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Abstract: Let G be a finite and simple graph with vertex set V(G). A nonnegative
signed total Roman dominating function (NNSTRDF) on a graph G is a function
I+ V(G) — {-1,1,2} satisfying the conditions that (i) 32,y f(z) = 0 for each
v € V(G), where N(v) is the open neighborhood of v, and (ii) every vertex u for which
f(u) = —1 has a neighbor v for which f(v) = 2. The weight of an NNSTRDF f
is w(f) = ZUEV(G) f(v). The nonnegative signed total Roman domination number
'yi\t’g (G) of G is the minimum weight of an NNSTRDF on G. In this paper we initiate
the study of the nonnegative signed total Roman domination number of graphs, and
we present different bounds on 'yé\t]g (G). We determine the nonnegative signed total
Roman domination number of some classes of graphs. If n is the order and m is
the size of the graph G, then we show that YNN(G) > 2(v8n+ 1+ 1) — n and
ANN(G) > (10n — 12m)/5. In addition, if G is a bipartite graph of order n, then we
prove that YNN(G) > 2(vdn +1-1) — n.

Keywords: Nonnegative signed total Roman dominating function, nonnegative signed
total Roman domination number

AMS Subject classification: 05C69

1. Introduction

In this paper we continue the study of Roman dominating functions in graphs. Let
G be a finite and simple graph with vertex set V' = V(G) and edge set E(G). The
integers n = n(G) = |[V(G)| and m = m(G) = |E(G)| are the order and the size
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140 Nonnegative signed total Roman domination in graphs

of the graph G, respectively. We write dg(v) = d(v) for the degree of a vertex
v. The minimum and maximum degree are §(G) = ¢ and A(G) = A. The sets
Ng(w) = N(w) = {u | wv € E(G)} and Ng[v] = N[v] = N(u) U {v} are called the
open neighborhood and closed neighborhood of the vertex v, respectively. A graph G
is regular or r-regular if A(G) = 6(G) = r. For disjoint subsets U and V of vertices,
we denote by [U, V] the set of edges between U and V. For a set S C V(G), its open
neighborhood is the set N(S) = (J,cg N(v), and its closed neighborhood is the set
N[S]=N(S)US. Also if S C V(G), then G[S] is the subgraph induced by S.

A cycle on n vertices is denoted by C),, while a path on n vertices is denoted by
P,. We denote by K,, the complete graph on n vertices and by K, , the complete
bipartite graph with one partite set of cardinality m and the other of cardinality n.
A star is a complete bipartite graph of the form K ;. A vertex of degree one is called
a leaf. The complement of a graph G is denoted by G.

For a real-valued function f : V(G) — R, the weight of f is w(f) = > ,cv () f(v),
and for S C V(G), we define f(S) =", g f(v), so w(f) = f(V(G)). Consult [4] and
[5] for notation and terminology which are not defined here.

For an integer k > 1, a signed total Roman k-dominating function (STRADF)
on a graph G is defined in [8] as a function f : V(G) — {—1,1,2} such that
> ueNg(w) /(W) = k for every v € V(G), and every vertex u for which f(u) = —1
is adjacent to a vertex v for which f(v) = 2. The weight of an STREDF f on a graph
Gisw(f) =X ,ev (e f(v). The signed total Roman k-domination number 7k r(G) of
G is the minimum weight of an STREDF on G. The special case k = 1 was introduced
in [6]. Signed total Roman domination in graphs and digraphs is well studied in the
literature, see for example [1-3, 7]. Following [8], we initiate the study of nonnegative
signed total Roman dominating functions on graphs G.

Let G be a graph with §(G) > 1. A nonnegative signed total Roman dominating
function (NNSTRDF) on G is defined as a function f : V(G) — {—1,1,2} such that
2 ueN() f(w) = 0 for every v € V(G) and every vertex u for which f(u) = —1 has
a neighbor v for which f(v) = 2. The weight of an NNSTRDF f on a graph G
is w(f) = > ,ev(q) f(v). The nonnegative signed total Roman domination number
ANF(G) of G is the minimum weight of an NNSTRDF on G. A ¥ (G)-function
is a nonnegative signed total Roman dominating function on G of weight N5 (G).
For an NNSTRDF f on G, let V; = V/ = {v e V(GQ) : f(v) =i} fori= —1,1,2.
An NNSTRDF f : V(G) — {—1,1,2} can be represented by the ordered partition
(V_1, V1, Vo) of V(G). Further, we let n_y = |V_41], ny = |Vi|, na = [V2|, and so
n = ng +ny +n_1. Therefore Y& (G) = 2ns +ny —n_;.

