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Abstract: Let G = (V,E) be a simple connected graph with n vertices, m edges and
sequence of vertex degrees d1 ≥ d2 ≥ · · · ≥ dn > 0, di = d(vi), where vi ∈ V . With

i ∼ j we denote adjacency of vertices vi and vj . The general sum–connectivity index of

graph is defined as χα(G) =
∑
i∼j(di + dj)

α, where α is an arbitrary real number. In
this paper we determine relations between χα+β(G) and χα+β−1(G), where α and β

are arbitrary real numbers, and obtain new bounds for χα(G). Also, by the appropriate

choice of parameters α and β, we obtain a number of old/new inequalities for different
vertex–degree–based topological indices.
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1. Introduction

Let G = (V,E), be a simple connected graph with n vertices and m edges, where

V = {v1, v2, . . . , vn}, E = {e1, e2, . . . , em}. Let ∆ = d1 ≥ d2 ≥ · · · ≥ dn = δ,

di = d(vi), and d(e1) ≥ d(e2) ≥ · · · ≥ d(em) be sequences of vertex and edge degrees,

respectively. With i ∼ j we denote adjacency of vertices vi and vj . Let e = {i, j} ∈ E
be an arbitrary edge of G. The degree of an edge e is defined as d(e) = di + dj − 2.

In addition, we use the following notation: ∆e = d(e1) + 2 ≥ d(e2) + 2 ≥ · · · ≥
d(em) + 2 = δe.

∗ Corresponding Author
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A line graph L(G) of a graph G, is a graph such that each vertex of L(G) represents

an edge of G and two vertices of L(G) are adjacent if and only if their corresponding

edges are adjacent in G.

A graph invariant, or topological index, is a numeric quantity associated with a graph

which characterize the topology of graph and is invariant under graph automorphism.

Here we list some vertex–degree–based graph invariants that are of interest for our

work.

Historically, the first vertex-degree-based (VDB) structure descriptors were the graph

invariants that are nowadays called Zagreb indices. The first Zagreb index, M1, is

defined as [13]

M1 = M1(G) =

n∑
i=1

d2
i .

In [5] it was shown that the first Zagreb index can also be expressed as

M1(G) =
∑
i∼j

(di + dj) .

It can be easily verified that the following is valid

M1(G) =

m∑
i=1

(d(ei) + 2) ,

that is, it can be considered as edge-degree-based topological index as well.

The sum–connectivity index, SC(G), proposed in [28], is defined as

SC(G) =
∑
i∼j

1√
di + dj

.

Generalization of SC(G) and M1(G) was introduced in [29] and named general sum–

connectivity index. It is defined as

χα(G) =
∑
i∼j

(di + dj)
α, χ0(G) = m,

where α is an arbitrary real number. In [16] it was shown that χα(G) satisfies the

expression

χα(G) =

m∑
i=1

(d(ei) + 2)α.

In what follows me mention some particular indices of this kind that are of interest

for the present work.

• For α = 2, χ2(G) = HM(G), the hyper-Zagreb index is obtained [26].
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• For α = 1/2, χ1/2(G) = RSC(G), the reciprocal sum–connectivity index could

be obtained.

• For α = −1, 2χ−1(G) = H(G), the harmonic index is obtained [7].

• For α = −2, χ−2(G) = RHM(G), the reciprocal hyper–Zagreb index could be

obtained.

One can easily observe that for the hyper–Zagreb index holds

HM(G) = F (G) + 2M2(G),

where

F (G) =

n∑
i=1

d3
i and M2(G) =

∑
i∼j

didj

are the forgotten index [9] and the second Zagreb index [12], respectively. Details on

the mathematical theory of Zagreb indices can be found in [1, 3, 10, 11, 20, 23].

In this paper we establish relations between χα+β(G) and χα+β−1(G), where α and

β are arbitrary real numbers, and obtain new bounds for χα(G). Also, by the appro-

priate choice of parameters α and β, a number of new/old inequalities that reveal re-

lationships between above mentioned topological indices are obtained. More on these

and some other results of this type can be found, for example, in [2, 4, 6, 14, 16, 24, 25].

2. Preliminaries

In this section, we recall some discrete analytical inequalities for real number se-

quences that will be used subsequently.

