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Abstract: Let G be a finite and simple graph with vertex set V (G). A nonnegative

signed total Roman dominating function (NNSTRDF) on a graph G is a function

f : V (G) → {−1, 1, 2} satisfying the conditions that (i)
∑
x∈N(v) f(x) ≥ 0 for each

v ∈ V (G), where N(v) is the open neighborhood of v, and (ii) every vertex u for which
f(u) = −1 has a neighbor v for which f(v) = 2. The weight of an NNSTRDF f

is ω(f) =
∑
v∈V (G) f(v). The nonnegative signed total Roman domination number

γNNstR (G) of G is the minimum weight of an NNSTRDF on G. In this paper we initiate
the study of the nonnegative signed total Roman domination number of graphs, and

we present different bounds on γNNstR (G). We determine the nonnegative signed total

Roman domination number of some classes of graphs. If n is the order and m is
the size of the graph G, then we show that γNNstR (G) ≥ 3

4
(
√

8n+ 1 + 1) − n and

γNNstR (G) ≥ (10n − 12m)/5. In addition, if G is a bipartite graph of order n, then we
prove that γNNstR (G) ≥ 3

2
(
√

4n+ 1− 1)− n.

Keywords: Nonnegative signed total Roman dominating function, nonnegative signed
total Roman domination number

AMS Subject classification: 05C69

1. Introduction

In this paper we continue the study of Roman dominating functions in graphs. Let

G be a finite and simple graph with vertex set V = V (G) and edge set E(G). The

integers n = n(G) = |V (G)| and m = m(G) = |E(G)| are the order and the size
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140 Nonnegative signed total Roman domination in graphs

of the graph G, respectively. We write dG(v) = d(v) for the degree of a vertex

v. The minimum and maximum degree are δ(G) = δ and ∆(G) = ∆. The sets

NG(v) = N(v) = {u | uv ∈ E(G)} and NG[v] = N [v] = N(u) ∪ {v} are called the

open neighborhood and closed neighborhood of the vertex v, respectively. A graph G

is regular or r-regular if ∆(G) = δ(G) = r. For disjoint subsets U and V of vertices,

we denote by [U, V ] the set of edges between U and V . For a set S ⊆ V (G), its open

neighborhood is the set N(S) =
⋃
v∈S N(v), and its closed neighborhood is the set

N [S] = N(S) ∪ S. Also if S ⊆ V (G), then G[S] is the subgraph induced by S.

A cycle on n vertices is denoted by Cn, while a path on n vertices is denoted by

Pn. We denote by Kn the complete graph on n vertices and by Km,n the complete

bipartite graph with one partite set of cardinality m and the other of cardinality n.

A star is a complete bipartite graph of the form K1,n. A vertex of degree one is called

a leaf. The complement of a graph G is denoted by G.

For a real-valued function f : V (G) → R, the weight of f is ω(f) =
∑
v∈V (G) f(v),

and for S ⊆ V (G), we define f(S) =
∑
v∈S f(v), so ω(f) = f(V (G)). Consult [4] and

[5] for notation and terminology which are not defined here.

For an integer k ≥ 1, a signed total Roman k-dominating function (STRkDF)

on a graph G is defined in [8] as a function f : V (G) → {−1, 1, 2} such that∑
u∈NG(v) f(u) ≥ k for every v ∈ V (G), and every vertex u for which f(u) = −1

is adjacent to a vertex v for which f(v) = 2. The weight of an STRkDF f on a graph

G is ω(f) =
∑
v∈V (G) f(v). The signed total Roman k-domination number γkstR(G) of

G is the minimum weight of an STRkDF on G. The special case k = 1 was introduced

in [6]. Signed total Roman domination in graphs and digraphs is well studied in the

literature, see for example [1–3, 7]. Following [8], we initiate the study of nonnegative

signed total Roman dominating functions on graphs G.

Let G be a graph with δ(G) ≥ 1. A nonnegative signed total Roman dominating

function (NNSTRDF) on G is defined as a function f : V (G)→ {−1, 1, 2} such that∑
u∈N(v) f(u) ≥ 0 for every v ∈ V (G) and every vertex u for which f(u) = −1 has

a neighbor v for which f(v) = 2. The weight of an NNSTRDF f on a graph G

is ω(f) =
∑
v∈V (G) f(v). The nonnegative signed total Roman domination number

γNNstR (G) of G is the minimum weight of an NNSTRDF on G. A γNNstR (G)-function

is a nonnegative signed total Roman dominating function on G of weight γNNstR (G).

For an NNSTRDF f on G, let Vi = V fi = {v ∈ V (G) : f(v) = i} for i = −1, 1, 2.

An NNSTRDF f : V (G) → {−1, 1, 2} can be represented by the ordered partition

(V−1, V1, V2) of V (G). Further, we let n−1 = |V−1|, n1 = |V1|, n2 = |V2|, and so

n = n2 + n1 + n−1. Therefore γNNstR (G) = 2n2 + n1 − n−1.

We present different sharp lower and upper bounds on γNNstR (G). We determine the

nonnegative signed total Roman domination number of some classes of graphs. We

show that γNNstR (G) ≥ 3
4 (
√

8n+ 1+1)−n and γNNstR (G) ≥ (10n−12m)/5. In addition,

if G is a bipartite graph of order n, then we prove that γNNstR (G) ≥ 3
2 (
√

4n+ 1−1)−n.
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2. Special classes of graphs

In this section, we determine the nonnegative signed total Roman domination number

of special classes of graphs.

Proposition 1. For n ≥ 1, γNNstR (K1,n) = 2.