We present different sharp lower and upper bounds on 'ygg (G). We determine the
nonnegative bigned total Roman domination number of some classes of graphs. We
show that Y¥N (G) > 3(v/8n+1+41)—n and yY{ (G) > (10n— 12m)/5. In addition,
if G is a bipartite graph of order n, then we prove that v Y¥ (G) > %(\/471 +1-1)—
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2. Special classes of graphs

In this section, we determine the nonnegative signed total Roman domination number
of special classes of graphs.

Proposition 1. For n > 1, v3N (K1,,) = 2.

Proof. Let u be the central vertex, and let {ul, Ug, ..., Uy} be the leaves of the star
K. If n=1,2, then it is easy to see that ’YstR N(K1,) =2. Thus let n > 3. First we
show that YN (K1,,) > 2. Let f be a vNN(K; ,)-function. Since N(u;) = {u} for
every 1 < i < n, we deduce that f(u) # —1. If f(u) =1, then f(u;) # —1 for every
1<i<nandso NN (Ki,)=n+1>2 Nowlet f(u) =2. Thus

VR (K1n) = > flw) + f(u) = F(N(u) + f(u) > 0+2=2.

1<i<n

Now we show that N7 (K7 ,) < 2. First let n be even. Define the function f :
V(Kin) = {-1,1,2} by f(u) = 2 and f(u;) = (—1) for every 1 <4 < n. Then
the function f is an NNSTRDF on K , of weight 2 and thus vstR (K1 n) < 2. This
implies that vy (K1) = 2 when n is even.

Now let n be odd. Define the function f : V(Ki1,) — {-1,1,2} by f(u) = 2,
flur) =2, f(uz) = f(uz) = —1 and f(u;) = (—1) for every 4 < i < n. Then the
function f is an NNSTRDF on K7, of weight 2 and so yY¥ (K7 ,,) < 2. This implies
that YN (K3 ,,) = 2 when n is odd and the proof is complete. O

Proposition 2. For n > 2 vAN(K,) = 2.

Proof. Let V(K,) = {u1,us,...,u,}. First we show that 'yé\t’g(Kn) > 2. Let f be
a YNV (K, )-function. If f(u;) # —1 for every 1 < i < n, then vy (K,) = n > 2.
Now we may assume that f(u;) = —1. Thus there is an index ¢ # 1, we may assume
that ¢ = 2, such that f(ug) = 2. This leads to

VAN (ER) =D Flui) + fluz) = F(N(u2)) + fluz) >0+2=2.
i#£2

Now we show that 'yStR N(K,) < 2. First let n be even. If n = 2, then Proposition
1 implies that vy (K2) = 2. Now let n > 4. Define the function f : V(K,) —
{—=1,1,2} by f(u1) = f(uz) = 2, f(uz) = f(us) = —1 and f(u;) = (—1)¢ for each
vertex u; € V — {u17u2,u3,u4} Then the function f is an NNSTRDF on K, of
weight 2 and thus YY¥ (K,,) < 2. Hence 7Y} (K,) = 2 when n is even.

Now let n be odd and n > 3. Define the function f : V(K,) — {—1,1,2} by f(u1) =2
and f(u;) = (—1)" for each 2 < i < n. Then f is an NNSTRDF on K, of weight 2
and thus YN (K,,) < 2. Hence YNY (K,,) = 2 when n is odd and n # 1. O
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Proposition 3. For n > 3, yJ§ (P.) = [2] when n = 0,1,3 (mod 4) and vJ7 (Pn) =
5+ 1 whenn=2 (mod 4).

Proof. Let P, :=ujus...u, andlet f = (V_q1,V1,V5) bea vﬁg(Pn)—function. Then
n_1 < ny and therefore

ng +ny+n_ n
'yé\t[g(P)—2n2+n1—n_12n2+n12%:§.

This implies v} (P,,) > [%]. If n = 3, then Proposition 1 leads to the desired result.
For n > 4 we distinguish four cases.

Case 1. Let n = 4p for an integer p > 1. Define the function f: V(P,) — {-1,1,2}
by f(U4Z+1) = f(u4,+4) = —1 and f(U41+2) = f(’LL47,+3) =2for0<i < p — 1. Then
the function f is an NNSTRDF on P, of weight w(f) = 2 and thus v (P,) = % in
this case.

Case 2. Let n = 4p + 1 for an integer p > 1. Define the function f : V(P,) —
{=1,1,2} by f(u1) = fluaps1) = =1, fluz) = flugp) = 2, fluz) = 1, f(us) =
flugiys) =2 and f(ugir1) = f(uaire) = —1 for 1 < i < p — 1. Then the function f
is an NNSTRDF on P, of weight w(f) = 2p + 1 = [%] and thus v} (P,) = [%].
Case 3. Let n = 4p + 3 for an integer p > 1. Define the function f : V(P,) —
{=1,1,2} by fluap+1) = =1, f(uaps2) = 2, fuapss) =1, f(uair1) = fluairs) = -1
and f(ugir2) = f(ugirs) =2 for 0 < i < p—1. Then the function f is an NNSTRDF
on P, of weight w(f) = 2p + 2 = [%] and thus vy} (P,) = [%].

