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Abstract: A weak signed Roman dominating function (WSRDF) of a graph G with
vertex set V (G) is defined as a function f : V (G) → {−1, 1, 2} having the property

that
∑

x∈N [v] f(x) ≥ 1 for each v ∈ V (G), where N [v] is the closed neighborhood of

v. The weight of a WSRDF is the sum of its function values over all vertices. The
weak signed Roman domination number of G, denoted by γwsR(G), is the minimum

weight of a WSRDF in G. We initiate the study of the weak signed Roman domination

number, and we present different sharp bounds on γwsR(G). In addition, we determine
the weak signed Roman domination number of some classes of graphs.
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1. Terminology and introduction

For notation and graph theory terminology, we in general follow Haynes, Hedetniemi

and Slater [5]. Specifically, let G be a graph with vertex set V (G) = V and edge

set E(G) = E. The integers n = n(G) = |V (G)| and m = m(G) = |E(G)| are the

order and the size of the graph G, respectively. The open neighborhood of vertex v

is NG(v) = N(v) = {u ∈ V (G)|uv ∈ E(G)}, and the closed neighborhood of v is

NG[v] = N [v] = N(v) ∪ {v}. The degree of a vertex v is dG(v) = d(v) = |N(v)|. The

minimum and maximum degree of a graph G are denoted by δ(G) = δ and ∆(G) = ∆,

respectively. A graph G is regular or r-regular if δ(G) = ∆(G) = r. The complement

of a graph G is denoted by G. Let Kn be the complete graph of order n, Cn the

cycle of order n, Pn the path of order n, and Kp,q the complete bipartite graph with

partite sets X and Y , where |X| = p and |Y | = q. Let S(r, s) be the double star with

exactly two adjacent vertices u and v that are not leaves such that u is adjacent to

r ≥ 1 leaves and v is adjacent to s ≥ 1 leaves.
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A set S of vertices of G is called a dominating set if N [S] =
⋃
v∈S N [v] = V (G). The

domination number γ(G) equals the minimum cardinality of a dominating set in G.

In this paper we continue the study of signed Roman domination in graphs (see, for

example, [1–4, 6–11]).

A signed Roman dominating function (SRDF) on a graph G is defined in [1] as a

function f : V (G)→ {−1, 1, 2} having the property that f(N [v]) =
∑
x∈N [v] f(x) ≥ 1

for each v ∈ V (G) and if f(u) = −1, then the vertex u must have a neighbor w

with f(w) = 2. The weight of a signed Roman dominating function is the value

f(V (G)) =
∑
u∈V (G) f(u). The signed Roman domination number γsR(G) is the

minimum weight of a signed Roman dominating function on G.

A weak signed Roman dominating function (WSRDF) of a graph G is defined as a

function f : V (G)→ {−1, 1, 2} having the property that f(N [v]) =
∑
x∈N [v] f(x) ≥ 1

for each v ∈ V (G). The weight of a WSRDF is the value ω(f) = f(V (G)) =∑
u∈V (G) f(u). The weak signed Roman domination number of G, denoted by

γwsR(G), is the minimum weight of a WSRDF in G. A γwsR(G)-function is a WSRDF

of weight γwsR(G). For a WSRDF f on G, let Vi = {v ∈ V (G) : f(v) = i} for i =

−1, 1, 2. A WSRDF f can be represented by the ordered partition f = (V−1, V1, V2).

The definitions lead to γwsR(G) ≤ γsR(G). Therefore each lower bound of γwsR(G)

is also a lower bound of γsR(G).

Our purpose in this work is to initiate the study of the weak signed Roman domination

number. We present basic properties and sharp bounds for the weak signed Roman

domination number of a graph. In particular, we show that many lower bounds on

γsR(G) are also valid for γwsR(G). In addition we prove γwsR(G) ≥ (3n − 4m)/2

for graphs G without isolated vertices of order n and size m, and we characterize the

graphs achieving equality. Furthermore, we show that the difference γsR(G)−γwsR(G)

can be arbitrarily large, and we determine the weak signed Roman domination number

of some classes of graphs.

2. Preliminary results and first bounds

In this section we present basic properties and some first bounds on the weak signed

Roman domination number. The definitions lead to the first observation immediately

Observation 1. If f = (V−1, V1, V2) is a WSRDF of a graph G of order n, then the
following holds.