Proof. Let u be the central vertex, and let {u1, u2, . . . , un} be the leaves of the star

K1,n. If n = 1, 2, then it is easy to see that γNNstR (K1,n) = 2. Thus let n ≥ 3. First we

show that γNNstR (K1,n) ≥ 2. Let f be a γNNstR (K1,n)-function. Since N(ui) = {u} for

every 1 ≤ i ≤ n, we deduce that f(u) 6= −1. If f(u) = 1, then f(ui) 6= −1 for every

1 ≤ i ≤ n and so γNNstR (K1,n) = n+ 1 > 2. Now let f(u) = 2. Thus

γNNstR (K1,n) =
∑

1≤i≤n

f(ui) + f(u) = f(N(u)) + f(u) ≥ 0 + 2 = 2.

Now we show that γNNstR (K1,n) ≤ 2. First let n be even. Define the function f :

V (K1,n) → {−1, 1, 2} by f(u) = 2 and f(ui) = (−1)i for every 1 ≤ i ≤ n. Then

the function f is an NNSTRDF on K1,n of weight 2 and thus γNNstR (K1,n) ≤ 2. This

implies that γNNstR (K1,n) = 2 when n is even.

Now let n be odd. Define the function f : V (K1,n) → {−1, 1, 2} by f(u) = 2,

f(u1) = 2, f(u2) = f(u3) = −1 and f(ui) = (−1)i for every 4 ≤ i ≤ n. Then the

function f is an NNSTRDF on K1,n of weight 2 and so γNNstR (K1,n) ≤ 2. This implies

that γNNstR (K1,n) = 2 when n is odd and the proof is complete.

Proposition 2. For n ≥ 2, γNNstR (Kn) = 2.

Proof. Let V (Kn) = {u1, u2, . . . , un}. First we show that γNNstR (Kn) ≥ 2. Let f be

a γNNstR (Kn)-function. If f(ui) 6= −1 for every 1 ≤ i ≤ n, then γNNstR (Kn) = n ≥ 2.

Now we may assume that f(u1) = −1. Thus there is an index i 6= 1, we may assume

that i = 2, such that f(u2) = 2. This leads to

γNNstR (Kn) =
∑
i 6=2

f(ui) + f(u2) = f(N(u2)) + f(u2) ≥ 0 + 2 = 2.

Now we show that γNNstR (Kn) ≤ 2. First let n be even. If n = 2, then Proposition

1 implies that γNNstR (K2) = 2. Now let n ≥ 4. Define the function f : V (Kn) →
{−1, 1, 2} by f(u1) = f(u2) = 2, f(u3) = f(u4) = −1 and f(ui) = (−1)i for each

vertex ui ∈ V − {u1, u2, u3, u4}. Then the function f is an NNSTRDF on Kn of

weight 2 and thus γNNstR (Kn) ≤ 2. Hence γNNstR (Kn) = 2 when n is even.

Now let n be odd and n ≥ 3. Define the function f : V (Kn)→ {−1, 1, 2} by f(u1) = 2

and f(ui) = (−1)i for each 2 ≤ i ≤ n. Then f is an NNSTRDF on Kn of weight 2

and thus γNNstR (Kn) ≤ 2. Hence γNNstR (Kn) = 2 when n is odd and n 6= 1.
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Proposition 3. For n ≥ 3, γNNstR (Pn) = dn
2
e when n ≡ 0, 1, 3 (mod 4) and γNNstR (Pn) =

n
2

+ 1 when n ≡ 2 (mod 4).

Proof. Let Pn := u1u2 . . . un and let f = (V−1, V1, V2) be a γNNstR (Pn)-function. Then

n−1 ≤ n2 and therefore

γNNstR (Pn) = 2n2 + n1 − n−1 ≥ n2 + n1 ≥
n2 + n1 + n−1

2
=
n

2
.

This implies γNNstR (Pn) ≥ dn2 e. If n = 3, then Proposition 1 leads to the desired result.

For n ≥ 4 we distinguish four cases.

Case 1. Let n = 4p for an integer p ≥ 1. Define the function f : V (Pn)→ {−1, 1, 2}
by f(u4i+1) = f(u4i+4) = −1 and f(u4i+2) = f(u4i+3) = 2 for 0 ≤ i ≤ p − 1. Then

the function f is an NNSTRDF on Pn of weight ω(f) = n
2 and thus γNNstR (Pn) = n

2 in

this case.

Case 2. Let n = 4p + 1 for an integer p ≥ 1. Define the function f : V (Pn) →
{−1, 1, 2} by f(u1) = f(u4p+1) = −1, f(u2) = f(u4p) = 2, f(u3) = 1, f(u4i) =

f(u4i+3) = 2 and f(u4i+1) = f(u4i+2) = −1 for 1 ≤ i ≤ p − 1. Then the function f

is an NNSTRDF on Pn of weight ω(f) = 2p+ 1 = dn2 e and thus γNNstR (Pn) = dn2 e.
Case 3. Let n = 4p + 3 for an integer p ≥ 1. Define the function f : V (Pn) →
{−1, 1, 2} by f(u4p+1) = −1, f(u4p+2) = 2, f(u4p+3) = 1, f(u4i+1) = f(u4i+4) = −1

and f(u4i+2) = f(u4i+3) = 2 for 0 ≤ i ≤ p− 1. Then the function f is an NNSTRDF

on Pn of weight ω(f) = 2p+ 2 = dn2 e and thus γNNstR (Pn) = dn2 e.
Case 4. Let n = 4p+ 2 for an integer p ≥ 1. If n1 ≥ 1, then it follows that

γNNstR (Pn) = 2n2 + n1 − n−1 ≥ n2 + n1 >
n2 + n1 + n−1

2
=
n

2
.