Case 4. Let n = 4p + 2 for an integer p > 1. If n; > 1, then it follows that

Nno +nip+n_ n
VNP =24y =y > g4y > T2E N1
This implies Y (P,) = %+1 when ny > 1. Now let ny = 0, and let g be a vy} ¥ (P,)-
function. Since g(uz2) = g(uap+1) = 2, we observe that g(u1) + g(uz) + g(us) > 3 and
g(uap) + g(uaps1) + g(uapr2) > 3. In addition, we note that g(us;) + g(uait1) +
9(ugir2) + g(ugirz) > 2 for 1 <i < p— 1. Therefore we obtain

p—1
VAR (P) = g(u1) + g(uz) + gus) + Y (9(usi) + g(uaiv1) + g(uaiva) + g(uaisa))
=1
n
+ g(uap) + g(uapt1) + g(vapye) >3 +2(p—1)+3=2p+4> -+ 1.

2

Thus YN (P,) > % + 1. For the converse define the function f: V(P,) — {-1,1,2}
by f(u1) = f(u4p+2) = -1, f(u2) = fluapt1) = 2, fug) = flusy) =1, f(uw) =
flugirs) =2 and f(ugir1) = f(ugiy2) = —1for 1 <i < p—1. Then the function f is
an NNSTRDF on P, of weight w(f) =2p+2 = % + 1 and hence /¥ (P,) = % +1
in this case. O
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By using an argument similar to that described in the proof of Proposition 3, we
obtain the next proposition.

Proposition 4. For n > 3, 7]J§ (Cn) = [2] when n =0,1,3 (mod 4) and v}y5 (Cn) =
5+ 1 whenn=2 (mod 4).

In Proposition 1, we determined exact values of the nonnegative signed total Ro-
man domination number of K ,. In the following, we determine exact values of the
nonnegative signed total Roman domination number of K, ,, for n,m > 2.

Proposition 5. For n > 2,

N (2 n=20orn=4
Ystr (K2,n) = { 1 otherwise.

Proof. Let Kz, be a complete bipartite graph with partite sets X = {1, 22} and
Y = {y1,Y2,...,Yn}. If n =2, then by Proposition 4, YN (K, ,,) = 2. Now let n = 4.
Define the function f : V(Ks24) — {—1,1,2} by f(z1) = f(y1) = 2, f(y2) = 1 and
f(z2) = f(ys) = f(ya) = —1. Then the function f is an NNSTRDF on K3 4 of weight
2 and thus YN (K24) < 2. Now let g be a YN (Ky 4)-function. If g(x1), g(z2) # 2,
then for each i, g(y;) # —1. Thus VYN (K24) = w(9) = Yuexoy 9(w) > 4, a
contradiction. Now let g(xz1) = 2. If for each 4, g(y;) # 2, then g(x2) # —1. Thus
YNE(Ks.4) = w(g) = g(x1) + g(w2) + g(N(22)) > 2+1+0 = 3, a contradiction. Next
let, without loss of generality, g(y1) = 2. It is easy to see that >, ., ., g(y;) > 1 and
thus

VR (K24) =w(g) = g(x1) + g(z2) + Y g(yi) >2-1+1=2.
1<i<4

Now let n # 2,4. If n is even, then n > 6 and define the function f : V(Ks,) —
{=11,2} by f(x1) = f(y1) = fy2) = 2, f22) = flys) = fya) = f(ys) = fys) =
—1 and f(y;) = (—1)" for 7 < ¢ < m. Thus the function f is an NNSTRDF on
K, of weight 1 and so ’yé\gg(szn) < 1. If n is odd, then define the function
[ VI(Kan) — {=1,1,2} by f(z1) = f(y1) = 2, f(z2) = f(y2) = f(y3) = —1 and
flyi) = (—1)" for 4 < ¢ < n. Thus f is an NNSTRDF on K, of weight 1 and
hence YN (K2,,) < 1. Now let g be a v} (K> ,)-function. If g(x1), g(x2) # 2, then
for each i, g(y;) # —1. It follows that Y5 (Kon) = w(g) = > ,cxuy 9(u) > 4, a
contradiction. Assume next, without loss of generality, that g(x;) = 2. Then

Yokt (K2,n) = w(g) = g(w1) + g(22) + g(N(22)) 22~ 1+0=1,

and this completes the proof. O
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Proposition 6. Forn>m > 3,

2 m=n=4
'yﬁg(Km,n): 1 m=3andn=4orm=4andn>5
0 otherwise.