Let p = (pi), i = 1, 2, . . . ,m, be nonnegative real number sequence and a = (ai),

i = 1, 2, . . . ,m, positive real number sequence. Then for any real α, such that α ≥ 1

or α ≤ 0, holds (see e.g. [18])(
m∑
i=1

pi

)α−1 m∑
i=1

pia
α
i ≥

(
m∑
i=1

piai

)α
. (1)

If 0 ≤ α ≤ 1, then the sense of (1) reverses. Equality holds if and only if either

α = 0, or α = 1, or for some t, 1 ≤ t ≤ m − 1, holds p1 = p2 = · · · = pt = 0,

pt+1 = pt+2 = · · · = pm and at+1 = at+2 = · · · = am.

Let x = (xi) and a = (ai), i = 1, 2, . . . ,m, be positive real number sequences. In [21]

it was proven that for any r ≥ 0 holds

m∑
i=1

xr+1
i

ari
≥

(
m∑
i=1

xi

)r+1

(
m∑
i=1

ai

)r . (2)
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Equality holds if and only if r = 0 or x1

a1
= x2

a2
= · · · = xm

am
.

3. Main results

In the following theorem we establish relationship between χα+β(G) and χα+β−1(G),

where α and β are arbitrary real numbers.

Theorem 1. Let G be a graph with m ≥ 3 edges such that ∆e 6= δe, and β be an arbitrary
real number. Then for any real α, α ≤ 0 or α ≥ 1, holds

δeχα+β−1(G) +
(χβ+1(G)− δeχβ(G))α

(χβ(G)− δeχβ−1(G))α−1
≤ χα+β(G)

≤ ∆eχα+β−1(G)− (∆eχβ(G)− χβ+1(G))α

(∆eχβ−1(G)− χβ(G))α−1
. (3)

If 0 ≤ α ≤ 1, then the opposite inequalities hold. Equalities hold if and only if either α = 0,
α = 1, or d(ei) + 2 ∈ {δe,∆e} for every i = 2, 3, . . . ,m− 1.

Proof. For real numbers α and β we have that

χα+β(G)− δeχα+β−1(G) =

m∑
i=1

(d(ei) + 2− δe) (d(ei) + 2)α+β−1 (4)

and

∆eχα+β−1(G)− χα+β(G) =

m∑
i=1

(∆e − d(ei)− 2) (d(ei) + 2)α+β−1. (5)

For r = α, pi = (d(ei) + 2− δe) (d(ei) + 2)β−1, ai = d(ei) + 2, i = 1, 2, . . . ,m, the

inequality (1) becomes

(
m∑
i=1

(d(ei) + 2− δe) (d(ei) + 2)β−1

)α−1 m∑
i=1

(d(ei) + 2− δe) (d(ei) + 2)α+β−1

≥

(
m∑
i=1

(d(ei) + 2− δe) (d(ei) + 2)β

)α
.

Based on the conditions given in the statement of Theorem 1 we have that ∆e 6= δe,

i.e. L(G) is not a regular graph. Accordingly, from the above follows

m∑
i=1

(d(ei) + 2− δe) (d(ei) + 2)
α+β−1 ≥ (χβ+1(G)− δeχβ(G))

α

(χβ(G)− δeχβ−1(G))
α−1 . (6)

From this inequality and (4) we get left side of (3).
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For r = α, pi = (∆e − d(ei)− 2) (d(ei) + 2)β−1, ai = d(ei) + 2, i = 1, 2, . . . ,m, the

inequality (1) transforms into

(
m∑
i=1

(∆e − d(ei)− 2) (d(ei) + 2)β−1

)α−1 m∑
i=1

(∆e − d(ei)− 2) (d(ei) + 2)α+β−1

≥

(
m∑
i=1

(∆e − d(ei)− 2) (d(ei) + 2)β

)α
.

Again, from the conditions given in the statement of Theorem 1 we have that ∆e 6= δe,

that is L(G) is not a regular graph. Therefore we obtain

m∑
i=1

(∆e − d(ei)− 2) (d(ei) + 2)
α+β−1 ≥ (∆eχβ(G)− χβ+1(G))

α

(∆eχβ−1(G)− χβ(G))
α−1 . (7)

According to the above and (5) we get right side of (3).

By a similar procedure we get that the opposite inequalities are valid in (3) when

0 ≤ α ≤ 1.

Equalities in (6) and (7) hold if and only if either α = 0, α = 1, or for some t,

1 ≤ t ≤ m− 2, holds d(e1) + 2 = · · · = d(et) + 2 > d(et+1) + 2 = · · · = d(em−1) + 2.

This implies that equalities in (3) are attained if and only if either α = 0, α = 1, or

d(ei) + 2 ∈ {δe,∆e} for every i = 2, 3, . . . ,m− 1, ∆e 6= δe.