This implies γNNstR (Pn) = n
2 +1 when n1 ≥ 1. Now let n1 = 0, and let g be a γNNstR (Pn)-

function. Since g(u2) = g(u4p+1) = 2, we observe that g(u1) + g(u2) + g(u3) ≥ 3 and

g(u4p) + g(u4p+1) + g(u4p+2) ≥ 3. In addition, we note that g(u4i) + g(u4i+1) +

g(u4i+2) + g(u4i+3) ≥ 2 for 1 ≤ i ≤ p− 1. Therefore we obtain

γNNstR (Pn) = g(u1) + g(u2) + g(u3) +

p−1∑
i=1

(g(u4i) + g(u4i+1) + g(u4i+2) + g(u4i+3))

+ g(u4p) + g(u4p+1) + g(u4p+2) ≥ 3 + 2(p− 1) + 3 = 2p+ 4 >
n

2
+ 1.

Thus γNNstR (Pn) ≥ n
2 + 1. For the converse define the function f : V (Pn)→ {−1, 1, 2}

by f(u1) = f(u4p+2) = −1, f(u2) = f(u4p+1) = 2, f(u3) = f(u4p) = 1, f(u4i) =

f(u4i+3) = 2 and f(u4i+1) = f(u4i+2) = −1 for 1 ≤ i ≤ p− 1. Then the function f is

an NNSTRDF on Pn of weight ω(f) = 2p + 2 = n
2 + 1 and hence γNNstR (Pn) = n

2 + 1

in this case.
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By using an argument similar to that described in the proof of Proposition 3, we

obtain the next proposition.

Proposition 4. For n ≥ 3, γNNstR (Cn) = dn
2
e when n ≡ 0, 1, 3 (mod 4) and γNNstR (Cn) =

n
2

+ 1 when n ≡ 2 (mod 4).

In Proposition 1, we determined exact values of the nonnegative signed total Ro-

man domination number of K1,n. In the following, we determine exact values of the

nonnegative signed total Roman domination number of Km,n for n,m ≥ 2.

Proposition 5. For n ≥ 2,

γNNstR (K2,n) =

{
2 n = 2 or n = 4
1 otherwise.

Proof. Let K2,n be a complete bipartite graph with partite sets X = {x1, x2} and

Y = {y1, y2, . . . , yn}. If n = 2, then by Proposition 4, γNNstR (K2,n) = 2. Now let n = 4.

Define the function f : V (K2,4) → {−1, 1, 2} by f(x1) = f(y1) = 2, f(y2) = 1 and

f(x2) = f(y3) = f(y4) = −1. Then the function f is an NNSTRDF on K2,4 of weight

2 and thus γNNstR (K2,4) ≤ 2. Now let g be a γNNstR (K2,4)-function. If g(x1), g(x2) 6= 2,

then for each i, g(yi) 6= −1. Thus γNNstR (K2,4) = ω(g) =
∑
u∈X∪Y g(u) ≥ 4, a

contradiction. Now let g(x1) = 2. If for each i, g(yi) 6= 2, then g(x2) 6= −1. Thus

γNNstR (K2,4) = ω(g) = g(x1) + g(x2) + g(N(x2)) ≥ 2 + 1 + 0 = 3, a contradiction. Next

let, without loss of generality, g(y1) = 2. It is easy to see that
∑

1≤i≤4 g(yi) ≥ 1 and

thus

γNNstR (K2,4) = ω(g) = g(x1) + g(x2) +
∑

1≤i≤4

g(yi) ≥ 2− 1 + 1 = 2.

Now let n 6= 2, 4. If n is even, then n ≥ 6 and define the function f : V (K2,n) →
{−1, 1, 2} by f(x1) = f(y1) = f(y2) = 2, f(x2) = f(y3) = f(y4) = f(y5) = f(y6) =

−1 and f(yi) = (−1)i for 7 ≤ i ≤ n. Thus the function f is an NNSTRDF on

K2,n of weight 1 and so γNNstR (K2,n) ≤ 1. If n is odd, then define the function

f : V (K2,n) → {−1, 1, 2} by f(x1) = f(y1) = 2, f(x2) = f(y2) = f(y3) = −1 and

f(yi) = (−1)i for 4 ≤ i ≤ n. Thus f is an NNSTRDF on K2,n of weight 1 and

hence γNNstR (K2,n) ≤ 1. Now let g be a γNNstR (K2,n)-function. If g(x1), g(x2) 6= 2, then

for each i, g(yi) 6= −1. It follows that γNNstR (K2,n) = ω(g) =
∑
u∈X∪Y g(u) ≥ 4, a

contradiction. Assume next, without loss of generality, that g(x1) = 2. Then

γNNstR (K2,n) = ω(g) = g(x1) + g(x2) + g(N(x2)) ≥ 2− 1 + 0 = 1,

and this completes the proof.
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Proposition 6. For n ≥ m ≥ 3,

γNNstR (Km,n) =


2 m = n = 4
1 m = 3 and n = 4 or m = 4 and n ≥ 5
0 otherwise.

Proof. Let Km,n be a complete bipartite graph with partite sets X =

{x1, x2, . . . , xm} and Y = {y1, y2, . . . , yn}. First let m = n = 4. Define the func-

tion f : V (K4,4) → {−1, 1, 2} by f(x1) = f(y1) = 2, f(x2) = f(y2) = 1 and

f(x3) = f(x4) = f(y3) = f(y4) = −1. Then the function f is an NNSTRDF on

K4,4 of weight 2 and thus γNNstR (K4,4) ≤ 2. Now let g be a γNNstR (K4,4)-function. If

g(xi) 6= 2 for every i (g(yj) 6= 2 for every j is similar), then for each j, g(yj) 6= −1.

