Some new bounds on the general sum-connectivity index

Akbar Ali ${ }^{1,2}$, Mubeen Javaid ${ }^{1}$ Marjan Matejić ${ }^{3}$, Igor Milovanović ${ }^{3 *}$, Emina Milovanović ${ }^{3}$
${ }^{1}$ Knowledge Unit of Science, University of Management and Technology Sialkot 51310, Pakistan
${ }^{2}$ Department of Mathematics, Faculty of Science, University of Ha'il, Ha'il 81451, Saudi Arabia
${ }^{3}$ Faculty of Electronic Engineering, 18000 Niš, Serbia

Received: 18 July 2019; Accepted: 6 November 2019
Published Online: 8 November 2019

Abstract

Let $G=(V, E)$ be a simple connected graph with n vertices, m edges and sequence of vertex degrees $d_{1} \geq d_{2} \geq \cdots \geq d_{n}>0, d_{i}=d\left(v_{i}\right)$, where $v_{i} \in V$. With $i \sim j$ we denote adjacency of vertices v_{i} and v_{j}. The general sum-connectivity index of graph is defined as $\chi_{\alpha}(G)=\sum_{i \sim j}\left(d_{i}+d_{j}\right)^{\alpha}$, where α is an arbitrary real number. In this paper we determine relations between $\chi_{\alpha+\beta}(G)$ and $\chi_{\alpha+\beta-1}(G)$, where α and β are arbitrary real numbers, and obtain new bounds for $\chi_{\alpha}(G)$. Also, by the appropriate choice of parameters α and β, we obtain a number of old/new inequalities for different vertex-degree-based topological indices.

Keywords: Topological indices, vertex degree, sum-connectivity index
AMS Subject classification: 05C50, 15A18

1. Introduction

Let $G=(V, E)$, be a simple connected graph with n vertices and m edges, where $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}, E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$. Let $\Delta=d_{1} \geq d_{2} \geq \cdots \geq d_{n}=\delta$, $d_{i}=d\left(v_{i}\right)$, and $d\left(e_{1}\right) \geq d\left(e_{2}\right) \geq \cdots \geq d\left(e_{m}\right)$ be sequences of vertex and edge degrees, respectively. With $i \sim j$ we denote adjacency of vertices v_{i} and v_{j}. Let $e=\{i, j\} \in E$ be an arbitrary edge of G. The degree of an edge e is defined as $d(e)=d_{i}+d_{j}-2$. In addition, we use the following notation: $\Delta_{e}=d\left(e_{1}\right)+2 \geq d\left(e_{2}\right)+2 \geq \cdots \geq$ $d\left(e_{m}\right)+2=\delta_{e}$.

[^0]A line graph $L(G)$ of a graph G , is a graph such that each vertex of $L(G)$ represents an edge of G and two vertices of $L(G)$ are adjacent if and only if their corresponding edges are adjacent in G.
A graph invariant, or topological index, is a numeric quantity associated with a graph which characterize the topology of graph and is invariant under graph automorphism. Here we list some vertex-degree-based graph invariants that are of interest for our work.
Historically, the first vertex-degree-based (VDB) structure descriptors were the graph invariants that are nowadays called Zagreb indices. The first Zagreb index, M_{1}, is defined as [13]

$$
M_{1}=M_{1}(G)=\sum_{i=1}^{n} d_{i}^{2}
$$

In [5] it was shown that the first Zagreb index can also be expressed as

$$
M_{1}(G)=\sum_{i \sim j}\left(d_{i}+d_{j}\right) .
$$

It can be easily verified that the following is valid

$$
M_{1}(G)=\sum_{i=1}^{m}\left(d\left(e_{i}\right)+2\right)
$$

that is, it can be considered as edge-degree-based topological index as well. The sum-connectivity index, $S C(G)$, proposed in [28], is defined as

$$
S C(G)=\sum_{i \sim j} \frac{1}{\sqrt{d_{i}+d_{j}}}
$$

Generalization of $S C(G)$ and $M_{1}(G)$ was introduced in [29] and named general sumconnectivity index. It is defined as

$$
\chi_{\alpha}(G)=\sum_{i \sim j}\left(d_{i}+d_{j}\right)^{\alpha}, \quad \chi_{0}(G)=m
$$

where α is an arbitrary real number. In [16] it was shown that $\chi_{\alpha}(G)$ satisfies the expression

$$
\chi_{\alpha}(G)=\sum_{i=1}^{m}\left(d\left(e_{i}\right)+2\right)^{\alpha} .
$$

In what follows me mention some particular indices of this kind that are of interest for the present work.

- For $\alpha=2, \chi_{2}(G)=H M(G)$, the hyper-Zagreb index is obtained [26].
- For $\alpha=1 / 2, \chi_{1 / 2}(G)=\operatorname{RSC}(G)$, the reciprocal sum-connectivity index could be obtained.
- For $\alpha=-1,2 \chi_{-1}(G)=H(G)$, the harmonic index is obtained [7].
- For $\alpha=-2, \chi_{-2}(G)=R H M(G)$, the reciprocal hyper-Zagreb index could be obtained.