Proof. Let K, , be a complete bipartite graph with partite sets X =
{z1,29,..., 2} and Y = {y1,vy2,...,yn}. First let m = n = 4. Define the func-
tion f : V(Kya) — {=1,1,2} by f(z1) = f(y1) = 2, f(z2) = f(y2) = 1 and
f(zs) = f(xa) = f(ys) = f(ya) = —1. Then the function f is an NNSTRDF on
K4 4 of weight 2 and thus 75?%(1(474) < 2. Now let g be a 'ygg(K4’4)—function. If
g(x;) # 2 for every i (g(y;) # 2 for every j is similar), then for each j, g(y;) # —1.
Thus VYN (K44) = w(g) = > ,exuy 9(w) > 5, a contradiction. Next let, without
loss of generality, g(x1) = g(y1) = 2. It is easy to see that > ,.,.,g(z;) > 1 and

> 1<j<a9(y;) > 1. Thus

YR (Kaa) =w(g)= D glz)+ Y gly)>1+1=2
1<i<4 1<j<4

Assume now that m = 4 or n = 4. If m = 3 and n = 4, then define the function
fiV(Ksa) = {1, 1,2} by f(z1) = f(y1) = 2, f(y2) = 1 and f(z2) = f(x3) =
f(y3) = f(ya) = —1. Thus f is an NNSTRDF on K3 4 of weight 1 and so vy} (K3,4) <
1. Now let m = 4 and n > 5. If n is even, then n > 6. Define the function
F V(i) = {=1,1,2} by fla1) = fyn) = f() =2, fw2) = 1, f(zs) = f(z1) =
F(9s) = f(3s) = f(ys) = f(ye) = —1 and f(y;) = (—1)' for 7 < i < n. Thus the
function f is an NNSTRDF on Ky, of weight 1 and then ’yﬁg(fﬁ’n) <1 Ifn
is odd, then define the function f : V(K4,) — {—1,1,2} by f(z1) = f(y1) = 2,
f(x2) = 1, fw3) = f(za) = fy2) = flys) = —1 and f(y;) = (1) for 4 < i < n.
Thus f is an NNSTRDF on K, , of weight 1 and hence YN (K,,,) < 1. Now let g
be a VNN (K., »)-function. If g(z;) # 2 for every i (g(y;) # 2 for every j is similar),
then for each j, g(y;) # —1. Then VYN (Kmy) = w(g) = D uexoy 9(u) = 4, a
contradiction. Next assume, without loss of generality, that g(z1) = g(y1) = 2. If
m =3 and n = 4, then it is easy to see that 3, ., g(y;) > 1. Thus

VR (Kaa) =w(g) = > gl@)+ > gly) = F(N@))+ > g(y) >0+1=1.

1<i<3 1<;j<4 1<5<4

If m=4and n>5, then >3, ., g(z;) > 1. Thus

Yo (Kan) =w(g) = Y gl@)+ > gly)= > g(@)+[(N(x1)) > 1+0=1.

1<i<4 1<j<n 1<i<4

Now let m,n # 4. If m = n = 3, then define the function f : V(K33) — {-1,1,2}
by f(z1) = f(y1) = 2 and f(z2) = f(zxs) = f(y2) = f(ys) = —1. Then f is an
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NNSTRDF on Kj 3 of weight 0 and thus v ¥ (K33) < 0. Next let m = 3 and n > 5.
If n is even, then define f : V(K3,) — {-1,1,2} by f(z1) = f(y1) = f(y2) = 2,
fx2) = fz3) = f(ys) = flya) = fys) = fys) = =1, f(y:) = (=1)" for 7 < i <.
Then f is an NNSTRDF on K3, of weight 0 and thus vﬁﬁ(Kg}n) < 0. If nis
odd, then define the function f : V(Ks3,) — {-1,1,2} by f(z1) = f(y1) = 2,
J(2) = f(zs) = flgm) = flys) = —1 and f(y:) = (~1)i for 4 < i < n. Then f
is an NNSTRDF on K3, of weight 0 and thus N5 (K3,) < 0. Now assume that
m > 5. First let m + n is even. If m and n are even, then define the function
[ V(Emn) = {=11,2} by f(z1) = f(z2) = f(y1) = f(y2) = 2, flzs) = flza) =
Flas) = £(z6) = Flys) = F(ya) = (ys) = £(ys) = 1, Flaw) = (1) for T < i < m
and f(y;) = (—1)? for 7 < j <n. Then f is an NNSTRDF on K,,,, of weight 0 and
thus YN (K,,.n) < 0. If m and n are odd, then define the function f : V(K ) —
{=1,1,2} by f(z1) = f(11) = 2, f(z2) = f(23) = f(y2) = f(ys) = =1, f(2:) = (=)’
for 4 < i < m and f(y;) = (-1)7 for 4 < j < n. Then f is an NNSTRDF on
Ko of weight 0 and thus YN&(K,,,) < 0. Now let m + n be odd. We may
assume that m is odd and n is even (the case m is even and n is odd is similar).
Then define the function f : V(K,,n) — {—1,1,2} by f(z1) = f(y1) = f(y2) = 2,
f(x2) = flxs) = f(ys) = fya) = fys) = fye) = =1, f(zs) = (1) for 4 <i <m
and f(y;) = (—1)? for 7 < j <n. Then f is an NNSTRDF on K,,,, of weight 0 and
thus ”ygg(Kmm) <0.