Thus γNNstR (K4,4) = ω(g) =
∑
u∈X∪Y g(u) ≥ 5, a contradiction. Next let, without

loss of generality, g(x1) = g(y1) = 2. It is easy to see that
∑

1≤i≤4 g(xi) ≥ 1 and∑
1≤j≤4 g(yj) ≥ 1. Thus

γNNstR (K4,4) = ω(g) =
∑

1≤i≤4

g(xi) +
∑

1≤j≤4

g(yj) ≥ 1 + 1 = 2.

Assume now that m = 4 or n = 4. If m = 3 and n = 4, then define the function

f : V (K3,4) → {−1, 1, 2} by f(x1) = f(y1) = 2, f(y2) = 1 and f(x2) = f(x3) =

f(y3) = f(y4) = −1. Thus f is an NNSTRDF on K3,4 of weight 1 and so γNNstR (K3,4) ≤
1. Now let m = 4 and n ≥ 5. If n is even, then n ≥ 6. Define the function

f : V (K4,n)→ {−1, 1, 2} by f(x1) = f(y1) = f(y2) = 2, f(x2) = 1, f(x3) = f(x4) =

f(y3) = f(y4) = f(y5) = f(y6) = −1 and f(yi) = (−1)i for 7 ≤ i ≤ n. Thus the

function f is an NNSTRDF on K4,n of weight 1 and then γNNstR (K4,n) ≤ 1. If n

is odd, then define the function f : V (K4,n) → {−1, 1, 2} by f(x1) = f(y1) = 2,

f(x2) = 1, f(x3) = f(x4) = f(y2) = f(y3) = −1 and f(yi) = (−1)i for 4 ≤ i ≤ n.

Thus f is an NNSTRDF on K4,n of weight 1 and hence γNNstR (K4,n) ≤ 1. Now let g

be a γNNstR (Km,n)-function. If g(xi) 6= 2 for every i (g(yj) 6= 2 for every j is similar),

then for each j, g(yj) 6= −1. Then γNNstR (Km,n) = ω(g) =
∑
u∈X∪Y g(u) ≥ 4, a

contradiction. Next assume, without loss of generality, that g(x1) = g(y1) = 2. If

m = 3 and n = 4, then it is easy to see that
∑

1≤j≤4 g(yj) ≥ 1. Thus

γNNstR (K3,4) = ω(g) =
∑

1≤i≤3

g(xi) +
∑

1≤j≤4

g(yj) = f(N(y1)) +
∑

1≤j≤4

g(yj) ≥ 0 + 1 = 1.

If m = 4 and n ≥ 5, then
∑

1≤j≤4 g(xi) ≥ 1. Thus

γNNstR (K4,n) = ω(g) =
∑

1≤i≤4

g(xi) +
∑

1≤j≤n

g(yj) =
∑

1≤i≤4

g(xi) + f(N(x1)) ≥ 1 + 0 = 1.

Now let m,n 6= 4. If m = n = 3, then define the function f : V (K3,3) → {−1, 1, 2}
by f(x1) = f(y1) = 2 and f(x2) = f(x3) = f(y2) = f(y3) = −1. Then f is an
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NNSTRDF on K3,3 of weight 0 and thus γNNstR (K3,3) ≤ 0. Next let m = 3 and n ≥ 5.

If n is even, then define f : V (K3,n) → {−1, 1, 2} by f(x1) = f(y1) = f(y2) = 2,

f(x2) = f(x3) = f(y3) = f(y4) = f(y5) = f(y6) = −1, f(yi) = (−1)i for 7 ≤ i ≤ n.

Then f is an NNSTRDF on K3,n of weight 0 and thus γNNstR (K3,n) ≤ 0. If n is

odd, then define the function f : V (K3,n) → {−1, 1, 2} by f(x1) = f(y1) = 2,

f(x2) = f(x3) = f(y2) = f(y3) = −1 and f(yi) = (−1)i for 4 ≤ i ≤ n. Then f

is an NNSTRDF on K3,n of weight 0 and thus γNNstR (K3,n) ≤ 0. Now assume that

m ≥ 5. First let m + n is even. If m and n are even, then define the function

f : V (Km,n) → {−1, 1, 2} by f(x1) = f(x2) = f(y1) = f(y2) = 2, f(x3) = f(x4) =

f(x5) = f(x6) = f(y3) = f(y4) = f(y5) = f(y6) = −1, f(xi) = (−1)i for 7 ≤ i ≤ m

and f(yj) = (−1)j for 7 ≤ j ≤ n. Then f is an NNSTRDF on Km,n of weight 0 and

thus γNNstR (Km,n) ≤ 0. If m and n are odd, then define the function f : V (Km,n) →
{−1, 1, 2} by f(x1) = f(y1) = 2, f(x2) = f(x3) = f(y2) = f(y3) = −1, f(xi) = (−1)i

for 4 ≤ i ≤ m and f(yj) = (−1)j for 4 ≤ j ≤ n. Then f is an NNSTRDF on

Km,n of weight 0 and thus γNNstR (Km,n) ≤ 0. Now let m + n be odd. We may

assume that m is odd and n is even (the case m is even and n is odd is similar).

Then define the function f : V (Km,n) → {−1, 1, 2} by f(x1) = f(y1) = f(y2) = 2,

f(x2) = f(x3) = f(y3) = f(y4) = f(y5) = f(y6) = −1, f(xi) = (−1)i for 4 ≤ i ≤ m

and f(yj) = (−1)j for 7 ≤ j ≤ n. Then f is an NNSTRDF on Km,n of weight 0 and

thus γNNstR (Km,n) ≤ 0.