(a) |V−1|+ |V1|+ |V2| = n.

(b) ω(f) = |V1|+ 2|V2| − |V−1|.

(c) Every vertex of V−1 is dominated by one vertex of V2 or two vertices of V1.

(d) V1 ∪ V2 is a dominating set of G.

Proposition 1. If G is graph of order n, then γwsR(G) ≤ n, with equality if and only if
G = Kn.
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Proof. Define the function f : V (G) → {−1, 1, 2} by f(v) = 1 for each v ∈ V (G).

Then f is a WSRDF on G of weight n and thus γwsR(G) ≤ n. If G = Kn, then it

easy to see that γwsR(G) = n.

Conversely, assume that ∆(G) ≥ 1. If δ(G) = 1, then there exists a vertex v with

d(v) = 1. If u is a neighbor of v, then define the function f : V (G) → {−1, 1, 2} by

f(v) = −1, f(u) = 2 and f(x) = 1 for x ∈ V (G)\{u, v}. It is straightforward to verify

that f is a WSRDF on G of weight n−1 and thus γwsR(G) ≤ n−1. If δ(G) ≥ 2, then

define f(w) = −1 for an arbitrary vertex w ∈ V (G) and f(x) = 1 for x ∈ V (G)\{w}.
Then f is a WSRDF on G of weight n− 2 and thus γwsR(G) ≤ n− 2.

Theorem 2. If G is graph of order n, then γwsR(G) ≥ 2γ(G) − n, with equality if and
only if G = Kn.

Proof. Let f = (V−1, V1, V2) be a γwsR(G)-function. Then it follows from Observa-

tion 1 that

γwsR(G) = |V1|+ 2|V2| − |V−1| = 2|V1|+ 3|V2| −n ≥ 2|V1 ∪V2| −n ≥ 2γ(G)−n, (1)

and the desired inequality is proved. Clearly, if G = Kn, then γwsR(G) = n =

2γ(G) − n. Now assume that G contains at least one edge. Using Proposition 1, we

observe that γwsR(G) ≤ n − 1 and therefore |V−1| ≥ 1. If |V2| ≥ 1, then it follows

from (1) that

γwsR(G) = 2|V1|+ 3|V2| − n > 2|V1 ∪ V2| − n ≥ 2γ(G)− n.

Therefore assume now that |V2| = 0. Let u ∈ V−1, and let x, y ∈ V1 be two neighbors

of u. The condition f(N [x]) ≥ 1 shows that x has a neighbor in V1\{x}. Furthermore,

since every vertex of V−1 has at least two neighbors in V1, we conclude that V1 \ {x}
is a dominating set of G. Hence we deduce from (1) that

γwsR(G) = 2|V1| − n > 2γ(G)− n.

Proposition 2. If G is graph of order n with minimum degree δ ≥ 2, then γwsR(G) ≤
n− 2bδ/2c.

Proof. Let t = bδ/2c, and let A = {v1, v2, . . . , vt} be a set of t vertices of G. Define

the function f : V (G) → {−1, 1, 2} by f(x) = −1 for x ∈ A and f(x) = 1 for

x ∈ V (G) \A. Then

f(N [w]) ≥ −t+ (δ + 1− t) = δ + 1− 2t = δ + 1− 2bδ/2c ≥ 1

for each w ∈ V (G). Therefore f is a WSRDF on G of weight n − 2t and thus

γwsR(G) ≤ n− 2t.
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Proposition 3. If G is graph of order n, then γwsR(G) ≥ ∆ + 2− n.

Proof. Let w be a vertex of maximum degree, and let f be a γwsR(G)-function.

Then the definitions imply the desired bound as follows:

γwsR(G) =
∑

x∈V (G)

f(x) =
∑

x∈N [w]

f(x) +
∑

x∈V (G)\N [w]

f(x)

≥ 1 +
∑

x∈V (G)\N [w]

f(x) ≥ 1− (n− (∆(G) + 1)) = ∆(G) + 2− n.

The proof of the next proposition is identically with the proof of Proposition 2 in [1]

and is therefore omitted.

Proposition 4. Let f = (V−1, V1, V2) be a WSRDF of a graph G of order n, ∆ = ∆(G)
and δ = δ(G). Then the following holds.