One can easily observe that for the hyper-Zagreb index holds

$$
H M(G)=F(G)+2 M_{2}(G),
$$

where

$$
F(G)=\sum_{i=1}^{n} d_{i}^{3} \quad \text { and } \quad M_{2}(G)=\sum_{i \sim j} d_{i} d_{j}
$$

are the forgotten index [9] and the second Zagreb index [12], respectively. Details on the mathematical theory of Zagreb indices can be found in [1, 3, 10, 11, 20, 23].
In this paper we establish relations between $\chi_{\alpha+\beta}(G)$ and $\chi_{\alpha+\beta-1}(G)$, where α and β are arbitrary real numbers, and obtain new bounds for $\chi_{\alpha}(G)$. Also, by the appropriate choice of parameters α and β, a number of new/old inequalities that reveal relationships between above mentioned topological indices are obtained. More on these and some other results of this type can be found, for example, in $[2,4,6,14,16,24,25]$.

2. Preliminaries

In this section, we recall some discrete analytical inequalities for real number sequences that will be used subsequently.
Let $p=\left(p_{i}\right), i=1,2, \ldots, m$, be nonnegative real number sequence and $a=\left(a_{i}\right)$, $i=1,2, \ldots, m$, positive real number sequence. Then for any real α, such that $\alpha \geq 1$ or $\alpha \leq 0$, holds (see e.g. [18])

$$
\begin{equation*}
\left(\sum_{i=1}^{m} p_{i}\right)^{\alpha-1} \sum_{i=1}^{m} p_{i} a_{i}^{\alpha} \geq\left(\sum_{i=1}^{m} p_{i} a_{i}\right)^{\alpha} . \tag{1}
\end{equation*}
$$

If $0 \leq \alpha \leq 1$, then the sense of (1) reverses. Equality holds if and only if either $\alpha=0$, or $\alpha=1$, or for some $t, 1 \leq t \leq m-1$, holds $p_{1}=p_{2}=\cdots=p_{t}=0$, $p_{t+1}=p_{t+2}=\cdots=p_{m}$ and $a_{t+1}=a_{t+2}=\cdots=a_{m}$.
Let $x=\left(x_{i}\right)$ and $a=\left(a_{i}\right), i=1,2, \ldots, m$, be positive real number sequences. In [21] it was proven that for any $r \geq 0$ holds

$$
\begin{equation*}
\sum_{i=1}^{m} \frac{x_{i}^{r+1}}{a_{i}^{r}} \geq \frac{\left(\sum_{i=1}^{m} x_{i}\right)^{r+1}}{\left(\sum_{i=1}^{m} a_{i}\right)^{r}} \tag{2}
\end{equation*}
$$

Equality holds if and only if $r=0$ or $\frac{x_{1}}{a_{1}}=\frac{x_{2}}{a_{2}}=\cdots=\frac{x_{m}}{a_{m}}$.

3. Main results

In the following theorem we establish relationship between $\chi_{\alpha+\beta}(G)$ and $\chi_{\alpha+\beta-1}(G)$, where α and β are arbitrary real numbers.

Theorem 1. Let G be a graph with $m \geq 3$ edges such that $\Delta_{e} \neq \delta_{e}$, and β be an arbitrary real number. Then for any real $\alpha, \alpha \leq 0$ or $\alpha \geq 1$, holds

$$
\begin{align*}
& \delta_{e} \chi_{\alpha+\beta-1}(G)+\frac{\left(\chi_{\beta+1}(G)-\delta_{e} \chi_{\beta}(G)\right)^{\alpha}}{\left(\chi_{\beta}(G)-\delta_{e} \chi_{\beta-1}(G)\right)^{\alpha-1}} \leq \chi_{\alpha+\beta}(G) \\
& \leq \Delta_{e} \chi_{\alpha+\beta-1}(G)-\frac{\left(\Delta_{e} \chi_{\beta}(G)-\chi_{\beta+1}(G)\right)^{\alpha}}{\left(\Delta_{e} \chi_{\beta-1}(G)-\chi_{\beta}(G)\right)^{\alpha-1}} . \tag{3}
\end{align*}
$$

If $0 \leq \alpha \leq 1$, then the opposite inequalities hold. Equalities hold if and only if either $\alpha=0$, $\alpha=1$, or $d\left(e_{i}\right)+2 \in\left\{\delta_{e}, \Delta_{e}\right\}$ for every $i=2,3, \ldots, m-1$.