Now we show that γNNstR (Km,n) ≥ 0. Let g be a γNNstR (Km,n)-function. It follows that

γNNstR (Km,n) = ω(g) =
∑

1≤i≤m

g(xi) +
∑

1≤j≤n

g(yj) = f(N(x1)) + f(N(y1)) ≥ 0,

and this completes the proof.

3. Bounds on γNNstR (G)

In this section we start with some simple upper bounds on the nonnegative signed

total Roman domination number of a graph. Furthermore, we show that γNNstR (G) ≥
3
4 (
√

8n+ 1 + 1) − n and γNNstR (G) ≥ (10n − 12m)/5. In addition, if G is a bipartite

graph of order n, then we prove that γNNstR (G) ≥ 3
2 (
√

4n+ 1− 1)− n.

Proposition 7. If G is a connected graph of order n ≥ 2, then

γNNstR (G) ≤ n,

with equality if and only if G = K2.

Proof. Define the function f : V (G) → {−1, 1, 2} by f(v) = 1 for each vertex v ∈
V (G). Then the function f is an NNSTRDF on G of weight n and thus γNNstR (G) ≤ n.

By Proposition 1, if G = K2, then γNNstR (G) = 2 = n.
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Conversely, assume that γNNstR (G) = n. If the diameter, diam(G) = 1, then G is the

complete graph, and Proposition 2 implies the desired result. Let now diam(G) ≥ 2,

and let u1u2 . . . up be a diametral path. Define the function f : V (G)→ {−1, 1, 2} by

f(u1) = −1, f(u2) = 2 and f(x) = 1 otherwise. Since p ≥ 3, it is easy to verify that

f is an NNSTRDF on G of weight n− 1, a contradiction.

Corollary 1. Let G be a graph of order n ≥ 2 with δ(G) ≥ 1. Then γNNstR (G) = n if and
only if G consists of n

2
complete graphs K2.

Theorem 1. If G is a graph of order n ≥ 2 with δ(G) ≥ 2, then

γNNstR (G) ≤ n+ 1− 2bδ(G)

2
c.

Proof. Define t = b δ(G)
2 c. Let v ∈ V (D) be a vertex of maximum degree, and let A =

{u1, u2, . . . , ut} be a set of t neighbors of v. Define the function f : V (G)→ {−1, 1, 2}
by f(v) = 2, f(ui) = −1 for 1 ≤ i ≤ t and f(w) = 1 for w ∈ V (G) − (A ∪ {v}). If

x ∈ V (G)− (A ∪ {v}), then

f(N(x)) ≥ −t+ (δ(G)− t) = δ(G)− 2t = δ(G)− 2bδ(G)

2
c ≥ 0.

If x ∈ A, then

f(N(x)) ≥ −(t− 1) + 2 + (δ(G)− t) = δ(G) + 3− 2t = δ(G) + 3− 2bδ(G)

2
c ≥ 0.

Now if x = v, then

f(N(x)) = −t+ (∆(G)− t) = ∆(G)− 2t = ∆(G)− 2bδ(G)

2
c ≥ 0.

Therefore f is an NNSTRDF on G of weight 2− t+ (n− t− 1) = n+ 1− 2t and thus

γNNstR (G) ≤ n+ 1− 2t = n+ 1− 2b δ(G)
2 c.

Proposition 2 shows that Theorem 1 is sharp when n is odd.

In [8], the following proposition for the signed total Roman k-domination function is

proved when k ≥ 1.

Proposition 8. [8] Let k ≥ 1 be an integer. Assume that f = (V−1, V1, V2) is an
STRkDF on a graph G of order n. If δ ≥ k, then

1. (∆ + δ)ω(f) ≥ (δ + 2k −∆)n+ (δ −∆)|V2|.

2. ω(f) ≥ (δ+2k−2∆)n
2∆+δ

+ |V2|.
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It is a simple matter to verify that Proposition 8 remains valid for k = 0. Hence we

have the following useful result.

Proposition 9. If f = (V−1, V1, V2) is an NNSTRDF on a graph G of order n ≥ 2 and
minimum degree δ ≥ 1, then

1. (∆ + δ)ω(f) ≥ (δ −∆)n+ (δ −∆)|V2|.

2. ω(f) ≥ (δ−2∆)n
2∆+δ

+ |V2|.

As an application of the 1. inequality in Proposition 9, we obtain a lower bound on

the nonnegative signed total Roman domination number for regular graphs.

Corollary 2. If G is an r-regular graph with r ≥ 1, then γNNstR (G) ≥ 0.

Propositions 6 demonstrates that Corollary 2 is sharp when m = n and m ≥ 5.

Corollary 3. If G is a graph with 1 ≤ δ < ∆, then

γNNstR (G) ≥ 2n(δ −∆)

2∆ + δ

Proof. Multiplying both sides of the inequality 2. in Proposition 9 by ∆ − δ and

adding the resulting inequality to the inequality 1. in Proposition 9, we obtain

γNNstR (G) ≥ (−4∆2 + 4∆δ)n

2∆(2∆ + δ)
=

2n(δ −∆)

2∆ + δ
.

Example 1. Let x1, x2, . . . , x2p−2 be the leaves of the star K1,2p−2 with p ≥ 3. If we add
the edges x1x2, x2x3, . . . , x2p−3x2p−2, x2p−2x1 to the star K1,2p−2, then denote the resulting
graph by H. Now let H1, H2, . . . , Hp be p copies of H with the central vertices v1, v2, . . . , vp.
Define the graph G as the disjoint union of H1, H2, . . . , Hp such that all central vertices are
pairwise adjacent. Then δ(G) = 3, ∆(G) = 3(p − 1) and n(G) = p(2p − 1). Define the
function f : V (G) → {−1, 1, 2} by f(vi) = 2 for 1 ≤ i ≤ p and f(x) = −1 otherwise.
It is easy to verify that

∑
x∈N(u) f(x) = 0 for every vertex u ∈ V (G). Therefore f is an

NNSTRDF on G of weight

ω(f) = −2p(p− 2) =
2n(G)(δ(G)−∆(G))

2∆(G) + δ(G)
.

