR}^*(C_n^*) = n/2$ when $n \equiv 0 \pmod{4}$, $\gamma_{stR}^*(C_n^*) = (n+3)/2$ when $n \equiv 1, 3 \pmod{4}$ and $\gamma_{stR}^*(C_n^*) = (n+6)/2$ when $n \equiv 2 \pmod{4}$.
- 2. $d_{stR}^*(C_n^*) = 2$ when $n \equiv 0 \pmod{4}$ and $d_{stR}^*(C_n^*) = 1$ when $n \not\equiv 0 \pmod{4}$.

Propsotion F. ([12]) If P_n is a path of order $n \ge 3$, then $\gamma_{stR}(P_n) = n/2$ when $n \equiv 0 \pmod{4}$, and $\gamma_{stR}(P_n) = \lceil (n+3)/2 \rceil$ otherwise.

Corollary 5. If P_n^* is the associated digraph of path P_n of order $n \ge 3$, then $\gamma_{stR}^*(P_n^*) = n/2$ when $n \equiv 0 \pmod{4}$, and $\gamma_{stR}^*(P_n^*) = \lceil (n+3)/2 \rceil$ otherwise.

Propsotion G. ([13]) Let $K_{p,p}$ be the complete bipartite graph where $p \ge 1$. Then $\gamma_{stR}(K_{p,p}) = 2$, unless p = 3 in which case $\gamma_{stR}(K_{p,p}) = 4$.

Propsotion H. ([11]) Let $K_{p,p}$ be the complete bipartite graph where $p \ge 1$. Then $d_{stR}(K_{p,p}) = p$, unless p = 3 in which case $d_{stR}(K_{p,p}) = 1$.

The next result follows immediately from Observation 1 and Propositions G and H.

Corollary 6. Let $K_{p,p}^*$ be the associated digraph of the complete bipartite graph $K_{p,p}$ where $p \ge 1$. Then

1. $\gamma^*_{stR}(K^*_{p,p}) = 2$, unless p = 3 in which case $\gamma^*_{stR}(K^*_{p,p}) = 4$.

2. $d_{stR}^*(K_{p,p}^*) = p$, unless p = 3 in which case $d_{stR}^*(K_{3,3}^*) = 1$.

Propsotion I. ([1]) If D is a digraph with $\delta^{-}(D) \ge 1$, then $d_{stR}(D) \le \delta^{-}(D)$.

Propsotion J. ([13]) If D is a digraph of order $n \ge 3$ with $\delta^{-}(D) \ge 1$, then

$$\gamma_{stR}(D) \ge 4 + \delta^{-}(D) - n.$$

Propsotion K. ([2]) If D is a digraph of order $n \ge 3$ with $\delta(D) \ge 1$, then

$$\gamma_{stR}^*(D) \ge \frac{3}{2}(1 + \sqrt{2n+1}) - n.$$

2. Properties of the twin signed total Roman domatic number

In this section we present basic properties of $d_{stR}^*(D)$ and sharp bounds on this parameter. Using Proposition I and inequality (3), we obtain our first bound on $d_{stR}^*(D)$.

Theorem 2. If D is a digraph with $\delta(D) \ge 1$, then

$$d^*_{stR}(D) \le \delta(D).$$

Corollary 6 (Item 2) shows that Theorem 2 is sharp. Theorem 2 and inequality (2) yield the next result immediately.

Corollary 7. For a digraph D with $\delta(D) = 1$, $d_{stR}^*(D) = 1$.

As we observed in (3), $d_{stR}^*(D) \leq d_{stR}(D)$. Next we show that the difference $d_{stR}(D) - d_{stR}^*(D)$ can be arbitrarily large.

Theorem 3. For every positive integer $k \ge 3$, there exists a digraph D such that

$$d_{stR}(D) - d^*_{stR}(D) \ge 3k + 1.$$

Proof. Let $k \ge 3$ be an integer, and let D be the digraph obtained from two copies of K_{9k+6}^* , say G_1, G_2 , by adding two new vertices x and y, arcs going from every vertex in $V(G_1) \cup V(G_2)$ to both x and y, and the opposite arcs (x, y) and (y, x). Since $d^+(x) = d^+(y) = 1$, we deduce from Corollary 7 that $d^*_{stR}(D) = 1$.