Proof. For real numbers α and β we have that

$$
\begin{equation*}
\chi_{\alpha+\beta}(G)-\delta_{e} \chi_{\alpha+\beta-1}(G)=\sum_{i=1}^{m}\left(d\left(e_{i}\right)+2-\delta_{e}\right)\left(d\left(e_{i}\right)+2\right)^{\alpha+\beta-1} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta_{e} \chi_{\alpha+\beta-1}(G)-\chi_{\alpha+\beta}(G)=\sum_{i=1}^{m}\left(\Delta_{e}-d\left(e_{i}\right)-2\right)\left(d\left(e_{i}\right)+2\right)^{\alpha+\beta-1} . \tag{5}
\end{equation*}
$$

For $r=\alpha, p_{i}=\left(d\left(e_{i}\right)+2-\delta_{e}\right)\left(d\left(e_{i}\right)+2\right)^{\beta-1}, a_{i}=d\left(e_{i}\right)+2, i=1,2, \ldots, m$, the inequality (1) becomes

$$
\begin{aligned}
& \left(\sum_{i=1}^{m}\left(d\left(e_{i}\right)+2-\delta_{e}\right)\left(d\left(e_{i}\right)+2\right)^{\beta-1}\right)^{\alpha-1} \sum_{i=1}^{m}\left(d\left(e_{i}\right)+2-\delta_{e}\right)\left(d\left(e_{i}\right)+2\right)^{\alpha+\beta-1} \\
& \geq\left(\sum_{i=1}^{m}\left(d\left(e_{i}\right)+2-\delta_{e}\right)\left(d\left(e_{i}\right)+2\right)^{\beta}\right)^{\alpha}
\end{aligned}
$$

Based on the conditions given in the statement of Theorem 1 we have that $\Delta_{e} \neq \delta_{e}$, i.e. $L(G)$ is not a regular graph. Accordingly, from the above follows

$$
\begin{equation*}
\sum_{i=1}^{m}\left(d\left(e_{i}\right)+2-\delta_{e}\right)\left(d\left(e_{i}\right)+2\right)^{\alpha+\beta-1} \geq \frac{\left(\chi_{\beta+1}(G)-\delta_{e} \chi_{\beta}(G)\right)^{\alpha}}{\left(\chi_{\beta}(G)-\delta_{e} \chi_{\beta-1}(G)\right)^{\alpha-1}} \tag{6}
\end{equation*}
$$

From this inequality and (4) we get left side of (3).

For $r=\alpha, p_{i}=\left(\Delta_{e}-d\left(e_{i}\right)-2\right)\left(d\left(e_{i}\right)+2\right)^{\beta-1}, a_{i}=d\left(e_{i}\right)+2, i=1,2, \ldots, m$, the inequality (1) transforms into

$$
\begin{aligned}
& \left(\sum_{i=1}^{m}\left(\Delta_{e}-d\left(e_{i}\right)-2\right)\left(d\left(e_{i}\right)+2\right)^{\beta-1}\right)^{\alpha-1} \sum_{i=1}^{m}\left(\Delta_{e}-d\left(e_{i}\right)-2\right)\left(d\left(e_{i}\right)+2\right)^{\alpha+\beta-1} \\
& \geq\left(\sum_{i=1}^{m}\left(\Delta_{e}-d\left(e_{i}\right)-2\right)\left(d\left(e_{i}\right)+2\right)^{\beta}\right)^{\alpha}
\end{aligned}
$$

Again, from the conditions given in the statement of Theorem 1 we have that $\Delta_{e} \neq \delta_{e}$, that is $L(G)$ is not a regular graph. Therefore we obtain

$$
\begin{equation*}
\sum_{i=1}^{m}\left(\Delta_{e}-d\left(e_{i}\right)-2\right)\left(d\left(e_{i}\right)+2\right)^{\alpha+\beta-1} \geq \frac{\left(\Delta_{e} \chi_{\beta}(G)-\chi_{\beta+1}(G)\right)^{\alpha}}{\left(\Delta_{e} \chi_{\beta-1}(G)-\chi_{\beta}(G)\right)^{\alpha-1}} \tag{7}
\end{equation*}
$$

According to the above and (5) we get right side of (3).
By a similar procedure we get that the opposite inequalities are valid in (3) when $0 \leq \alpha \leq 1$.
Equalities in (6) and (7) hold if and only if either $\alpha=0, \alpha=1$, or for some t, $1 \leq t \leq m-2$, holds $d\left(e_{1}\right)+2=\cdots=d\left(e_{t}\right)+2>d\left(e_{t+1}\right)+2=\cdots=d\left(e_{m-1}\right)+2$. This implies that equalities in (3) are attained if and only if either $\alpha=0, \alpha=1$, or $d\left(e_{i}\right)+2 \in\left\{\delta_{e}, \Delta_{e}\right\}$ for every $i=2,3, \ldots, m-1, \Delta_{e} \neq \delta_{e}$.

In the following corollary of Theorem 1 we determine lower bound for $\chi_{\alpha+\beta}(G)$.
Corollary 1. Let G be a simple connected graph with $m \geq 3$ edges such that $\Delta_{e} \neq \delta_{e}$, and β is an arbitrary real number. Then for any real number $\alpha, \alpha \geq 1$ or $\alpha \leq 0$, holds

$$
\begin{equation*}
\chi_{\alpha+\beta}(G) \geq \frac{1}{\Delta_{e}-\delta_{e}}\left(\frac{\Delta_{e}\left(\chi_{\beta+1}(G)-\delta_{e} \chi_{\beta}(G)\right)^{\alpha}}{\left(\chi_{\beta}(G)-\delta_{e} \chi_{\beta-1}(G)\right)^{\alpha-1}}+\frac{\delta_{e}\left(\Delta_{e} \chi_{\beta}(G)-\chi_{\beta+1}(G)\right)^{\alpha}}{\left(\Delta_{e} \chi_{\beta-1}(G)-\chi_{\beta}(G)\right)^{\alpha-1}}\right) . \tag{8}
\end{equation*}
$$

If $0 \leq \alpha \leq 1$, then the opposite inequality holds. Equality holds if and only if either $\alpha=0$, $\alpha=1$, or $d\left(e_{i}\right)+2 \in\left\{\delta_{e}, \Delta_{e}\right\}$ for every $i=2,3, \ldots, m-1$.