Example 1 shows that Corollary 3 is sharp.

Theorem 2. Let G be a graph of order n ≥ 2 with δ(G) ≥ 1. Then

γNNstR (G) ≥ δ(G) + 3− n.
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Proof. Let f be a γNNstR (G)-function. If f(x) = 1 for each vertex x ∈ V (G), then

γNNstR (G) = n ≥ δ(G)+3−n. Now assume that there exists a vertex w with f(w) = −1.

Then w has a neighbor v with f(v) = 2. Therefore we obtain the desired bound as

follows.

γNNstR (G) =
∑

x∈V (G)

f(x) = f(v) +
∑

x∈N(v)

f(x) +
∑

x∈V (G)−N [v]

f(x)

≥ 2 + 0− (n− d(v)− 1) = 3 + d(v)− n ≥ δ(G) + 3− n.

Proposition 2 shows that Theorem 2 is sharp.

Corollary 4. Let G be an r-regular graph of order n with r ≥ 1. If r = n − 2, then
γNNstR (G) ≥ 1.

Corollary 4 is an improvement of Corollary 2 for the special case that G is (n − 2)-

regular. Combining Corollary 4 with Theorem 1, we arrive at the next result.

Corollary 5. Let G be an r-regular graph of order n with r ≥ 1. If r = n− 2 and n is
even, then 1 ≤ γNNstR (G) ≤ 3, and if r = n− 2 and n is odd, then 1 ≤ γNNstR (G) ≤ 4.

We call a set S ⊆ V (G) a 2-packing of the graph G if N [u] ∩ N [v] = ∅ for any two

distinct vertices of u, v ∈ S. The maximum cardinality of a 2-packing is the 2-packing

number of G, denoted by ρ(G).

Theorem 3. If G is a graph of order n ≥ 2 with δ(G) ≥ 1, then

γNNstR (G) ≥ δ(G) · ρ(G)− n.

Proof. Let {v1, v2, . . . , vρ(G)} be a 2-packing of G, and let f be a γNNstR (G)-function.

If we define the set A =
⋃ρ(G)
i=1 N(vi) then, since {v1, v2, . . . , vρ(G)} is a 2-packing of

G, we have

|A| =
ρ(G)∑
i=1

d(vi) ≥ δ(G) · ρ(G).

It follows that

γNNstR (G) =
∑

u∈V (G)

f(u) =

ρ(G)∑
i=1

f(N(vi)) +
∑

u∈V (G)−A

f(u)

≥
∑

u∈V (G)−A

f(u) ≥ −n+ |A|

≥ δ(G) · ρ(G)− n.
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Corollary 6. If G is a graph of order n ≥ 2 with δ(G) ≥ 1, then

γNNstR (G) ≥ δ(G)(1 + bdiam(G)

3
c)− n.

Proof. Let d = diam(G) = 3t + r with integers t ≥ 0 and 0 ≤ r ≤ 2, and let

{v1, v2, . . . , vd} be a diametral path. Then A = {v0, v3, . . . , v3t} is a 2-packing of G

such that |A| = 1 + bdiam(G)
3 c. Since ρ(G) ≥ |A|, Theorem 3 implies that

γNNstR (G) ≥ δ(G) · ρ(G)− n ≥ δ(G)(1 + bdiam(G)

3
c)− n.

Example 2. Let B be isomorphic to the complete graph Kp2 with vertex set
{x1, x2, . . . , xp2}, and let A1, A2, . . . , Ap be isomorphic to the complete graph K2p+1 with
p ≥ 2. Now let H be the disjoint union of A1, A2, . . . , Ap and B such that each vertex of Ai
is adjacent to each vertex of {x(i−1)p+1, x(i−1)p+2, . . . , xip} for 1 ≤ i ≤ p. Then δ(H) = 3p,
ρ(H) = p and n(H) = 3p2 + p. Define the function f : V (H)→ {−1, 1, 2} by f(xi) = 2 for
1 ≤ i ≤ p2 and f(x) = −1 otherwise. It is easy to verify that

∑
x∈N(u) f(x) ≥ 0 for every

vertex u ∈ V (H). Therefore f is an NNSTRDF on H of weight

ω(f) = −p = δ(H) · ρ(H)− n.

Example 2 shows that the Theorem 3 is sharp.

Now we determine a lower bound on the nonnegative signed total Roman domination

number of a graph. For this purpose, we define a family of graphs as follows. For

k ≥ 2, let Fk = {Fk | k ≥ 2} be a family of graph as follows. Let X be the vertex

set of the complete graph Kk, and let Fk be the graph obtained from Kk by adding

2k−2 new vertices to each vertex of the complete graph such that for each new vertex

x, 1 ≤ d(x) ≤ 3 and for every u ∈ X, d(u) = 3(k − 1). We note that Fk has order

n = k(2k − 1) = 2k2 − k. Let F =
⋃
k≥2 Fk.

Theorem 4. If G is a graph of order n ≥ 2 with δ(G) ≥ 1, then

γNNstR (G) ≥ 3

4
(
√

8n+ 1 + 1)− n,

with equality if and only if G ∈ F .

