[1] H. Abdollahzadeh Ahangar, J. Amjadi, , S.M. Sheikholeslami, and M. Soroudi, Bounds on the total Roman domination number of graphs, Ars Combin. (to appear).
[2] H. Abdollahzadeh Ahangar, M.A. Henning, V. Samodivkin, and I.G. Yero, Total Roman domination in graphs, Appl. Anal. Discrete Math. 10 (2016), 501–517.
[3] J. Amjadi, S. Nazari-Moghaddam, S.M. Sheikholeslami, and L. Volkmann, Total Roman domination number of trees, Australas. J. Combin. 69 (2017), 271–285.
[4] J. Amjadi, S.M. Sheikholeslami, and M. Soroudi, Nordhaus–gaddum bounds for total Roman domination, J. Comb. Optim. 35 (2018), no. 1, 126–133.
[5] H. Aram, O. Favaron, and S.M. Sheikholeslami, Domination subdivision numbers of trees, Discrete Math. 309 (2009), no. 4, 622–628.
[6] M. Atapour, A. Hansberg, A. Khodkar, S.M. Sheikholeslami, and L. Volkmann, 2-domination subdivision number of graphs, AKCE Int. J. Graphs. Combin. 5 (2008), no. 2, 165–173.
[7] M. Atapour, S.M. Sheikholeslami, and A. Khodkar, Roman domination subdivision number of graphs, Aequationes Math. 78 (2009), no. 3, 237–245.
[8] M. Atapour, S.M. Sheikholeslami, Trees whose Roman domination subdivision number is 2, Util. Math. 82 (2010), 227–240.
[9] E.J. Cockayne, P.A. Dreyer Jr, S.M. Hedetniemi, and S.T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004), no. 1-3, 11–22.
[10] N. Dehgardi, S.M. Sheikholeslami, and L. Volkmann, The rainbow domination subdivision numbers of graphs, Mat. Vesnik 67 (2015), no. 2, 102–114.
[11] M. Dettlaff, S. Kosary, M. Lemańska, and S.M. Sheikholeslami, Weakly convex domination subdivision number of a graph, Filomat 30 (2016), no. 8, 2101–2110.
[12] M. Dettlaff, M. Lemańska, S. Kosary, and S.M. Sheikholeslami, The convex domination subdivision number of a graph, Commun. Comb. Optim. 1 (2016), no. 1, 43–56.
[13] M. Falahat, S.M. Sheikholeslami, and L. Volkmann, New bounds on the rainbow domination subdivision number, Filomat 28 (2014), no. 3, 615–622.
[14] O. Favaron, H. Karami, and S.M. Sheikholeslami, Connected domination subdivision numbers of graphs, Util. Math. 77 (2008), 101–111.
[15] O. Favaron, H. Karami, and S.M. Sheikholeslami, Total domination and total domination subdivision number of a graph and its complement, Discrete Math. 308 (2008), no. 17, 4018–4023.
[16] O. Favaron, H. Karami, and S.M. Sheikholeslami, Bounding the total domination subdivision number of a graph in terms of its order, J. Comb. Optim. 21 (2011), no. 2, 209–218.
[17] J.F. Fink, M.S. Jacobson, L.F. Kinch, and J. Roberts, The bondage number of a graph, Discrete Math. 86 (1990), no. 1-3, 47–57.
[18] T.W. Haynes, S.T. Hedetniemi, S.T. Hedetniemi, D. Jacobs, J. Knisely, and L. van der Merwe, Domination subdivision numbers, Discuss. Math. Graph Theory 21 (2001), no. 2, 239–253.
[19] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Domination in Graphs, Advanced Topics, Marcel Dekker, Inc., New York, 1998.
[20] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York,
1998.
[21] T.W. Haynes, M.A. Henning, and L. Hopkins, Total domination subdivision numbers of graphs, Discuss. Math. Graph Theory 24 (2004), no. 3, 457–467.
[22] T.W. Haynes, M.A. Henning, and L. Hopkins, Total domination subdivision numbers of graphs, Discuss. Math. Graph
Theory 24 (2004), no. 3, 457–467.
[23] M.A. Henning and A. Yeo, Total domination in graphs, Springer, 2013.
[24] J. Kok and C.M. Mynhardt, Reinforcement in graphs, Congr. Numer. 79 (1990), 225–231.
[25] C.-H. Liu and G.J. Chang, Roman domination on strongly chordal graphs, J. Comb. Optim. 26 (2013), no. 3, 608–619.
[26] C.S. ReVelle and K.E. Rosing, Defendens imperium Romanum: a classical problem in military strategy, Amer. Math. Monthly 107 (2000), no. 7, 585–594.
[27] I. Stewart, Defend the Roman empire!, Sci. Amer. 281 (1999), no. 6, 136–138.
[28] S. Velammal, Studies in graph theory: Covering, independence, domination and related topics, (1997).