Proof. Let α be an arbitrary real number such that $\alpha \geq 1$ or $\alpha \leq 0$. According to (4) and (5) and inequalities (6) and (7) we have that

$$
\chi_{\alpha+\beta}(G)-\delta_{e} \chi_{\alpha+\beta-1}(G) \geq \frac{\left(\chi_{\beta+1}(G)-\delta_{e} \chi_{\beta}(G)\right)^{\alpha}}{\left(\chi_{\beta}(G)-\delta_{e} \chi_{\beta-1}(G)\right)^{\alpha-1}}
$$

and

$$
\Delta_{e} \chi_{\alpha+\beta-1}(G)-\chi_{\alpha+\beta}(G) \geq \frac{\left(\Delta_{e} \chi_{\beta}(G)-\chi_{\beta+1}(G)\right)^{\alpha}}{\left(\Delta_{e} \chi_{\beta-1}(G)-\chi_{\beta}(G)\right)^{\alpha-1}}
$$

From the previous inequalities follow

$$
\left(\Delta_{e}-\delta_{e}\right) \chi_{\alpha+\beta}(G) \geq \frac{\Delta_{e}\left(\chi_{\beta+1}(G)-\delta_{e} \chi_{\beta}(G)\right)^{\alpha}}{\left(\chi_{\beta}(G)-\delta_{e} \chi_{\beta-1}(G)\right)^{\alpha-1}}+\frac{\delta_{e}\left(\Delta_{e} \chi_{\beta}(G)-\chi_{\beta+1}(G)\right)^{\alpha}}{\left(\Delta_{e} \chi_{\beta-1}(G)-\chi_{\beta}(G)\right)^{\alpha-1}}
$$

Since $\Delta_{e} \neq \delta_{e}$, from the preceding inequality we obtain (8).
In a similar way we prove that opposite inequality holds in (8) when $0 \leq \alpha \leq 1$.
For some particular values of parameters α and β the following corollaries are obtained.

Corollary 2. Let G be a simple connected graph with $m \geq 2$ edges such that $\Delta_{e} \neq \delta_{e}$. Then for any real number $\alpha, \alpha \geq 1$ or $\alpha \leq 0$, holds

$$
\delta_{e} \chi_{\alpha-1}(G)+\frac{\left(M_{1}(G)-m \delta_{e}\right)^{\alpha}}{\left(m-\frac{\delta_{e}}{2} H(G)\right)^{\alpha-1}} \leq \chi_{\alpha}(G) \leq \Delta_{e} \chi_{\alpha-1}(G)-\frac{\left(m \Delta_{e}-M_{1}(G)\right)^{\alpha}}{\left(\frac{\Delta_{e}}{2} H(G)-m\right)^{\alpha-1}}
$$

If $0 \leq \alpha \leq 1$, then the opposite inequalities are valid. Equalities hold if and only if $\alpha=0$, $\alpha=1$, or $d\left(e_{i}\right)+2 \in\left\{\delta_{e}, \Delta_{e}\right\}$ for every $i=2,3, \ldots, m-1$.
For any real number $\alpha, \alpha \geq 2$ or $\alpha \leq 1$, holds

$$
\begin{aligned}
& \delta_{e} \chi_{\alpha-1}(G)+\frac{\left(H M(G)-\delta_{e} M_{1}(G)\right)^{\alpha-1}}{\left(M_{1}(G)-m \delta_{e}\right)^{\alpha-2}} \leq \chi_{\alpha}(G) \\
& \leq \Delta_{e} \chi_{\alpha-1}(G)-\frac{\left(\Delta_{e} M_{1}(G)-H M(G)\right)^{\alpha-1}}{\left(m \Delta_{e}-M_{1}(G)\right)^{\alpha-2}}
\end{aligned}
$$

If $1 \leq \alpha \leq 2$, then the opposite inequalities hold. Equalities hold if and only if $\alpha=1$, or $\alpha=2$, or $d\left(e_{i}\right)+2 \in\left\{\delta_{e}, \Delta_{e}\right\}$ for every $i=2,3, \ldots, m-1$.