Proof. Let f = (V−1, V1, V2) be a γNNstR (G)-function. If V−1 = ∅, then γNNstR (G) =

n ≥ 3
4 (
√

8n+ 1 + 1) − n. Hence, we may assume that V−1 6= ∅. Since each vertex

in V−1 has at least one neighbor in V2, it follows from the Pigeonhole Principle that

at least one vertex v of V2 has at least |V−1|
|V2| = n−1

n2
neighbors in V−1. Therefore,

0 ≤ f(N(v)) ≤ 2(n2 − 1) + n1 − n−1

n2
, and so 2n22 + n1n2 − 2n2 − n−1 ≥ 0. Since
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n = n2 + n1 + n−1, we have equivalently that 2n22 + n1n2 − n2 + n1 − n ≥ 0. Since

n2 ≥ 1 and n1 is a non-negative integer, we observe that n21 ≥ n1, and thus

8

9
n21 +

5

3
n1n2 −

5

3
n1 ≥

8

9
n1 +

5

3
n1 −

5

3
n1 =

8

9
n1 ≥ 0.

Therefore

2(n2 +
2

3
n1 −

1

4
)2 − 1

8
− n = 2n22 +

8

9
n21 +

8

3
n1n2 − n2 −

2

3
n1 − n

≥ (2n22 + n1n2 − n2 + n1 − n) + (
8

9
n21 +

5

3
n1n2 −

5

3
n1)

≥ 2n22 + n1n2 − n2 + n1 − n ≥ 0

or equivalently, 3n2 + 2n1 ≥ 3
4 (
√

8n+ 1 + 1). Thus

γNNstR (G) = 3n2 + 2n1 − n ≥
3

4
(
√

8n+ 1 + 1)− n

which establishes the desired lower bound.

Suppose that γNNstR (G) = 3
4 (
√

8n+ 1 + 1) − n. Then all the above inequalities must

be equalities. In particular, n1 = 0 and 2n22 − 2n2 = n−1. Furthermore, each vertex

of V−1 is adjacent to exactly one vertex of V2 and therefore has degree one, two or

three in G, while each vertex of V2 is adjacent to all other n2 − 1 vertices of V2 and

to 2n2 − 2 vertices of V−1. Therefore, G ∈ F .

On the other hand, suppose that G ∈ F . Then G ∈ Fk and G = Fk such that k ≥ 2.

Assigning to every vertex of Kk the value 2, and to all other vertices the value -1, we

produce an NNTSRDF f of weight

f(V ) =
∑
v∈V

f(v) = 2k − k(2k − 2) = −2k2 + 4k =
3

4
(
√

8n+ 1 + 1)− n.

Therefore,

γNNstR (G) ≤ f(V ) =
3

4
(
√

8n+ 1 + 1)− n.

Consequently,

γNNstR (G) =
3

4
(
√

8n+ 1 + 1)− n.

Theorem 5. If G is a connected graph of order n ≥ 2 and size m, then

γNNstR (G) ≥ 1

5
(10n− 12m).
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Proof. Let f = (V−1, V1, V2) be a γNNstR (G)-function, |Vi| = ni, m(G[Vi]) = mi for

i ∈ {−1, 1, 2} and |V1 ∪ V2| = n12 and m(G[V1 ∪ V2]) = m12. If V−1 = ∅, then

γNNstR (G) = n ≥ 10n−12m
5 . Now we assume that V−1 6= ∅. Since each vertex of V−1 is

adjacent to at least one vertex of V2, we have

∑
v∈V2

|[v, V−1]| = |[V−1, V2]| ≥ n−1.

Furthermore, for each v ∈ V2, we observe that 0 ≤ f(N(v)) = 2|[v, V2]| + |[v, V1]| −
|[v, V−1]| and thus |[v, V−1]| ≤ 2|[v, V2]|+ |[v, V1]|. We deduce that

n−1 ≤
∑
v∈V2

|(v, V−1] ≤
∑
v∈V2

(2|[v, V2]|+ |[v, V1]|)

= 4m2 + |[V1, V2]| = 4m12 − 4m1 − 3|[V1, V2]|

and thus m12 ≥ (n−1 + 4m1 + 3|[V1, V2]|)/4. This inequality and n−1 ≤ |[V−1, V2]|
lead to

m ≥ m12 + |[V−1, V2]|+ |[V1, V−1]|

≥ 1

4
(n−1 + 4m1 + 3|[V1, V2]|) + n−1 + |[V1, V−1]|

=
1

4
(5n−1 + 4m1 + 3|[V1, V2]|+ 4|[V1, V−1]|)

=
1

4
(5n− 5n12 + 4m1 + 3|[V1, V2]|+ 4|[V1, V−1]|).

It follows that

n12 ≥
1

5
(5n− 4m+ 4m1 + 3|[V1, V2]|+ 4|[V1, V−1]|)

and so

γNNstR (G) = 2n2 + n1 − n−1 = 3n2 + 2n1 − n = 3n12 − n− n1

≥ 3

5
(5n− 4m+ 4m1 + 3|[V1, V2]|+ 4|[V1, V−1]|)− n− n1

=
1

5
(10n− 12m) +

3

5
(4m1 + 3|[V1, V2]|+ 4|[V1, V−1]| − 5

3
n1).

Let

µ(n1) = 4m1 + 3|[V1, V2]|+ 4|[V1, V−1]| − 5

3
n1.

It suffices to show that µ(n1) ≥ 0, because then γNNstR (G) ≥ 1
5 (10n − 12m), which

establish the desired lower bound. If n1 = 0, then µ(n1) = 0. Now we assume that
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n1 ≥ 1. Let H1, H2, . . . ,Ht be the components of the induced subgraph G[V1] of order

h1, h2, . . . , ht. Since G is connected, each component Hi contains a vertex adjacent

to a vertex of V2 or to a vertex of V−1 for 1 ≤ i ≤ t. This implies

m1 + |[V1, V2]|+ |[V1, V−1]| ≥ (h1 − 1) + (h2 − 1) + . . .+ (ht − 1) + t

= h1 + h2 + . . .+ ht = n1.