In the following corollary of Theorem 1 we determine lower bound for χα+β(G).

Corollary 1. Let G be a simple connected graph with m ≥ 3 edges such that ∆e 6= δe,
and β is an arbitrary real number. Then for any real number α, α ≥ 1 or α ≤ 0, holds

χα+β(G) ≥
1

∆e − δe

(
∆e(χβ+1(G) − δeχβ(G))α

(χβ(G) − δeχβ−1(G))α−1
+
δe(∆eχβ(G) − χβ+1(G))α

(∆eχβ−1(G) − χβ(G))α−1

)
. (8)

If 0 ≤ α ≤ 1, then the opposite inequality holds. Equality holds if and only if either α = 0,
α = 1, or d(ei) + 2 ∈ {δe,∆e} for every i = 2, 3, . . . ,m− 1.

Proof. Let α be an arbitrary real number such that α ≥ 1 or α ≤ 0. According to

(4) and (5) and inequalities (6) and (7) we have that

χα+β(G)− δeχα+β−1(G) ≥ (χβ+1(G)− δeχβ(G))α

(χβ(G)− δeχβ−1(G))α−1

and

∆eχα+β−1(G)− χα+β(G) ≥ (∆eχβ(G)− χβ+1(G))α

(∆eχβ−1(G)− χβ(G))α−1
.
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From the previous inequalities follow

(∆e − δe)χα+β(G) ≥ ∆e(χβ+1(G)− δeχβ(G))α

(χβ(G)− δeχβ−1(G))α−1
+
δe(∆eχβ(G)− χβ+1(G))α

(∆eχβ−1(G)− χβ(G))α−1
.

Since ∆e 6= δe, from the preceding inequality we obtain (8).

In a similar way we prove that opposite inequality holds in (8) when 0 ≤ α ≤ 1.

For some particular values of parameters α and β the following corollaries are ob-

tained.

Corollary 2. Let G be a simple connected graph with m ≥ 2 edges such that ∆e 6= δe.
Then for any real number α, α ≥ 1 or α ≤ 0, holds

δeχα−1(G) +
(M1(G)−mδe)α

(m− δe
2
H(G))α−1

≤ χα(G) ≤ ∆eχα−1(G)− (m∆e −M1(G))α

( ∆e
2
H(G)−m)α−1

.

If 0 ≤ α ≤ 1, then the opposite inequalities are valid. Equalities hold if and only if α = 0,
α = 1, or d(ei) + 2 ∈ {δe,∆e} for every i = 2, 3, . . . ,m− 1.
For any real number α, α ≥ 2 or α ≤ 1, holds

δeχα−1(G) +
(HM(G)− δeM1(G))α−1

(M1(G)−mδe)α−2
≤ χα(G)

≤ ∆eχα−1(G)− (∆eM1(G)−HM(G))α−1

(m∆e −M1(G))α−2
.

If 1 ≤ α ≤ 2, then the opposite inequalities hold. Equalities hold if and only if α = 1, or
α = 2, or d(ei) + 2 ∈ {δe,∆e} for every i = 2, 3, . . . ,m− 1.

Corollary 3. Let G be a simple connected graph with m ≥ 2 edges such that ∆e 6= δe.
Then for every real number α, α ≥ 1 or α ≤ 0, holds

χα(G) ≥ 1

∆e − δe

(
∆e(M1(G)−mδe)α

(m− δe
2
H(G))α−1

+
δe(m∆e −M1(G))α

( ∆e
2
H(G)−m)α−1

)
.

When 0 ≤ α ≤ 1, then the opposite inequality holds. Equality holds if and only if either
α = 0, α = 1, or d(ei) + 2 ∈ {δe,∆e} for every i = 2, 3, . . . ,m− 1.
For α ≥ 2 or α ≤ 1 we have

χα(G) ≥
1

∆e − δe

(
∆e(HM(G)− δeM1(G))α−1

(M1(G)−mδe)α−2
+
δe(∆eM1(G)−HM(G))α−1

(m∆e −M1(G))α−2

)
.

When 1 ≤ α ≤ 2, then the opposite inequality holds. Equality holds if and only if either
α = 1, α = 2, or d(ei) + 2 ∈ {δe,∆e} for every i = 2, 3, . . . ,m− 1.
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Corollary 4. Let G be a simple connected graph with m ≥ 2 edges. Then for any real
number α ≥ 1 holds

χα(G) ≥ δeχα−1(G) +

(
m− δe

2
H(G)

)(
2m

H(G)

)α
.