Corollary 3. Let G be a simple connected graph with $m \geq 2$ edges such that $\Delta_{e} \neq \delta_{e}$. Then for every real number $\alpha, \alpha \geq 1$ or $\alpha \leq 0$, holds

$$
\chi_{\alpha}(G) \geq \frac{1}{\Delta_{e}-\delta_{e}}\left(\frac{\Delta_{e}\left(M_{1}(G)-m \delta_{e}\right)^{\alpha}}{\left(m-\frac{\delta_{e}}{2} H(G)\right)^{\alpha-1}}+\frac{\delta_{e}\left(m \Delta_{e}-M_{1}(G)\right)^{\alpha}}{\left(\frac{\Delta_{e}}{2} H(G)-m\right)^{\alpha-1}}\right) .
$$

When $0 \leq \alpha \leq 1$, then the opposite inequality holds. Equality holds if and only if either $\alpha=0, \alpha=1$, or $d\left(e_{i}\right)+2 \in\left\{\delta_{e}, \Delta_{e}\right\}$ for every $i=2,3, \ldots, m-1$.
For $\alpha \geq 2$ or $\alpha \leq 1$ we have

$$
\chi_{\alpha}(G) \geq \frac{1}{\Delta_{e}-\delta_{e}}\left(\frac{\Delta_{e}\left(H M(G)-\delta_{e} M_{1}(G)\right)^{\alpha-1}}{\left(M_{1}(G)-m \delta_{e}\right)^{\alpha-2}}+\frac{\delta_{e}\left(\Delta_{e} M_{1}(G)-H M(G)\right)^{\alpha-1}}{\left(m \Delta_{e}-M_{1}(G)\right)^{\alpha-2}}\right) .
$$

When $1 \leq \alpha \leq 2$, then the opposite inequality holds. Equality holds if and only if either $\alpha=1, \alpha=2$, or $d\left(e_{i}\right)+2 \in\left\{\delta_{e}, \Delta_{e}\right\}$ for every $i=2,3, \ldots, m-1$.

Corollary 4. Let G be a simple connected graph with $m \geq 2$ edges. Then for any real number $\alpha \geq 1$ holds

$$
\chi_{\alpha}(G) \geq \delta_{e} \chi_{\alpha-1}(G)+\left(m-\frac{\delta_{e}}{2} H(G)\right)\left(\frac{2 m}{H(G)}\right)^{\alpha} .
$$

Equality is attained if and only if $\alpha=1$ or $L(G)$ is a regular graph. For any real number $\alpha \geq 2$ holds

$$
\chi_{\alpha}(G) \geq \delta_{e} \chi_{\alpha-1}(G)+\left(M_{1}(G)-m \delta_{e}\right)\left(\frac{M_{1}(G)}{m}\right)^{\alpha-1} .
$$

Equality is attained if and only if $\alpha=2$ or $L(G)$ is a regular graph.

Corollary 5. Let G be a simple connected graph with $m \geq 2$ edges. Then

$$
\begin{aligned}
& F(G) \geq \delta_{e} M_{1}(G)+\frac{\left(M_{1}(G)-m \delta_{e}\right)^{2}}{m-\frac{\delta_{e}}{2} H(G)}-2 M_{2}(G) \quad\left(\Delta_{e} \neq \delta_{e}\right), \\
& F(G) \geq \frac{1}{2}\left(\delta_{e} M_{1}(G)+\frac{\left(M_{1}(G)-m \delta_{e}\right)^{2}}{m-\frac{\delta_{e}}{2} H(G)}\right) \quad\left(\Delta_{e} \neq \delta_{e}\right), \\
& F(G) \geq \delta_{e} M_{1}(G)+\left(m-\frac{\delta_{e}}{2} H(G)\right) \frac{4 m^{2}}{H(G)^{2}}-2 M_{2}(G), \\
& F(G) \geq \frac{1}{\Delta_{e}-\delta_{e}}\left(\frac{\Delta_{e}\left(M_{1}(G)-m \delta_{e}\right)^{2}}{m-\frac{\delta_{e}}{2} H(G)}+\frac{\delta_{e}\left(m \Delta_{e}-M_{1}(G)\right)^{2}}{\frac{\Delta_{e}}{2} H(G)-m}\right)-2 M_{2}(G), \\
& F(G) \geq \frac{1}{2\left(\Delta_{e}-\delta_{e}\right)}\left(\frac{\Delta_{e}\left(M_{1}(G)-m \delta_{e}\right)^{2}}{m-\frac{\delta_{e}}{2} H(G)}+\frac{\delta_{e}\left(m \Delta_{e}-M_{1}(G)\right)^{2}}{\frac{\Delta_{e}}{2} H(G)-m}\right), \\
& F(G) \leq \Delta_{e} M_{1}(G)-\frac{\left(m \Delta_{e}-M_{1}(G)\right)^{2}}{\frac{\Delta_{e}}{2} H(G)-m}-2 M_{2}(G), \\
& M_{2}(G) \leq \frac{1}{4}\left(\Delta_{e} M_{1}(G)-\frac{\left(m \Delta_{e}-M_{1}(G)\right)^{2}}{\frac{\Delta_{e}}{2} H(G)-m}\right) .
\end{aligned}
$$

In the next theorem we determine a relation between $\chi_{2 \alpha}(G)$ and $\chi_{\alpha}(G)$.