This leads to

µ(n1) = 4m1 + 3|[V1, V2]|+ 4|[V1, V−1]| − 5

3
n1

> 3m1 + 3|[V1, V2]|+ 3|[V1, V−1]| − 3n1 ≥ 0,

and the proof is complete.

Corollary 7. If T is a tree of order n ≥ 2, then

γNNstR (T ) ≥ 12− 2n

5
.

Our next example demonstrates that the lower bounds in Theorem 5 and Corollary

7 are sharp.

Example 3. For k ≥ 2, let Fk be the graph obtained from a connected graph F of order
k by adding 2dF (v) pendant edges to each vertex v of F . Then

n(Fk) = n(F ) +
∑

v∈V (F )

2dF (v) = n(F ) + 4m(F )

and

m(Fk) = m(F ) +
∑

v∈V (F )

2dF (v) = 5m(F ).

Assigning to every vertex in V (F ) the weight 2 and to every vertex in V (Fk) − V (F ) the
weight -1 produces an NNSTRDF f of weight

ω(f) = 2n(F )−
∑

v∈V (F )

2dF (v) = 2n(F )− 4m(F ) =
10n(Fk)− 12m(Fk)

5
.

Using Theorem 5, we obtain γNNstR (Fk) = 10n(Fk)−12m(Fk)
5

.

Theorem 6. If G is a bipartite graph of order n ≥ 3 with δ(G) ≥ 1, then

γNNstR (G) ≥ 3

2
(
√

4n+ 1− 1)− n.
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Proof. Let X and Y be the partite sets of the bipartite graph G. Let f =

(V−1, V1, V2) be a γNNstR (G)-function and let X−1, X1, and X2 be the set of vertices

in X that are assigned the value -1, 1 and 2, respectively under f . Let Y−1, Y1, and

Y2 be defined analogously. Let |X−1| = s, |X1| = s1, |X2| = s2, |Y−1| = t, |Y1| = t1,

|Y2| = t2. Thus, n−1 = s + t , n1 = s1 + t1 and n2 = s2 + t2. If n−1 = 0, then

γNNstR (G) = n ≥ 3
2 (
√

4n+ 1 − 1) − n, since n ≥ 3. Thus assume, without loss of

generality, that s ≥ 1 and therefore t2 ≥ 1. We First show that

s ≤ t2(2s2 + s1), t ≤ s2(2t2 + t1). (1)

For each vertex y ∈ Y2, we have that 2dX2
(y) +dX1

(y)−dX−1
(y) = f(N(y)) ≥ 0, and

so dX−1(y) ≤ 2dX2(y) + dX1(y) ≤ 2s2 + s1. By the definition of an NNSTRDF, each

vertex in X−1 is adjacent to at least one vertex in Y2, and so

s = |X−1| ≤ |[X−1, Y2]| =
∑
y∈Y2

dX−1(y)

≤
∑
y∈Y2

(2s2 + s1)

≤ t2(2s2 + s1).

Analogously, we have that t ≤ s2(2t2 + t1). Now we show that

s1 + s2 + t1 + t2 ≥
√
n+

1

4
+

1

3
(s1 + t1)− 1

2
. (2)

Since s1 and t1 are non-negative integers, we observe that s21 ≥ s1 and t21 ≥ t1. Thus

4

9
s21 +

2

3
s1 ≥ s1,

4

9
t21 +

2

3
t1 ≥ t1. (3)

We note that for integers s and t, we have s2 + t2 ≥ 2st, with equality if and only if

s = t. Hence by simple algebra and by inequalities (1) and (3), we have that

(
2

3
s1 + s2 +

2

3
t1 + t2 +

1

2
)2

≥ s22 + t22 + 2s2t2 +
4

3
s2t1 +

4

3
s1t2 + s2 + t2 +

4

9
s21 +

2

3
s1 +

4

9
t21 +

2

3
t1 +

1

4

≥ 4s2t2 + s2t1 + s1t2 + s2 + t2 + s1 + t1 +
1

4

≥ s+ t+ s2 + t2 + s1 + t1 +
1

4

= n+
1

4
.
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The desired inequality now follows by taking squaring roots on both sides and re-

arranging terms. We now return to the proof of Theorem 6. By inequality (2), we

have

γNNstR (G) = 2n2 + n1 − n−1
= 3n2 + 2n1 − n
= 3(n2 + n1)− n1 − n
= 3(s2 + t2 + s1 + t1)− (s1 + t1)− n

≥ 3(

√
n+

1

4
+

1

3
(s1 + t1)− 1

2
)− (s1 + t1)− n

= 3

√
n+

1

4
− 3

2
− n

=
3

2
(
√

4n+ 1− 1)− n

which establishes the desired lower bound.

Our next example demonstrates that the lower bounds in Theorem 6 is sharp.

Example 4. For k ≥ 2, let Bk be the bipartite graph obtained from the complete bipartite
graph Kk,k by adding 2k pendant edges to each vertex of Kk,k. Then n(Bk) = 4k2 + 2k.
Assigning to every vertex in Kk,k the weight 2 and to all other vertices the weight -1 produces
an NNSTRDF f of weight

ω(f) = 4k − 4k2 =
3

2
(
√

4n+ 1− 1)− n.

Using Theorem 6, we obtain γNNstR (Bk) = 3
2
(
√

4n+ 1− 1)− n.
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