(a) (2∆ + 1)|V2|+ ∆|V1| ≥ (δ + 2)|V−1|.

(b) (2∆ + δ + 3)|V2|+ (∆ + δ + 2)|V1| ≥ (δ + 2)n.

(c) (∆ + δ + 2)ω(f) ≥ (δ −∆ + 2)n+ (δ −∆)|V2|.

(d) ω(f) ≥ (δ − 2∆ + 1)n/(2∆ + δ + 3) + |V2|.

As an immediate consequence of Proposition 4 (c), we obtain a lower bound on the

weak signed Roman domination number of regular graphs.

Corollary 1. If G is an r-regular graph of order n, then γwsR(G) ≥ dn/(r + 1)e.

In the case that G is not regular, Proposition 4 (c) and (d) lead to the following lower

bound.

Corollary 2. Let G be a graph of order n, maximum degree ∆ and minimum degree δ.
If δ < ∆, then

γwsR(G) ≥ −2∆ + 2δ + 3

2∆ + δ + 3
n.

Proof. Multiplying both sides of the inequality in Proposition 4 (d) by ∆ − δ and

adding the resulting inequality to the inequality in Proposition 4 (c), we yield the

desired lower bound.
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Example 1. Let p ≥ 2 be an integer, and let v1, v2, . . . , vp be the vertex set of the complete
graph Kp. Now let H be the graph consisting of Kp such that each vertex vi is adjacent to
2p − 1 leaves for 1 ≤ i ≤ p. Define the function f : V (H) → {−1, 1, 2} by f(vi) = 2 for
1 ≤ i ≤ p and f(x) = −1 otherwise. Then f is a WSRDF on H of weight

3p− 2p2 =
−2∆(H) + 2δ(H) + 3

2∆(H) + δ(H) + 3
n(H).

Therefore Corollary 2 shows that γwsR(H) = 3p− 2p2 and thus Corollary 2 is sharp.

Since f is also a signed Roman dominating function on H, this example also demon-

strates that the inequality

γsR(G) ≥ −2∆ + 2δ + 3

2∆ + δ + 3
n,

which can be found in [1] and which follows from Corollary 2, is sharp too.

3. Special classes of graphs

In this section, we determine the weak signed Roman domination number for special

classes of graphs.

Proposition 5. If n ≥ 1, then γwsR(Kn) = 1.

Proof. According to Proposition 3, we have γwsR(Kn) ≥ 1. If n is even, then assign

to one vertex the weight 2, to n/2 vertices the weight -1 and to the remaining (n−2)/2

vertices the weight 1. On the other hand, if n is odd, then assign to (n+1)/2 vertices

the weight 1 and to the remaining (n− 1)/2 vertices the weight -1. In both cases, we

produce a WSRDF of weight 1, and thus γwsR(Kn) ≤ 1, and so γwsR(Kn) = 1.

Proposition 6. If n ≥ 2, then γwsR(K1,n−1) = 1, unless n = 3, in which case
γwsR(K1,2) = 2.

Proof. Let w be the central vertex and v1, v2, . . . , vn−1 be the leaves of K1,n−1.

According to Proposition 3, we have γwsR(K1,n−1) ≥ 1. If n = 2p is even, then define

f by f(w) = 2, f(vi) = −1 for 1 ≤ i ≤ p and f(vi) = 1 for p+ 1 ≤ i ≤ 2p− 1. Then

f is a WSRDF on K1,n−1 of weight 1 and thus γwsR(K1,n−1) = 1 in this case.

If n = 2p+1 is odd, then it is easy to see that γwsR(K1,2) = 2. Let now p ≥ 2. Define

f by f(w) = 2, f(vi) = −1 for 1 ≤ i ≤ p + 1, f(vi) = 1 for p + 2 ≤ i ≤ 2p − 1 and

f(v2p) = 2. Then f is a WSRDF on K1,n−1 of weight 1 and thus γwsR(K1,n−1) = 1

also in this case.
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Propositions 5 and 6 show that Proposition 3 is sharp. Since the function f in the

proof of Proposition 6 is also an SRDF on K1,n−1, we deduce the following corollary,

which corrects Observation 5 in [1].

Corollary 3. If n ≥ 2, then γsR(K1,n−1) = 1, unless n = 3, in which case γsR(K1,2) = 2.