Theorem 2. Let G be a simple connected graph with $m \geq 3$ edges. Then for any real α holds

$$
m \chi_{2 \alpha}(G)-\chi_{\alpha}(G)^{2} \geq \frac{m}{2}\left(\Delta_{e}^{\alpha}-\delta_{e}^{\alpha}\right)^{2} .
$$

Equality holds if and only if $\alpha=0$ or $\left(d\left(e_{2}\right)+2\right)^{\alpha}=\left(d\left(e_{3}\right)+2\right)^{\alpha}=\cdots=\left(d\left(e_{m-1}\right)+2\right)^{\alpha}=$ $\frac{\Delta_{e}^{\alpha}+\delta_{e}^{\alpha}}{2}$.

Proof. According to the Lagrange's identity (see e.g. [19]) we have that

$$
\begin{aligned}
& m \chi_{2 \alpha}(G)-\chi_{\alpha}(G)^{2}=m \sum_{i=1}^{m}\left(d\left(e_{i}\right)+2\right)^{2 \alpha}-\left(\sum_{i=1}^{m}\left(d\left(e_{i}\right)+2\right)^{\alpha}\right)^{2} \\
& =\sum_{1 \leq i<j \leq m}\left(\left(d\left(e_{i}\right)+2\right)^{\alpha}-\left(d\left(e_{j}\right)+2\right)^{\alpha}\right)^{2} \\
& \geq \sum_{i=2}^{m-1}\left(\left(\Delta_{e}^{\alpha}-\left(d\left(e_{i}\right)+2\right)^{\alpha}\right)^{2}+\left(\left(d\left(e_{i}\right)+2\right)^{\alpha}-\delta_{e}^{\alpha}\right)\right)^{2}+\left(\Delta_{e}^{\alpha}-\delta_{e}^{\alpha}\right)^{2} \\
& \geq \frac{1}{2} \sum_{i=2}^{m-1}\left(\Delta_{e}^{\alpha}-\delta_{e}^{\alpha}\right)^{2}+\left(\Delta_{e}^{\alpha}-\delta_{e}^{\alpha}\right)^{2}=\frac{m}{2}\left(\Delta_{e}^{\alpha}-\delta_{e}^{\alpha}\right)^{2},
\end{aligned}
$$

which completes the proof.

Corollary 6. Let G be a simple connected graph with $m \geq 2$ edges. Then

$$
\begin{align*}
& F(G) \geq \frac{M_{1}(G)^{2}}{m}-2 M_{2}(G)+\frac{1}{2}\left(\Delta_{e}-\delta_{e}\right)^{2}, \tag{9}\\
& \frac{m}{2} H(G)-S C(G)^{2} \geq \frac{m}{2}\left(\frac{1}{\sqrt{\Delta_{e}}}-\frac{1}{\sqrt{\delta_{e}}}\right)^{2}, \tag{10}\\
& m M_{1}(G)-R S C(G)^{2} \geq \frac{m}{2}\left(\sqrt{\Delta_{e}}-\sqrt{\delta_{e}}\right)^{2}, \\
& m R H M(G)-\frac{1}{4} H(G)^{2} \geq \frac{m}{2}\left(\frac{1}{\Delta_{e}}-\frac{1}{\delta_{e}}\right)^{2},
\end{align*}
$$

Remark 1. The inequality (9) was proven in [17]. It is stronger than

$$
F(G) \geq \frac{M_{1}(G)^{2}}{m}-2 M_{2}(G)
$$

which was proven in [9] (see also [8]).
The inequality (10) was proven in [14]. It is stronger than

$$
\begin{equation*}
S C(G) \leq \sqrt{\frac{m H(G)}{2}} \tag{11}
\end{equation*}
$$

proven in [15].
In [30] it was proven that

$$
S C(G) \leq \sqrt{\frac{m R(G)}{2}}
$$

Since $H(G) \leq R(G)$ (see [27]), the inequality (11), and consequently (10), is stronger than the above one.

Since $M_{1}(G) \geq \frac{4 m^{2}}{n}$, according to (9) we have that

$$
F(G)+2 M_{2}(G) \geq \frac{16 m^{3}}{n^{2}}+\frac{1}{2}\left(\Delta_{e}-\delta_{e}\right)^{2},
$$

which is stronger than

$$
F(G)+2 M_{2}(G) \geq \frac{16 m^{3}}{n^{2}}
$$

that was proven in [22].

In the following theorem we establish a relationship between $\chi_{2 \alpha-\beta}(G), \chi_{\alpha}(G)$ and $\chi_{\beta}(G)$, for arbitrary real numbers α and β.

Theorem 3. Let G be a simple connected graph with $m \geq 3$ edges. Then for any real numbers α and β hold

$$
\begin{equation*}
\left(\chi_{2 \alpha-\beta}(G)-\Delta_{e}^{2 \alpha-\beta}-\delta_{e}^{2 \alpha-\beta}\right)\left(\chi_{\beta}(G)-\Delta_{e}^{\beta}-\delta_{e}^{\beta}\right) \geq\left(\chi_{\alpha}(G)-\Delta_{e}^{\alpha}-\delta_{e}^{\alpha}\right)^{2}, \tag{12}
\end{equation*}
$$

with equality if and only if $\alpha=\beta$ or $d\left(e_{2}\right)+2=d\left(e_{3}\right)+2=\cdots=d\left(e_{m-1}\right)+2$.
Proof. The inequality (2) can be considered as

$$
\sum_{i=2}^{m-1} \frac{x_{i}^{r+1}}{a_{i}^{r}} \geq \frac{\left(\sum_{i=2}^{m-1} x_{i}\right)^{r+1}}{\left(\sum_{i=2}^{m-1} a_{i}\right)^{r}}
$$