Let $V(G_j) = \{v_1^j, \ldots, v_{9k+6}^j\}$ for $j \in \{1, 2\}$. For $1 \le p \le 3k + 2$ and j = 1, 2, define the functions $f_1^j: V(G_j) \to \{-1, 1, 2\}$ by $f_1^j(v_i^j) = -1$ for $i \in \{1, \ldots, 6k + 3\}$ and $f_1^j(v_i^j) = 2$ for $i \in \{6k + 4, \ldots, 9k + 6\}$, and $f_p^j(v_i^j) = f_{p-1}^j(v_{i+3}^j)$ for $2 \le p \le 3k + 2$ where the indices are taken modulo 9k + 6. Clearly $\{f_1^j, f_2^j, \ldots, f_{3k+2}^j\}$ is an STRD family on the digraph G_j for j = 1, 2 (see Example 10 [11]). For $1 \le p \le 3k + 2$, define $h_p: V(D) \to \{-1, 1, 2\}$ by $h_p(x) = h_p(y) = -1$, $h_p(u) = f_p^j(u)$ if $u \in V(G_j)$ for j = 1, 2. Clearly, $\{h_1, h_2, \ldots, h_{3k+2}\}$ is an STRD family of D and hence $d_{stR}(D) \ge 3k + 2$. Thus $d_{stR}(D) - d_{stR}^*(D) \ge 3k + 1$, and the proof is complete.

Theorem 4. If D is a digraph of order n, then

$$\gamma_{stR}^*(D) \cdot d_{stR}^*(D) \le n.$$

Moreover, the equality holds if and only if for each each TSTRD family $\{f_1, f_2, \ldots, f_d\}$ on D with $d = d^*_{stR}(D)$, each function f_i is a $\gamma^*_{stR}(D)$ -function and $\sum_{i=1}^d f_i(v) = 1$ for each $v \in V(D)$.

Proof. Let $\{f_1, f_2, \ldots, f_d\}$ be a TSTRD family on D with $d = d^*_{stR}(D)$ and let $v \in V(D)$. Then

$$d \cdot \gamma_{stR}^*(D) = \sum_{i=1}^d \gamma_{stR}^*(D) \le \sum_{i=1}^d \sum_{v \in V(D)} f_i(v) = \sum_{v \in V(D)} \sum_{i=1}^d f_i(v) \le \sum_{v \in V(D)} 1 = n.$$

Corollaries 1 and 2 demonstrate that Theorem 4 is sharp. Using Proposition G and Corollary 6 for $p \ge 4$, we have a further example which shows the sharpness of Theorem 4. As an application of Theorem 4 for some out-regular or in-regular digraphs we obtain the next result.

Corollary 8. Let D be an r-out-regular or r-in-regular digraph of order n such that n is not a multiple of r, then $d_{stR}^*(D) \leq r-1$.

Proof. Let n = dr + s with integers $d \ge 1$ and $1 \le s \le r - 1$. According to Corollary 3, we have

$$\gamma_{stR}^*(D) \ge \left\lceil \frac{n}{r} \right\rceil = \left\lceil \frac{dr+s}{r} \right\rceil = d+1.$$

Now Theorem 4 yields

$$d^*_{stR}(D) \le \frac{n}{d+1} < r$$

and therefore $d^*_{stR}(D) \leq r - 1$.

Corollary 6 demonstrates that Corollary 8 is not valid in general.