Proposition 7. If Cn is a cycle of length n ≥ 3, then γwsR(Cn) = dn/3e when n ≡
0, 1 (mod 3) and γwsR(Cn) = dn/3e+ 1 when n ≡ 2 (mod 3).

Proof. Let Cn = v1v2 . . . vnv1. Applying Corollary 1, we observe that γwsR(Cn) ≥
dn/3e.
Let first n = 3p for an integer p ≥ 1. Define f(v3i) = −1 and f(v3i−2) = f(v3i−1) = 1

for 1 ≤ i ≤ p. Then f is a WSRDF on Cn of weight p = n/3 and thus γwsR(Cn) ≤ p.
Therefore γwsR(Cn) = dn/3e in this case.

Let second n = 3p+1 for an integer p ≥ 1. Define f(v3i) = −1, f(v3i−2) = f(v3i−1) =

1 for 1 ≤ i ≤ p and f(v3p+1) = 1. Then f is a WSRDF on Cn of weight p+1 = dn/3e
and thus γwsR(Cn) ≤ dn/3e. Therefore γwsR(Cn) = dn/3e in this case.

Finally, let n = 3p + 2 for an integer p ≥ 1, and let f be a γwsR(Cn)-function. If

f(x) ≥ 1 for each x ∈ V (Cn), then γwsR(Cn) ≥ n ≥ dn/3e+ 1. Let next, without loss

of generality, f(v1) = −1. Then f(v3p+1), f(v3p+2) ≥ 1 and we obtain

γwsR(Cn) = f(V (Cn)) = f(v3p+1) + f(v3p+2) +

p∑
i=1

f(N [v3i−1]) ≥ p+ 2 =
⌈n

3

⌉
+ 1.

Otherwise, define g(v3i) = −1, g(v3i−2) = g(v3i−1) = 1 for 1 ≤ i ≤ p and g(v3p+1) =

g(v3p+2) = 1. Then g is a WSRDF on Cn of weight p + 2 = dn/3e + 1 and thus

γwsR(Cn) ≤ dn/3e+ 1. Therefore γwsR(Cn) = dn/3e+ 1 in this case.

In [1], the authors have shown that γsR(Cn) = d2n/3e. Thus we deduce from Propo-

sition 7 that the difference γsR(G)− γwsR(G) can be arbitrarily large.

Proposition 8. Let Pn be a path of order n ≥ 1. Then γwsR(P2) = 1, γwsR(Pn) = dn/3e
when n ≡ 1 (mod 3) and γwsR(Pn) = dn/3e+ 1 when n ≡ 0, 2 (mod 3) and n ≥ 3.

Proof. Let Pn = v1v2 . . . vn, and let f be a γwsR(Pn)-function.

First assume that n = 3p+ 1 for an integer p ≥ 0. If p = 0, then the result is trivial.

If p ≥ 1, then we observe that f(v1) + f(v2) ≥ 1 and f(v3p) + f(v3p+1) ≥ 1. This

leads to

γwsR(Pn) = f(V (Pn)) = f(v1) + f(v2) + f(v3p) + f(v3p+1) +

p−1∑
i=1

f(N [v3i+1])

≥ 2 + p− 1 = p+ 1 =
⌈n

3

⌉
.
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Next define g(v3i+1) = −1 for 0 ≤ i ≤ p, g(v2) = g(v3p) = 2 and g(v3i) = g(v3i+2) = 1

for 1 ≤ i ≤ p − 1. Then g is a WSRDF on Pn of weight p + 1 = dn/3e and thus

γwsR(Pn) ≤ dn/3e. Therefore γwsR(Pn) = dn/3e in this case.

Second assume that n = 3p for an integer p ≥ 1. If f(v1) + f(v2) + f(v3) ≥ 2, then

we obtain

γwsR(Pn) = f(V (Pn)) = f(v1) + f(v2) + f(v3) +

p−1∑
i=1

f(N [v3i+2])

≥ 2 + p− 1 = p+ 1 =
⌈n

3

⌉
+ 1.

Next assume that f(v1) + f(v2) + f(v3) = 1. This is only possible when f(v1) =

f(v2) = 1 and f(v3) = −1. Then f(v4) ≥ 1, and it follows that

γwsR(Pn) = f(V (Pn)) = f(v1) + f(v2) + f(v3) + f(v4) +

p−1∑
i=2

f(N [v3i]) + f(N [v3p])

≥ 2 + p− 2 + 1 = p+ 1 =
⌈n

3

⌉
+ 1.