Equality is attained if and only if α = 1 or L(G) is a regular graph.
For any real number α ≥ 2 holds

χα(G) ≥ δeχα−1(G) + (M1(G)−mδe)
(
M1(G)

m

)α−1

.

Equality is attained if and only if α = 2 or L(G) is a regular graph.

Corollary 5. Let G be a simple connected graph with m ≥ 2 edges. Then

F (G) ≥ δeM1(G) +
(M1(G)−mδe)2

m− δe
2
H(G)

− 2M2(G) (∆e 6= δe),

F (G) ≥ 1

2

(
δeM1(G) +

(M1(G)−mδe)2

m− δe
2
H(G)

)
(∆e 6= δe),

F (G) ≥ δeM1(G) +

(
m− δe

2
H(G)

)
4m2

H(G)2
− 2M2(G),

F (G) ≥ 1

∆e − δe

(
∆e(M1(G)−mδe)2

m− δe
2
H(G)

+
δe(m∆e −M1(G))2

∆e
2
H(G)−m

)
− 2M2(G),

F (G) ≥ 1

2(∆e − δe)

(
∆e(M1(G)−mδe)2

m− δe
2
H(G)

+
δe(m∆e −M1(G))2

∆e
2
H(G)−m

)
,

F (G) ≤ ∆eM1(G)− (m∆e −M1(G))2

∆e
2
H(G)−m

− 2M2(G),

M2(G) ≤ 1

4

(
∆eM1(G)− (m∆e −M1(G))2

∆e
2
H(G)−m

)
.

In the next theorem we determine a relation between χ2α(G) and χα(G).

Theorem 2. Let G be a simple connected graph with m ≥ 3 edges. Then for any real α
holds

mχ2α(G)− χα(G)2 ≥ m

2
(∆α

e − δαe )2 .

Equality holds if and only if α = 0 or (d(e2) + 2)α = (d(e3) + 2)α = · · · = (d(em−1) + 2)α =
∆αe+δαe

2
.
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Proof. According to the Lagrange’s identity (see e.g. [19]) we have that

mχ2α(G)− χα(G)2 = m

m∑
i=1

(d(ei) + 2)2α −

(
m∑
i=1

(d(ei) + 2)α

)2

=
∑

1≤i<j≤m

((d(ei) + 2)α − (d(ej) + 2)α)
2

≥
m−1∑
i=2

(
(∆α

e − (d(ei) + 2)α)2 + ((d(ei) + 2)α − δαe )
)2

+ (∆α
e − δαe )

2

≥ 1

2

m−1∑
i=2

(∆α
e − δαe )

2
+ (∆α

e − δαe )
2

=
m

2
(∆α

e − δαe )
2
,

which completes the proof.

Corollary 6. Let G be a simple connected graph with m ≥ 2 edges. Then

F (G) ≥ M1(G)2

m
− 2M2(G) +

1

2
(∆e − δe)2 , (9)

m

2
H(G)− SC(G)2 ≥ m

2

(
1√
∆e

− 1√
δe

)2

, (10)

mM1(G)−RSC(G)2 ≥ m

2

(√
∆e −

√
δe
)2

,

mRHM(G)− 1

4
H(G)2 ≥ m

2

(
1

∆e
− 1

δe

)2

.

Remark 1. The inequality (9) was proven in [17]. It is stronger than

F (G) ≥ M1(G)2

m
− 2M2(G),

which was proven in [9] (see also [8]).
The inequality (10) was proven in [14]. It is stronger than

SC(G) ≤
√
mH(G)

2
, (11)

proven in [15].
In [30] it was proven that

SC(G) ≤
√
mR(G)

2
.

Since H(G) ≤ R(G) ( see [27]), the inequality (11), and consequently (10), is stronger than
the above one.
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Since M1(G) ≥ 4m2

n
, according to (9) we have that

F (G) + 2M2(G) ≥ 16m3

n2
+

1

2
(∆e − δe)2 ,

which is stronger than

F (G) + 2M2(G) ≥ 16m3

n2
,

that was proven in [22].

In the following theorem we establish a relationship between χ2α−β(G), χα(G) and

χβ(G), for arbitrary real numbers α and β.

Theorem 3. Let G be a simple connected graph with m ≥ 3 edges. Then for any real
numbers α and β hold

(
χ2α−β(G)−∆2α−β

e − δ2α−β
e

)(
χβ(G)−∆β

e − δβe
)
≥ (χα(G)−∆α

e − δαe )2 , (12)

with equality if and only if α = β or d(e2) + 2 = d(e3) + 2 = · · · = d(em−1) + 2.