Corollary 9. If D is an oriented graph of order n such that $\delta(D) \ge 1$, then

$$d^*_{stR}(D) \le \frac{n-2}{2}.$$

Proof. If D is not a tournament or D is non-regular tournament, then $\delta^{-}(D) + \delta^{+}(D) \leq n-2$, and hence we deduce from Theorem 2 that

$$d_{stR}^*(D) \le \frac{\delta^-(D) + \delta^+(D)}{2} \le \frac{n-2}{2}.$$

Let now D be a δ -regular tournament. Then D^{-1} is a δ -regular tournament such that $n = 2\delta + 1$. Hence $n \not\equiv 0 \pmod{\delta}$ and it follows from Corollary 8 that

$$d_{stR}^*(D) \le \delta - 1 = \frac{n-3}{2} < \frac{n-2}{2}.$$

The next result is an immediate consequence of Corollary 3 and Theorem 4.

Corollary 10. If D is an r-out-regular or r- in-regular digraph of order n with $r \ge 1$, then $d_{stR}^*(D) \le \frac{n}{2}$

Corollary 6 is an example which shows that Corollary 10 is sharp for $p \ge 4$. The upper bound on the product $\gamma^*_{stR}(D).d^*_{stR}(D)$ leads to an upper bound on the sum of these two parameters.

Theorem 5. If D is a digraph of order n, then

$$\gamma^*_{stR}(D) + d^*_{stR}(D) \le n+1.$$

Proof. It follows from Theorem 4 that

$$\gamma_{stR}^*(D) + d_{stR}^*(D) \le \frac{n}{d_{stR}^*(G)} + d_{stR}^*(D).$$
(4)

According to (2) and Theorem 2, we have $1 \leq d^*_{stR}(G) \leq n-1$. Using these bounds, and the fact that the function g(x) = x + n/x is decreasing for $1 \leq x \leq \sqrt{n}$ and increasing for $\sqrt{n} \leq x \leq n$, we observe that

$$\gamma^*_{stR}(D) + d^*_{stR}(D) \le \frac{n}{d^*_{stR}(G)} + d^*_{stR}(D) \le \max\{n+1, \frac{n}{n-1} + n - 1\} = n + 1.$$

The complement \overline{D} of a digraph D is the digraph with vertex set V(D) such that for any two distinct vertices u and v, the arc (u, v) belongs to \overline{D} if and only if (u, v) does not belong to D. Next, we present a so-called Nordhaus-Gaddum type inequality for the twin signed total Roman domination and twin signed total Roman domatic numbers of regular digraphs.

Theorem 6. If D is an r-regular digraph of order n with $r \ge 1$, then

$$\gamma_{stR}^*(D) + \gamma_{stR}^*(\overline{D}) \ge \frac{4n}{n-1}.$$

If n is even, then $\gamma_{stR}^*(D) + \gamma_{stR}^*(\overline{D}) \ge \frac{4(n-1)}{n-2}$.

Proof. Since D is r-regular, the complement \overline{D} is (n - r - 1)-regular. Therefore, if follows from Corollary 3 that

$$\gamma_{stR}^*(D) + \gamma_{stR}^*(\overline{D}) \ge n \Big(\frac{1}{r} + \frac{1}{n-r-1}\Big).$$

The conditions $r \ge 1$ and $n - r - 1 \ge 1$ imply that $1 \le r \le n - 2$. As the function g(x) = 1/x + 1/(n - x - 1) has its minimum for x = (n - 1)/2 when $1 \le x \le n - 2$, we obtain

$$\gamma_{stR}^*(D) + \gamma_{stR}^*(\overline{D}) \ge n \Big(\frac{1}{r} + \frac{1}{n-r-1}\Big) \ge n \Big(\frac{2}{n-1} + \frac{2}{n-1}\Big) = \frac{4n}{n-1},$$

and this is the desired bound. If n is even, then the function g has its minimum for r = x = (n-2)/2 or r = x = n/2, since r is an integer. Hence this leads to

$$\gamma_{stR}^*(D) + \gamma_{stR}^*(\overline{D}) \ge n \Big(\frac{1}{r} + \frac{1}{n-r-1}\Big) \ge n \Big(\frac{2}{n} + \frac{2}{n-2}\Big) = \frac{4(n-1)}{n-2},$$

and the proof is complete.