Now we show that ’yé\tfﬁ'(K"m) > 0. Let g be a fyﬁg(Km,n)—function. It follows that

YR Kmn) =wlg) = Y glz)+ Y g(ys) = F(N(21)) + f(N(y1)) 2 0,

1<i<m 1<j<n

and this completes the proof. O

3. Bounds on 7Y} (G)

In this section we start with some simple upper bounds on the nonnegative signed
total Roman domination number of a graph. Furthermore, we show that v¥&(G) >
3(V8n+1+1) —n and )Y} (G) > (10n — 12m) /5. In addition, if G is a bipartite
graph of order n, then we prove that vy} (G) > 3(v/4n+1—1) — n.

Proposition 7. If G is a connected graph of order n > 2, then
var (G) <n,
with equality if and only if G = K.
Proof.  Define the function f : V(G) — {—1,1,2} by f(v) = 1 for each vertex v €

V(G). Then the function f is an NNSTRDF on G of weight n and thus 7YX (G) < n.
By Proposition 1, if G = K», then 7Y (G) =2 = n.
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Conversely, assume that 7Y (G) = n. If the diameter, diam(G) = 1, then G is the
complete graph, and Proposition 2 implies the desired result. Let now diam(G) > 2,
and let uqus . .. u, be a diametral path. Define the function f : V(G) — {—1,1,2} by
f(ur) = =1, f(ug) =2 and f(z) = 1 otherwise. Since p > 3, it is easy to verify that
f is an NNSTRDF on G of weight n — 1, a contradiction. O

Corollary 1. Let G be a graph of order n > 2 with §(G) > 1. Then v\ (G) = n if and
only if G’ consists of 7 complete graphs Ko.

Theorem 1. If G is a graph of order n > 2 with §(G) > 2, then
oG
Yar (G) <n+1- ZL%I

Proof. Define t = \_@J Let v € V(D) be a vertex of maximum degree, and let A =
{u1,us,...,u} be aset of t neighbors of v. Define the function f : V(G) — {-1,1, 2}
by f(v) =2, f(u;) = —1for 1 <i<tand f(w)=1for w e V(G) — (AU {v}). If
x € V(G) — (AU {v}), then

f(N(z)) =2 =t + (6(G) =) = 6(G) =2t = 0(G) = 2| ——] =2 0.
If x € A, then
f(N@)>-(t—-1)+24(6(G) —t) =6(G) +3—2t:6(G)+3—2L5TJ > 0.

Now if z = v, then

FNG) =~ -+ (AQ) 1) = @) ~ 2 = AG) 210 >0

Therefore f is an NNSTRDF on G of weight 2 —¢+ (n —¢t — 1) = n+ 1 — 2t and thus
ANN@) <n+1-2=n+1-2[22| -

Proposition 2 shows that Theorem 1 is sharp when n is odd.
In [8], the following proposition for the signed total Roman k-domination function is
proved when k > 1.

Proposition 8. /8] Let k > 1 be an integer. Assume that f = (V_1,V1,V2) is an
STREDF on a graph G of order n. If § > k, then
1. (A+0)w(f) > (0+2k—An+ (0 —A)|Val.

5+2k—2A)n
2. w(f) > B2 ).
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It is a simple matter to verify that Proposition 8 remains valid for £k = 0. Hence we
have the following useful result.

Proposition 9. If f = (V_q,V4,V2) is an NNSTRDF on a graph G of order n > 2 and
minimum degree § > 1, then

1. (A+8)w(f) > (6 — A)n+ (5 — A)[Val.

5§—2A)n
2. w(f) > G2 1 |4,

As an application of the 1. inequality in Proposition 9, we obtain a lower bound on
the nonnegative signed total Roman domination number for regular graphs.

Corollary 2. If G is an r-regular graph with » > 1, then v3% (G) > 0.