Now define g(v3i) = −1 for 1 ≤ i ≤ p, g(v3p−1) = 2 and g(v3i−2) = g(v3i−1) = 1 for

1 ≤ i ≤ p−1 and g(v3p−2) = 1. Then g is a WSRDF on Pn of weight p+1 = dn/3e+1

and thus γwsR(Pn) ≤ dn/3e+ 1. Therefore γwsR(Pn) = dn/3e+ 1 in this case.

Finally, asume that n = 3p+ 2 for an integer p ≥ 0. Clearly, γwsR(P2) = 1. Let now

p ≥ 1. If f(v1) + f(v2) + f(v3) ≥ 2, then we obtain

γwsR(Pn) = f(V (Pn))

= f(v1) + f(v2) + f(v3) +

p−1∑
i=1

f(N [v3i+2]) + f(v3p+1) + f(v3p+2)

≥ 2 + p− 1 + 1 = p+ 2 =
⌈n

3

⌉
+ 1.

Next assume that f(v1) +f(v2) +f(v3) = 1. Then f(v1) = f(v2) = 1 and f(v3) = −1

and hence f(v4), f(v5) ≥ 1. We conclude that

γwsR(Pn) = f(V (Pn)) = f(v1) + f(v2) + f(v3) + f(v4) + f(v5) +

p∑
i=2

f(N [v3i+1])

≥ 3 + p− 1 = p+ 2 =
⌈n

3

⌉
+ 1.

Conversely define g(v3i) = −1 for 1 ≤ i ≤ p and g(v3i−2) = g(v3i−1) = 1 for 1 ≤
i ≤ p + 1. Then g is a WSRDF on Pn of weight p + 2 = dn/3e + 1 and thus

γwsR(Pn) ≤ dn/3e+ 1. Therefore γwsR(Pn) = dn/3e+ 1 in this case.
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IfG is 1-regular of order n, then γwsR(G) = n/2. Corollary 1 implies γwsR(G) ≥ dn/3e
when G is 2-regular, and it follows from Proposition 7 that γwsR(Cn) = dn/3e when

n ≡ 0, 1 (mod 3). Therefore Corollary 1 is tight if r = 1, 2. By Proposition 5, the

lower bound of Corollary 1 is also tight if r = n−1. In [1], the authors have construct

cubic graphs H of order n with the property that γsR(H) = n/4. Since γsR(G) ≥
γwsR(G) ≥ dn/4e for each cubic graph, Corollary 1 implies γsR(H) = γwsR(H) = n/4.

Therefore Corollary 1 is also tight for r = 3. Next we will show that Corollary 1 is

tight for r = n− 2 and r = n− 3.

Proposition 9. If G is an (n− 2)-regular graph of order n ≥ 4, then γwsR(G) = 2.

Proof. Since G is (n− 2)-regular, the graph is isomorphic to the complete r-partite

graph Kn1,n2,...,nr
with r ≥ 2 and n1 = n2 = . . . = nr = 2. Corollary 1 implies

γwsR(G) ≥ dn/(n− 1)e = 2.

Now let Xi = {xi, yi} be the partite sets of G for 1 ≤ i ≤ r. Define f(xi) = f(y1) = 1

for 1 ≤ i ≤ r and f(yi) = −1 for 2 ≤ i ≤ r. Then f is a WSRDF on G of weight 2

and thus γwsR(G) ≤ 2. Therefore γwsR(G) = 2.

Example 2. Let H be the complete r-partite graph with r ≥ 2 and the partite sets
X1, X2, . . . , Xr such that |X1| = |{a, b, u, v}| = 4 and |Xi| = 3 for 2 ≤ i ≤ r. Now let G
consisting of H with the additional edges ab and uv. Then G is an (n− 3)-regular graph of
order n = 3r + 1. Corollary 1 implies γsR(G) ≥ γwsR(G) ≥ dn/(n− 2)e = 2.
Now let Xi = {xi, yi, zi} be the partite sets of G for 2 ≤ i ≤ r. Define f(xi) = f(a) =
f(u) = 2 for 2 ≤ i ≤ r and f(b) = f(v) = f(yi) = f(zi) = −1 for 2 ≤ i ≤ r. Then f is
a WSRDF (even an SRDF) on G of weight 2 and thus γwsR(G) ≤ γsR(G) ≤ 2. Therefore
γsR(G) = γwsR(G) = 2.