Theorem 7. Let D be a digraph of order n such that $min\{\delta(D), \delta(\overline{D})\} \ge 1$. Then

$$d_{stR}^*(D) + d_{stR}^*(\overline{D}) \le n - 1.$$

Furthermore, if $d_{stR}^*(D) + d_{stR}^*(\overline{D}) = n - 1$, then D is both in-regular and out-regular.

Proof. It follows from Theorem 2 that

$$\begin{aligned} d_{stR}^*(D) + d_{stR}^*(D) &\leq \min\{\delta^-(D), \delta^+(D)\} + \min\{\delta^-(D), \delta^+(D)\} \\ &\leq \min\{\delta^-(D) + \delta^-(\overline{D}), \delta^+(D) + \delta^+(\overline{D})\} \\ &= \min\{\delta^-(D) + n - 1 - \Delta^-(D), \delta^+(D) + n - 1 - \Delta^+(D)\} \\ &= n - 1 + \min\{\delta^-(D) - \Delta^-(D), \delta^+(D) - \Delta^+(D)\} \\ &\leq n - 1 \end{aligned}$$

and the proof of the Nordhaus-Gaddum bound is complete. If D is not in-regular or out-regular, then $\Delta^{-}(D) - \delta^{-}(D) \geq 1$ or $\Delta^{+}(D) - \delta^{+}(D) \geq 1$, respectively, and hence the above inequality chain implies the better bound $d^*_{stR}(D) + d^*_{stR}(\overline{D}) \leq n-2$. \Box

The next result improves the bound of Theorem 7 for r-regular digraphs of order $n \ge 7$.

Theorem 8. Let D be an r-regular digraph of order $n \ge 7$ such that $\delta^{-}(D), \delta^{-}(\overline{D}) \ge 1$. Then $d^{*}_{stR}(D) + d^{*}_{stR}(\overline{D}) \le n-2$.

Proof. Since D is r-regular, \overline{D} is \overline{r} -regular such that $r + \overline{r} + 1 = n$. Assume, without loss of generality, that $\overline{r} \leq r$. If r = 1, then $n - 1 - r = \overline{r} = 1$ that leads to the contradiction n = 3. Let now $r \geq 2$. If n = tr + s with integers $t \geq 1$ and $1 \leq s \leq r - 1$, then Theorem 2 and Corollary 8 lead to $d_{stR}^*(D) + d_{stR}^*(\overline{D}) \leq (r - 1) + \overline{r} = n - 2$ as desired. Thus assume that n = tr with an integer $t \geq 2$. As $\overline{r} \leq r$, we observe that $tr = n = r + \overline{r} + 1 \leq 2r + 1$ and so t = 2. Therefore n = 2r and hence $\overline{r} = n - r - 1 = 2r - r - 1 = r - 1$.

If $\overline{r} = 1$, then r = 2 and n = 4 which is a contradiction. Therefore, $\overline{r} \geq 2$ and thus $r = \overline{r} + 1$. If $n = k\overline{r} + s$ with integers $k \geq 1$ and $1 \leq s \leq \overline{r} - 1$, then it follows from Theorem 2 and Corollary 8 that $d^*_{stR}(D) + d^*_{stR}(\overline{D}) \leq r + \overline{r} - 1 = n - 2$ as desired. Now assume that $n = k\overline{r}$ with an integer $k \geq 2$. Altogether, we have

$$n = 2r = k(r-1)$$

with $r \ge 3$. It is straightforward to verify that this identity is only possible for k = 3 and r = 3 and thus $\overline{r} = 2$ and n = 6 which is a contradiction. This completes the proof.

As an application of Corollary 8, we improve Theorem 7 for r-regular digraphs.

Theorem 9. Let D be an r-regular digraph of order n such that $\delta^{-}(D), \delta^{-}(\overline{D}) \ge 1$ and $n \not\equiv 0 \pmod{(n-1-r)}, n \not\equiv 0 \pmod{r}$. Then $d_{stR}(D) + d_{stR}(\overline{D}) \le n-3$.