Propositions 6 demonstrates that Corollary 2 is sharp when m = n and m > 5.
Corollary 3. If G is a graph with 1 < § < A, then

2n(5 — A)
NN >
YstR (G) = 2A 4 5

Proof. Multiplying both sides of the inequality 2. in Proposition 9 by A — § and
adding the resulting inequality to the inequality 1. in Proposition 9, we obtain

(—4A2 +4A6)n  2n(6 — A)
2A(2A +6) 2A+6

YR (G) >
O

Example 1. Let z1,xz2,...,22p—2 be the leaves of the star K1 2p—2 with p > 3. If we add
the edges T1T2,x2x3, ..., Tap—3T2p—2,Tap—2T1 to the star Ki op—2, then denote the resulting
graph by H. Now let Hi,H,,...,Hy, be p copies of H with the central vertices vi,va, ..., vp.
Define the graph G as the disjoint union of Hy, Ha, ..., Hp, such that all central vertices are
pasrwise adjacent. Then 6(G) = 3, A(G) = 3(p — 1) and n(G) = p(2p — 1). Define the
function f : V(G) — {—1,1,2} by f(vi) = 2 for 1 < i < p and f(z) = —1 otherwise.
It is easy to verify that ZzeN(u) f(x) = 0 for every vertex uw € V(G). Therefore f is an
NNSTRDF on G of weight

w(f) = —2p(p-2) =

Example 1 shows that Corollary 3 is sharp.

Theorem 2. Let G be a graph of order n > 2 with §(G) > 1. Then

var (G) = 6(G) +3 —n.
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Proof Let f be a v} (G)-function. If f(z) = 1 for each vertex € V(G), then
YNB(G) =n > §(G)+3—n. Now assume that there exists a vertex w with f(w) = —1.
Then w has a neighbor v with f(v) = 2. Therefore we obtain the desired bound as
follows.

WRG) = > f@)=fw)+ > fl > f)

zeV(G) €N (v) wEV(G)fN[v]
>240—-(n—d(v)—1)=3+d(v) —n>06(G)+3—n.

Proposition 2 shows that Theorem 2 is sharp.

Corollary 4. Let G be an r-regular graph of order n with » > 1. If r = n — 2, then
NN
Ysir (G) = 1.

Corollary 4 is an improvement of Corollary 2 for the special case that G is (n — 2)-
regular. Combining Corollary 4 with Theorem 1, we arrive at the next result.

Corollary 5. Let G be an r-regular graph of order n with r > 1. If r=n—2andnis
even, then 1 < NN (G) < 3, and if r = n — 2 and n is odd, then 1 < Y% (G) < 4.

We call a set S C V(G) a 2-packing of the graph G if Nu] N N[v] = @ for any two
distinct vertices of u,v € S. The maximum cardinality of a 2-packing is the 2-packing
number of G, denoted by p(G).

Theorem 3. If G is a graph of order n > 2 with §(G) > 1, then

R (G) > 8(G) - p(G) — n.

Proof.  Let {v1,va,...,v,)} be a 2-packing of G, and let f be a AN (G)-function.

If we define the set A = Up(G N (v;) then, since {v1,v2,...,v,c)} is a 2-packing of
G, we have

p(G)
|A] = Z d(vi) = 6(G) - p(G).

It follows that

p(G)
VR (G Z =Y N+ D flw
ev(a i=1 weEV(G)—A
> flu) > —n +|A|
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Corollary 6. If G is a graph of order n > 2 with §(G) > 1, then

W@ 2 a0+ TGy,

Proof. Let d = diam(G) = 3t + r with integers ¢ > 0 and 0 < r < 2, and let
{v1,v2,...,v4} be a diametral path. Then A = {vo, v3,...,v3:} is a 2-packing of G
such that |A| =1+ Lma%@] Since p(G) > |A|, Theorem 3 implies that

diam(G)
Yatr (G) 2 0(G) - p(G) —n = 6(G) (1 + =5 -n
O
Example 2. Let B be isomorphic to the complete graph K,» with vertex set

{z1,22,..., 22}, and let A1, As,..., A, be isomorphic to the complete graph Kapi1 with
p > 2. Now let H be the disjoint union of A1, Aa,..., Ay and B such that each vertex of A;
is adjacent to each vertex of {T(;i—1)p+1, T(i—1)p+25---,Tip}y for 1 <i < p. Then §(H) = 3p,
p(H) = p and n(H) = 3p*> + p. Define the function f: V(H) — {—1,1,2} by f(x;) =2 for
1 <4< p? and f(x) = —1 otherwise. It is easy to verify that 2wenu f(@) =0 for every
verter uw € V(H). Therefore f is an NNSTRDF on H of weight

w(f) = —p = 3(H) - p(H) — .

Example 2 shows that the Theorem 3 is sharp.

Now we determine a lower bound on the nonnegative signed total Roman domination
number of a graph. For this purpose, we define a family of graphs as follows. For
k> 2, let F = {Fy | k > 2} be a family of graph as follows. Let X be the vertex
set of the complete graph Ky, and let F}y be the graph obtained from K by adding
2k — 2 new vertices to each vertex of the complete graph such that for each new vertex
x, 1 < d(x) < 3 and for every u € X, d(u) = 3(k — 1). We note that Fy, has order
n="k(2k—1) =2k — k. Let F = Up>o Fi-

Theorem 4. If G is a graph of order n > 2 with §(G) > 1, then

vein (G) =

(V8n+14+1)—n,

o

with equality if and only if G € F.