Proof. The inequality (2) can be considered as

m−1∑
i=2

xr+1
i

ari
≥

(
m−1∑
i=2

xi

)r+1

(
m−1∑
i=2

ai

)r .

For r = 1, xi = (d(ei) + 2)α, ai = (d(ei) + 2)β , i = 2, 3, . . . ,m− 1, where α and β are

arbitrary real numbers, the above inequality becomes

m−1∑
i=2

((d(ei) + 2)α)
2

(d(ei) + 2)β
≥

(
m−1∑
i=2

(d(ei) + 2)α

)2

m−1∑
i=2

(d(ei) + 2)β

, (13)

that is

m−1∑
i=2

(d(ei) + 2)2α−β ≥

(
m−1∑
i=2

(d(ei) + 2)α

)2

m−1∑
i=2

(d(ei) + 2)β

,



106 Some new bounds on the general sum–connectivity index

i.e.

χ2α−β(G)−∆2α−β
e − δ2α−β

e ≥ (χα(G)−∆α
e − δαe )

2

χβ(G)−∆β
e − δβe

,

wherefrom (12) is obtained.

Equality in (13) is attained if and only if (d(e2) + 2)α−β = (d(e3) + 2)α−β = · · · =

(d(em−1) + 2)α−β , which implies that equality in (12) holds if and only if α = β or

d(e2) + 2 = d(e3) + 2 = · · · = d(em−1) + 2.

Theorem 4. Let G be a simple connected graph with m ≥ 2 edges. Then for any real
numbers α and β hold(

χ2α−β(G)−∆2α−β
e

)(
χβ(G)−∆β

e

)
≥ (χα(G)−∆α

e )2 . (14)

Equality holds if and only if α = β or d(e2) + 2 = d(e3) + 2 = · · · = d(em) + 2 = δe.

Proof. The inequality (2) can be considered as

m∑
i=2

xr+1
i

ari
≥

(
m∑
i=2

xi

)r+1

(
m∑
i=2

ai

)r .

For r = 1, xi = (d(ei) + 2)α, ai = (d(ei) + 2)β , i = 2, 3, . . . ,m, where α and β are

arbitrary real numbers, the above inequality becomes

m∑
i=2

((d(ei) + 2)α)
2

(d(ei) + 2)β
≥

(
m∑
i=2

(d(ei) + 2)α

)2

m∑
i=2

(d(ei) + 2)β
, (15)

that is

m∑
i=2

(d(ei) + 2)2α−β ≥

(
m∑
i=2

(d(ei) + 2)α

)2

m∑
i=2

(d(ei) + 2)β
,

i.e.

χ2α−β(G)−∆2α−β
e ≥ (χα(G)−∆α

e )2

χβ(G)−∆β
e

,

from which (14) is obtained.

Equality in (15) is attained if and only if (d(e1) + 2)α−β = (d(e2) + 2)α−β = · · · =

(d(em−1 + 2)α−β , which implies that equality in (14) holds if and only if α = β or

d(e1) + 2 = d(e2) + 2 = · · · = d(em−1) + 2.
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Theorem 5. Let G be a simple connected graph with m ≥ 1 edges. Then for any real
numbers α and β hold

χα(G) ≤
√
χβ(G)χ2α−β(G). (16)

Equality holds if and only if α = β or L(G) is regular.

Proof. For r = 1, xi = (d(ei) + 2)α, ai = (d(ei) + 2)β , i = 1, 2, . . . ,m, the inequality

(2) transforms into

m∑
i=1

((d(ei) + 2)α)
2

(d(ei) + 2)β
≥

(
m∑
i=1

(d(ei) + 2)α

)2

m∑
i=1

(d(ei) + 2)β
, (17)

that is

χ2α−β(G) ≥ χα(G)2

χβ(G)
,

from which (16) is obtained.

Equality in (17), and consequently in (16), holds if and only if α = β or d(e1) + 2 =

d(e2) + 2 = · · · = d(em) + 2, that is if and only if α = β or L(G) is regular.

Corollary 7. Let G be a simple connected graph with m ≥ 1 edges. Then for any real α
we have

χα(G) ≤
√
mχ2α(G) (18)

and

χα(G) ≤
√
M1(G)χ2α−1(G).

The inequality (18) was proven in [25].
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[23] J.M. Rodŕıguez, J.L. Sánchez, and J.M. Sigarreta, CMMSE-on the first general

Zagreb index, J. Math. Chem. 56 (2018), no. 7, 1849–1864.
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