Proposition 10. If S(r, s) is the double star with r, s ≥ 5, then γwsR(S(r, s)) = −2.

Proof. Let u and v be two adjacent vertices of S(r, s) such that u is adjacent to r

leaves and v is adjacent to s leaves. If f is a γwsR(S(r, s))-function, then the definition

implies

ω(f) = f(N [u]) + f(N [v])− f(u)− f(v) ≥ 1 + 1− 2− 2 = −2

and so γwsR(S(r, s)) ≥ −2.

Conversely, let r = 2p + 1 and s = 2q + 1 be odd. Define f by f(u) = f(v) = 2.

In addition, we assign the weight -1 to p + 2 leaves of u, the weight 1 to p − 1

leaves of u, the weight -1 to q + 2 leaves of v and the weight 1 to q − 1 leaves of v.

Then f is a WSRDF on S(r, s) of weight -2 and thus γwsR(S(r, s)) ≤ −2. Therefore

γwsR(S(r, s)) = −2 in this case.

Let r = 2p and s = 2q be even with p, q ≥ 3. Define f by f(u) = f(v) = 2. In

addition, we assign the weight -1 to p+ 2 leaves of u, the weight 1 to p− 3 leaves of

u, the weight 2 to one leaf of u, the weight -1 to q + 2 leaves of v, the weight 1 to
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q − 3 leaves of v and the weight 2 to one leaf of v. Then f is a WSRDF on S(r, s) of

weight -2 and thus γwsR(S(r, s)) ≤ −2. Therefore γwsR(S(r, s)) = −2 in this case.

The cases r even and s odd or r odd and s even are similar to the cases above and

are therefore omitted.

Since f is also a signed Roman dominating function on S(r, s) in the proof of Propo-

sition 10, we also have γsR(S(r, s)) = −2 when r, s ≥ 5. The proof of Proposition 10

shows that γwsR(S(3, s)) = −2 for s ≥ 5. In addition, it is straightforward to verify

that −2 ≤ γwsR(S(r, s)) ≤ 0 for r, s ≥ 2.

Proposition 11. If p ≥ 4 is an integer, then γwsR(Kp,p) = 4 and γwsR(K3,3) = 3.

Proof. In [7], the authors have shown that γsR(Kp,p) = 4 for p ≥ 3. Hence it follows

that γwsR(Kp,p) ≤ γsR(Kp,p) = 4. In the case p = 3, define g(x1) = g(x2) = g(x3) =

1, g(y1) = g(y2) = −1 and g(y3) = 2. Then g is a WSRDF on K3,3 of weight 3 and

thus γwsR(K3,3) ≤ 3.

Conversely, assume that f is a γwsR(Kp,p)-function, and let X = {x1, x2, . . . , xp}
and Y = {y1, y2, . . . , yp} be the partite sets. Assume first that f(xi) ≥ 1 for each

i ∈ {1, 2, . . . , p}. Then

γwsR(Kp,p) = f(N [x1]) + f(X \ {x1}) ≥ 1 + p− 1 = p.

If f(yi) ≥ 1 for 1 ≤ i ≤ p, then we obtain analogously γwsR(Kp,p) ≥ p.
Now assume, without loss of generality, that f(x1) = f(y1) = −1. Then

γwsR(Kp,p) = f(N [x1]) + f(N [y1])− f(x1)− f(y1) ≥ 1 + 1 + 1 + 1 = 4.

Therefore γwsR(Kp,p) ≥ 4 and thus γwsR(Kp,p) = 4 when p ≥ 4 and γwsR(K3,3) =

3.

4. Further lower bounds

A set S ⊆ V (G) is a 2-packing of the graph G if N [u]∩N [v] = ∅ for any two distinct

vertices u, v ∈ S. The maximum cardinality of a 2-packing in G is the 2-packing

number, denoted by ρ(G) = ρ.

Theorem 3. If G is a graph of order n, minimum degree δ and packing number ρ, then
γwsR(G) ≥ ρ(δ + 2)− n.