Proof. Let f = (V_1,V1,Va2) be a vYN(G)-function. If V_; = 0, then v¥5(G) =
n > 3(y/8n+1+ 1) — n. Hence, we may assume that V_; # (. Since each vertex
in V_; has at least one neighbor in V5, it follows from the Pigeonhole Principle that
at least one vertex v of V5, has at least II‘(/;lll = "n’; neighbors in V_;. Therefore,

0 < f(N(v)) < 2(ng — 1) +ny — 7=+, and so 2n3 + ning — 2ny —n_q > 0. Since
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n = ng + n1 + n_1, we have equivalently that 2n% + ning — no +ny —n > 0. Since
ny > 1 and ny is a non-negative integer, we observe that n% > n1, and thus

82,5 R - 5 4
—ni+ -mng — N1 > N1+ Ny — Ny = —n .
oM T gmne = g 2 gni gy — g = gy 2
Therefore
1 1 8 8
2(n2+§n1—1)2—§—n:2n§+§n?+§n1n2—n2—§n1—n
2 8 5 O 5
> (2n5 4+ nang —ng + 1 —n) + (§n1 +gmne = §n1>

22n§+n1n2—n2+n1—n20

or equivalently, 3ns + 2ny > %(s/8n +1+1). Thus

3
Vﬁg(G):?’nQ-i-?m—nZi(mﬁ-l)—n

which establishes the desired lower bound.

Suppose that vJY§{ (G) = 3(v/8n+1+ 1) — n. Then all the above inequalities must
be equalities. In particular, n; = 0 and 2n% — 2ny = n_;. Furthermore, each vertex
of V_; is adjacent to exactly one vertex of V5 and therefore has degree one, two or
three in G, while each vertex of V5 is adjacent to all other no — 1 vertices of Vo and
to 2ny — 2 vertices of V_y. Therefore, G € F.

On the other hand, suppose that G € F. Then G € F;, and G = F}, such that k& > 2.
Assigning to every vertex of K}, the value 2, and to all other vertices the value -1, we
produce an NNTSRDF f of weight

FOV) =3 F(0) = 2k — k(2 — 2) = —2* + 4k = %(W+ 1) —n.

veV

Therefore,

W@ < V) = BRI+ — 0.

Consequently,

3
’&ﬁ@ﬁziﬁ@n+l+nfn

Theorem 5. If G is a connected graph of order n > 2 and size m, then

VAN(G) > Z(10n — 12m).

1
5
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Proof. Let f = (V_1,V4,Va) be a ¥NN (G)-function, |Vi| = n;, m(G[V;]) = m; for
1 € {—1,1,2} and |V1 @] V2| = n19 and m(G[V1 U VQ]) =mip. IfV_{ = @, then
VAR (G) = n > 2212 Now we assume that V_; # (). Since each vertex of V_y is

adjacent to at least one vertex of V5, we have

Sl Vel = (Vo Vall > nes
veEVs

Furthermore, for each v € Va2, we observe that 0 < f(N(v)) = 2|[v, V]| + |[v, V1]| —
|[v, V_1]| and thus |[v, V_1]| < 2|[v, Va]| + |[v, V1]|. We deduce that

IN

Do 1w, Vil < ) @l Vall + v, Vi)

vEVs veEVs
dma + |[V1, V2| = 4map — 4my — 3|[V1, V2|

n—i

and thus miz > (n_q1 + 4my + 3|[V1, V2]|)/4. This inequality and n_; < |[V_q, V3]]
lead to

maz + |[Vor, Vo] | + [ [V, V_i]|
1
z(nfl +4my + 3|[V1, Vo]|) + n_1 + |[V1, V1]

3
W%

v

1
= (On—u+dma £ 3[[Vi, V]| + 4[[Vi, Vo))
1
= 1(571 — dnig + 4my + 3|[Vi, Vo] + 4[[V1, V_1]]).

It follows that

1
Nig > 5(571 —4m + 4mq + 3|[V1,‘/2]| —|—4|[V1, Vfl]‘)

and so
NN _ _ _
Vsir (G) = 2ng+ny—n_1=3nz+2n; —n=3n2—n—mn
3
> 3(571 —dm + 4mq + 3|[V1, Va]| + 4][V1, V4])) = n—m
1 3 5
Let

ot

p(ng) = 4my + 3|[Va, Val| + 4|[V1, V-1 — —na.