For $r=1, x_{i}=\left(d\left(e_{i}\right)+2\right)^{\alpha}, a_{i}=\left(d\left(e_{i}\right)+2\right)^{\beta}, i=2,3, \ldots, m-1$, where α and β are arbitrary real numbers, the above inequality becomes

$$
\begin{equation*}
\sum_{i=2}^{m-1} \frac{\left(\left(d\left(e_{i}\right)+2\right)^{\alpha}\right)^{2}}{\left(d\left(e_{i}\right)+2\right)^{\beta}} \geq \frac{\left(\sum_{i=2}^{m-1}\left(d\left(e_{i}\right)+2\right)^{\alpha}\right)^{2}}{\sum_{i=2}^{m-1}\left(d\left(e_{i}\right)+2\right)^{\beta}} \tag{13}
\end{equation*}
$$

that is

$$
\sum_{i=2}^{m-1}\left(d\left(e_{i}\right)+2\right)^{2 \alpha-\beta} \geq \frac{\left(\sum_{i=2}^{m-1}\left(d\left(e_{i}\right)+2\right)^{\alpha}\right)^{2}}{\sum_{i=2}^{m-1}\left(d\left(e_{i}\right)+2\right)^{\beta}}
$$

i.e.

$$
\chi_{2 \alpha-\beta}(G)-\Delta_{e}^{2 \alpha-\beta}-\delta_{e}^{2 \alpha-\beta} \geq \frac{\left(\chi_{\alpha}(G)-\Delta_{e}^{\alpha}-\delta_{e}^{\alpha}\right)^{2}}{\chi_{\beta}(G)-\Delta_{e}^{\beta}-\delta_{e}^{\beta}}
$$

wherefrom (12) is obtained.
Equality in (13) is attained if and only if $\left(d\left(e_{2}\right)+2\right)^{\alpha-\beta}=\left(d\left(e_{3}\right)+2\right)^{\alpha-\beta}=\cdots=$ $\left(d\left(e_{m-1}\right)+2\right)^{\alpha-\beta}$, which implies that equality in (12) holds if and only if $\alpha=\beta$ or $d\left(e_{2}\right)+2=d\left(e_{3}\right)+2=\cdots=d\left(e_{m-1}\right)+2$.

Theorem 4. Let G be a simple connected graph with $m \geq 2$ edges. Then for any real numbers α and β hold

$$
\begin{equation*}
\left(\chi_{2 \alpha-\beta}(G)-\Delta_{e}^{2 \alpha-\beta}\right)\left(\chi_{\beta}(G)-\Delta_{e}^{\beta}\right) \geq\left(\chi_{\alpha}(G)-\Delta_{e}^{\alpha}\right)^{2} . \tag{14}
\end{equation*}
$$

Equality holds if and only if $\alpha=\beta$ or $d\left(e_{2}\right)+2=d\left(e_{3}\right)+2=\cdots=d\left(e_{m}\right)+2=\delta_{e}$.

Proof. The inequality (2) can be considered as

$$
\sum_{i=2}^{m} \frac{x_{i}^{r+1}}{a_{i}^{r}} \geq \frac{\left(\sum_{i=2}^{m} x_{i}\right)^{r+1}}{\left(\sum_{i=2}^{m} a_{i}\right)^{r}}
$$

For $r=1, x_{i}=\left(d\left(e_{i}\right)+2\right)^{\alpha}, a_{i}=\left(d\left(e_{i}\right)+2\right)^{\beta}, i=2,3, \ldots, m$, where α and β are arbitrary real numbers, the above inequality becomes

$$
\begin{equation*}
\sum_{i=2}^{m} \frac{\left(\left(d\left(e_{i}\right)+2\right)^{\alpha}\right)^{2}}{\left(d\left(e_{i}\right)+2\right)^{\beta}} \geq \frac{\left(\sum_{i=2}^{m}\left(d\left(e_{i}\right)+2\right)^{\alpha}\right)^{2}}{\sum_{i=2}^{m}\left(d\left(e_{i}\right)+2\right)^{\beta}} \tag{15}
\end{equation*}
$$

that is

$$
\sum_{i=2}^{m}\left(d\left(e_{i}\right)+2\right)^{2 \alpha-\beta} \geq \frac{\left(\sum_{i=2}^{m}\left(d\left(e_{i}\right)+2\right)^{\alpha}\right)^{2}}{\sum_{i=2}^{m}\left(d\left(e_{i}\right)+2\right)^{\beta}}
$$

i.e.

$$
\chi_{2 \alpha-\beta}(G)-\Delta_{e}^{2 \alpha-\beta} \geq \frac{\left(\chi_{\alpha}(G)-\Delta_{e}^{\alpha}\right)^{2}}{\chi_{\beta}(G)-\Delta_{e}^{\beta}}
$$

from which (14) is obtained.
Equality in (15) is attained if and only if $\left(d\left(e_{1}\right)+2\right)^{\alpha-\beta}=\left(d\left(e_{2}\right)+2\right)^{\alpha-\beta}=\cdots=$ $\left(d\left(e_{m-1}+2\right)^{\alpha-\beta}\right.$, which implies that equality in (14) holds if and only if $\alpha=\beta$ or $d\left(e_{1}\right)+2=d\left(e_{2}\right)+2=\cdots=d\left(e_{m-1}\right)+2$.