Proof. Let {v1, v2, . . . , vρ} be a 2-packing of G, and let f be a γwsR(G)-function. If

we define the set A =
⋃ρ
i=1N [vi], then since {v1, v2, . . . , vρ} is a 2-packing, we note

that

|A| =
ρ∑
i=1

(d(vi) + 1) ≥ ρ(δ + 1).
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This leads to

γwsR(G) =
∑

x∈V (G)

f(x) =

ρ∑
i=1

f(N [vi]) +
∑

x∈V (G)\A

f(x)

≥ ρ+
∑

x∈V (G)\A

f(x) ≥ ρ− n+ |A| ≥ ρ− n+ ρ(δ + 1) = ρ(δ + 2)− n,

and the proof is complete.

The next example will demonstrate that the bound in Theorem 3 is sharp.

Example 3. Let F be an arbitrary graph of order t ≥ 1, and for each vertex v ∈ V (F )
add a vertex-disjoint copy of a complete graph Ks (s ≥ 2) and identify the vertex v with
one vertex of the added complete graph. Let H denote the resulting graph. Furthermore, let
H1, H2, . . . , Ht be the added copies of Ks. For i = 1, 2, . . . , t, let vi be the vertex of Hi that
is identified with a vertex of F . We now construct a WSRDF on H as follows. For each
i = 1, 2, . . . , t, let fi : V (Hi) → {−1, 1, 2} be the WSRDF on the complete graph defined as
in Proposition 5 such that fi(vi) ≥ 1. As shown in Proposition 5, we have ω(fi) = 1. Now
let f : V (H)→ {−1, 1, 2} be the function defined by f(v) = fi(v) for each v ∈ V (Hi). Then
f is a WSRDF of H of weight t and hence γwsR(H) ≤ t. Since n(H) = ts, δ(H) = s − 1
and ρ(H) = t, Theorem 3 implies that γwsR(H) ≥ ρ(H)(δ(H) + 2) − n(H) ≥ t. Thus
γwsR(H) ≥ ρ(H)(δ(H)+2)−n(H) = t. Consequently, γwsR(H) = ρ(H)(δ(H)+2)−n(H) = t.

For a subset S ⊆ V (G), we let dS(v) denote the number of vertices in S that are

adjacent to the vertex v. For disjoint subsets U and W of vertices, we let [U,W ]

denote the set of edges between U and W . Now let f = (V−1, V1, V2) be a WSRDF.

For notational convenience, we let V12 = V1∪V2, |V12| = n12, |V1| = n1 and |V2| = n2.

Furthermore, let |V−1| = n−1 and so n−1 = n−n12. Let G12 = G[V12] be the subgraph

induced by V12 and let G12 have size m12. For i = 1, 2, if Vi 6= ∅, let Gi = G[Vi] be

the subgraph induced by Vi and let Gi have size mi. Hence m12 = m1+m2+|[V1, V2]|.

For k ≥ 1, let Lk be the graph obtained from a graphH of order k by adding 2dH(v)+1

pendant edges to each v of H. Note that L1 = K2. Let H = {Lk | k ≥ 1}. In [1], one

can find the following lower bound on the signed Roman domination number.

Theorem 4. [1] If G is a graph of order n and size m without isolated vertices, then

γsR(G) ≥ 3n− 4m

2

with equality if and only if G ∈ H.

Using the ideas in [1], we obtain the following improvement of Theorem 4.
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Theorem 5. If G is a graph of order n and size m without isolated vertices, then

γwsR(G) ≥ 3n− 4m

2

with equality if and only if G ∈ H.

Proof. Let f = (V−1, V1, V2) be a γwsR(G)-function, and let V 2
−1 ⊆ V−1 be the

maximum set such that each vertex v ∈ V 2
−1 has at least one neighbor in V2. In

addition, let V 1
−1 = V−1 \ V 2

−1. Since each vertex of V 1
−1 has at least two neighbors in

V1, we observe that

2|V 1
−1| ≤ |[V 1

−1, V1]| =
∑
v∈V1

dV 1
−1

(v).

For each v ∈ V1, we have 1 ≤ f(N [v]) = f(v) + 2dV2(v) + dV1(v) − dV−1(v) and so

dV−1
(v) ≤ 2dV2

(v) + dV1
(v). Hence we obtain

2|V 1
−1| ≤

∑
v∈V1

dV 1
−1

(v) ≤
∑
v∈V1

dV−1
(v)

≤
∑
v∈V1

(2dV2
(v) + dV1

(v)) = 2|[V1, V2]|+ 2m1.