w

It suffices to show that p(n1) > 0, because then v} (G) > $(10n — 12m), which
establish the desired lower bound. If n; = 0, then pu(ng) = 0. Now we assume that
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ny > 1. Let Hy, Ho, ..., H; be the components of the induced subgraph G[V;] of order
hi,ha,...,hy. Since G is connected, each component H; contains a vertex adjacent
to a vertex of V5 or to a vertex of V_; for 1 < i < t. This implies

my 4+ |[Vi, Vo] | + [[V1, Vo]l =2 (e — 1)+ (he— 1)+ ...+ (e — 1) +¢

= hyi+hog+ ...+ hs =nq.
This leads to

p(ny) = 4my 4 3|[Vi, Va]| + 4[[V1, V]| = om
> 3mg + 3|[V1,V2]| + 3|[V1, V71]| —3n1 >0,

and the proof is complete. O

Corollary 7. If T is a tree of order n > 2, then

12— 2n
YR (T) > =

Vv

Our next example demonstrates that the lower bounds in Theorem 5 and Corollary
7 are sharp.

Example 3. For k > 2, let F), be the graph obtained from a connected graph F of order
k by adding 2dr(v) pendant edges to each vertex v of F. Then

n(Fy) =n(F)+ > 2dr(v) =n(F)+ 4m(F)
veV(F)

and
m(Fr) = m(F) + Z 2dr(v) = 5m(F).
veEV(F)

Assigning to every vertez in V(F') the weight 2 and to every vertex in V(Fy) — V(F) the
weight -1 produces an NNSTRDEF' f of weight

w(f) =2n(F) — 3 2dp(v) = 2n(F) — dm(F) = 2ontdi) = 12mlFi)

5
veEV(F)

Using Theorem 5, we obtain v 8 (F}) = w

Theorem 6. If G is a bipartite graph of order n > 3 with §(G) > 1, then

YaiR (G) =

VAn+1-1) —n.

N
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Proof. Let X and Y be the partite sets of the bipartite graph G. Let f =
(V_1,V1, Vo) be a 'yﬁg(G)—function and let X_1, X1, and X5 be the set of vertices
in X that are assigned the value -1, 1 and 2, respectively under f. Let Y_q, Y7, and
Y> be defined analogously. Let | X_1| = s, |X1]| = s1, | Xa| = 59, [Y_1] = ¢, V1| = 1,
|Ya| = to. Thus, n_qy = s+t ,n; = s+t and ng = sy +t3. If n_; = 0, then
YAR(G) =n > 2(VAn+1 — 1) — n, since n > 3. Thus assume, without loss of
generality, that s > 1 and therefore ¢t > 1. We First show that

S§t2(252+81), t§82(2t2+t1). (1)

For each vertex y € Ya, we have that 2dx, (v) +dx, (y) —dx_,(y) = f(N(y)) > 0, and
so dx_, (y) < 2dx,(y) + dx, (y) < 2s2 + s1. By the definition of an NNSTRDF, each
vertex in X_; is adjacent to at least one vertex in Ys, and so

s =X 4| <X 1,V = > dx ()
YEY2

< Z (282 + s1)
yEY>

S t2(252 + 51).

Analogously, we have that ¢ < s5(2t3 + ¢1). Now we show that

/ 1 1
81+82+t1+t22 n+1+§(81+t1)7

Since s; and t; are non-negative integers, we observe that s% > 51 and t% > t1. Thus

(2)

|~

4 2 4 2
§s§ +39 > s, §t§ + gtl > . (3)

We note that for integers s and ¢, we have s? + 2 > 2st, with equality if and only if
s = t. Hence by simple algebra and by inequalities (1) and (3), we have that

(2 ok ot 4t iy
381 82 31 2 9
4, 2 1

9 9 4 4 4 45 2 9
> 85 + 15 + 289t + gSQtl + 581252 + 59+t + 581 + gsl + §t1 + gtl + Z

1
> 459lg + sot1 + s1to + s2 + 2 + 51 +t1+1

1
25+t+52+t2+51+t1+1

1
=n+—.
4
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The desired inequality now follows by taking squaring roots on both sides and re-
arranging terms. We now return to the proof of Theorem 6. By inequality (2), we

have
VIR (G) =2n + 1y —n_y
=3ng9+2n1 —n
=3(ne+n1)—ni—n
:3(52+t2+81+t1)—(81—|—t1)—n
>3yt S b ) — o) — (51 t) —
- n 1 381 1 B S1 1 n
/ 1 3
—g(\/4n+1—1)—n
which establishes the desired lower bound. O

Our next example demonstrates that the lower bounds in Theorem 6 is sharp.

Example 4. For k > 2, let By be the bipartite graph obtained from the complete bipartite
graph Ky by adding 2k pendant edges to each vertex of Ky . Then n(By) = 4k + 2k.
Assigning to every vertez in Ky, i the weight 2 and to all other vertices the weight -1 produces
an NNSTRDF f of weight

w(f) =4k — 4k* = %(\/4n+17 1) —n.

Using Theorem 6, we obtain Yii (Bx) = 3(vAn +1—1) —n.
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