Proof. Since D is an r-regular, the complement \overline{D} is (n-1-r)-regular According to Corollary 8 and the hypothesis $n \not\equiv 0 \pmod{(n-1-r)}$ and $n \not\equiv 0 \pmod{r}$, we deduce that $d^*_{stR}(D) + d^*_{stR}(\overline{D}) \leq r-1 + (n-1-r-1) = n-3$ and this is the desired bound.

Corollary 11. If T is a tournament of odd order $n \ge 3$, then $d_{stR}^*(T) + d_{stR}^*(\overline{T}) \le n-3$.

Proof. If T is an r-regular tournament, then \overline{T} is also an r-regular tournament such that n = 2r + 1. It is easy to see that $n \not\equiv 0 \pmod{r}$ and $n \not\equiv 0 \pmod{(n-1-r)}$. According to Theorem 9, $d_{stR}^*(T) + d_{stR}^*(\overline{T}) \leq n-3$. Assume now that T is not regular. Then $\delta^-(T) \leq (n-3)/2$ and $\delta^-(\overline{T}) \leq (n-3)/2$,

and we deduce from Theorem 2 that

$$d_{stR}^{*}(T) + d_{stR}^{*}(\overline{T}) \le \delta^{-}(T) + \delta^{-}(\overline{T}) \le \left(\frac{n-3}{2}\right) + \left(\frac{n-3}{2}\right) = n-3.$$

Using Observation 1, Theorems 2, 4, 5 and 7, we obtain the next known results.

Corollary 12. ([11]) Let G be a graph of order n. Then $d_{stR}(G) \leq \delta(G)$, $\gamma_{stR}(G) \cdot d_{stR}(G) \leq n$, $\gamma_{stR}(G) + d_{stR}(G) \leq n + 1$ and $d_{stR}(G) + d_{stR}(\overline{G}) \leq n - 1$.

References

- J Amjadi, The signed total Roman domatic number of a digraph, Discrete Math. Algorithms Appl. 10 (2018), no. 2, ID: 1850020.
- [2] J. Amjadi and M. Soroudi, Twin signed total Roman domination numbers in digraphs, Asian-European J. Math. 11 (2018), no. 3, ID: 1850034.
- [3] S. Arumugam, K. Ebadi, and L. Sathikala, Twin domination and twin irredundance in digraphs, Appl. Anal. Discrete Math. 7 (2013), no. 2, 275–284.
- [4] M. Atapour, A. Bodaghli, and S.M. Sheikholeslami, Twin signed total domination numbers in directed graphs, Ars Combin. 138 (2018), 119–131.
- [5] M. Atapour and A. Khodkar, Twin minus domination numbers in directed graphs, Commun. Comb. Optim. 1 (2016), no. 2, 149–164.
- [6] M. Atapour, S. Norouzian, S.M. Sheikholeslami, and L. Volkmann, Twin signed domination numbers in directed graphs, Algebra, Discrete Math. 24 (2017), no. 1, 71–89.
- [7] J. Bang-Jensen and G.Z. Gutin, *Digraphs: Theory, algorithms and applications*, Springer Science & Business Media, 2008.
- [8] A. Bodaghli, S.M. Sheikholeslami, and L. Volkmann, Twin signed Roman domination numbers in directed graphs, Tamkang J. Math. 47 (2016), no. 3, 357–371.
- [9] G. Chartrand, P. Dankelmann, M. Schultz, and H.C. Swart, Twin domination in digraphs, Ars Combin. 67 (2003), 105–114.
- [10] N. Dehgardi and M. Atapour, Twin minus total domination numbers in directed graphs, Discuss. Math. Graph Theory 37 (2017), no. 4, 989–1004.
- [11] L. Volkmann, On the signed total Roman domination and domatic numbers of graphs, Discrete Appl. Math. 214 (2016), 179–186.
- [12] _____, Signed total Roman domination in graphs, J. Comb. Optim. 32 (2016), no. 3, 855–871.
- [13] _____, Signed total Roman domination in digraphs, Discuss. Math. Graph Theory 37 (2017), no. 1, 261–272.