Since each vertex of V 2
−1 has at least one neighbor in V2, we have

|V 2
−1| ≤ |[V 2

−1, V2]| =
∑
v∈V2

dV 2
−1

(v).

For each v ∈ V2, we have 1 ≤ f(N [v]) = f(v) + 2dV2
(v) + dV1

(v) − dV−1
(v) and so

dV−1
(v) ≤ 2dV2

(v) + dV1
(v) + 1. This leads to

|V 2
−1| ≤

∑
v∈V2

dV 2
−1

(v) ≤
∑
v∈V2

dV−1(v)

≤
∑
v∈V2

(2dV2
(v) + dV1

(v) + 1) = 4m2 + |[V1, V2]|+ n2

= 4m12 + n2 − 4m1 − 3|[V1, V2]|.

Combining the corresponding inequalities, we obtain

n−1 = |V 1
−1|+ |V 2

−1| ≤ |[V1, V2]|+m1 + 4m12 + n2 − 4m1 − 3|[V1, V2]|
= 4m12 + n2 − 3m1 − 2|[V1, V2]|
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and so m12 ≥ (n−1 − n2 + 3m1 + 2|[V1, V2]|)/4. Hence we deduce that

m ≥ m12 + |[V−1, V12]|

≥ 1

4
(n−1 − n2 + 3m1 + 2|[V1, V2]|) + n−1

=
1

4
(5n−1 − n2 + 3m1 + 2|[V1, V2]|)

=
1

4
(5n− 6n12 + n1 + 3m1 + 2|[V1, V2]|)

This yields

n12 ≥
1

6
(5n− 4m+ n1 + 3m1 + 2|[V1, V2]|)

and thus

γwsR(G) = 2n2 + n1 − n−1 = 3n2 + 2n1 − n = 3n12 − n− n1

≥ 1

2
(5n− 4m+ n1 + 3m1 + 2|[V1, V2]|)− n− n1

=
1

2
(3n− 4m) +

1

2
(3m1 + 2|[V1, V2]| − n1).

Let φ(n1) = 3m1 + 2|[V1, V2]| − n1. It suffices to show that φ(n1) ≥ 0, since then

γwsR(G) ≥ (3n− 4m)/2, which is the desired bound. If n1 = 0, then φ(n1) = 0, and

we are done. Assume now that n1 ≥ 1. If v ∈ V1 and dV12
(v) = 0, then since by

assumption there is no isolated vertex in G, we have dG(v) ≥ 1, and every neighbor

of v belongs to V−1. But then we obtain the contradiction f(N [v]) ≤ 0. Hence

dV12(v) ≥ 1 for each v ∈ V1. We deduce that

φ(n1) = 3m1 + 2|[V1, V2]| − n1 > 2m1 + |[V1, V2]| − n1
=

∑
v∈V1

dV1
(v) +

∑
v∈V1

dV2
(v)− n1

=
∑
v∈V1

dV12
(v)− n1 ≥ n1 − n1 = 0

and so γwsR(G) > (3n− 4m)/2 when n1 ≥ 1.

Suppose that γwsR(G) = (3n − 4m)/2. Then all the inequalities above must be

equalities. In particular, V 2
−1 = V−1, n1 = 0, n12 = n2 and so V12 = V2 and V (G) =

V2 ∪ V−1. Furthermore, m12 = m2, m = m2 + |[V−1, V2]| and |[V−1, V2]| = n−1. This

implies that for each vertex v ∈ V−1, we have dV2(v) = 1 and thus dV−1(v) = 0.

Hence each vertex of V−1 is a leaf in G. Moreover, the identity n−1 = |V 2
−1| =∑

v∈V2
(2dV2(v) + 1) shows that dV−1(v) = 2dV2(v) + 1 for each v ∈ V2 and therefore

G ∈ H.

Conversely, assume that G ∈ H. Then it follows from Theorems 4 and 5 that

3n− 4m

2
≤ γwsR(G) ≤ γsR(G) =

3n− 4m

2

and therefore γwsR(G) = 3n−4m
2 .
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