Theorem 5. Let G be a simple connected graph with $m \geq 1$ edges. Then for any real numbers α and β hold

$$
\begin{equation*}
\chi_{\alpha}(G) \leq \sqrt{\chi_{\beta}(G) \chi_{2 \alpha-\beta}(G)} . \tag{16}
\end{equation*}
$$

Equality holds if and only if $\alpha=\beta$ or $L(G)$ is regular.

Proof. For $r=1, x_{i}=\left(d\left(e_{i}\right)+2\right)^{\alpha}, a_{i}=\left(d\left(e_{i}\right)+2\right)^{\beta}, i=1,2, \ldots, m$, the inequality (2) transforms into

$$
\begin{equation*}
\sum_{i=1}^{m} \frac{\left(\left(d\left(e_{i}\right)+2\right)^{\alpha}\right)^{2}}{\left(d\left(e_{i}\right)+2\right)^{\beta}} \geq \frac{\left(\sum_{i=1}^{m}\left(d\left(e_{i}\right)+2\right)^{\alpha}\right)^{2}}{\sum_{i=1}^{m}\left(d\left(e_{i}\right)+2\right)^{\beta}} \tag{17}
\end{equation*}
$$

that is

$$
\chi_{2 \alpha-\beta}(G) \geq \frac{\chi_{\alpha}(G)^{2}}{\chi_{\beta}(G)}
$$

from which (16) is obtained.
Equality in (17), and consequently in (16), holds if and only if $\alpha=\beta$ or $d\left(e_{1}\right)+2=$ $d\left(e_{2}\right)+2=\cdots=d\left(e_{m}\right)+2$, that is if and only if $\alpha=\beta$ or $L(G)$ is regular.

Corollary 7. Let G be a simple connected graph with $m \geq 1$ edges. Then for any real α we have

$$
\begin{equation*}
\chi_{\alpha}(G) \leq \sqrt{m \chi_{2 \alpha}(G)} \tag{18}
\end{equation*}
$$

and

$$
\chi_{\alpha}(G) \leq \sqrt{M_{1}(G) \chi_{2 \alpha-1}(G)} .
$$

The inequality (18) was proven in [25].

Acknowledgement

This work was supported by the Serbian Ministry for Education, Science and Technological development.

References

[1] A. Ali, I. Gutman, E. Milovanović, and I. Milovanović, Sum of powers of the degrees of graphs: extremal results and bounds, MATCH Commun. Math. Comput. Chem. 80 (2018), 5-84.
[2] A. Ali, L. Zhong, and I. Gutman, Harmonic index and its generalizations: extremal results and bounds, MATCH Commun. Math. Comput. Chem. 81 (2019), 249-311.
[3] B. Borovićanin, K.C. Das, B. Furtula, and I. Gutman, Bounds for Zagreb indices, MATCH Commun. Math. Comput. Chem 78 (2017), no. 1, 17-100.
[4] K.C. Das, S. Das, and B. Zhou, Sum-connectivity index of a graph, Front. Math. China 11 (2016), no. 1, 47-54.
[5] T. Došlic, B. Furtula, A. Graovac, I. Gutman, S. Moradi, and Z. Yarahmadi, On vertex-degree-based molecular structure descriptors, MATCH Commun. Math. Comput. Chem. 66 (2011), no. 2, 613-626.
[6] C. Elphick and P. Wocjan, Bounds and power means for the general randić and sum-connectivity indices, In: Bounds in Chemical Graph Theory - Mainstreams, I. Gutman, B. Furtula, K.C. Das, E.Milovanović, I.Milovanović, Eds.), Mathematical Chemistry Monographs - MCM 19, Univ. Kragujevac, Kragujevac, 2017, pp. 121-133.
[7] S. Fajtlowicz, On conjectures of graffiti-II, Congr. Numer. 60 (1987), 187-197.
[8] F. Falahati-Nezhad and M. Azari, Bounds on the hyper-Zagreb index, J. Appl. Math. Inform. 34 (2016), no. 3-4, 319-330.
[9] B. Furtula and I. Gutman, A forgotten topological index, J. Math. Chem. 53 (2015), no. 4, 1184-1190.
[10] I. Gutman and K.C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004), no. 1, 83-92.
[11] I. Gutman, E. Milovanović, and I. Milovanović, Beyond the Zagreb indices, AKCE Int. J. Graph Combin. (to appear).
[12] I. Gutman, B. Ruščić, N. Trinajstić, and C.F. Wilcox, Graph theory and molecular orbitals. XII. acyclic polyenes, J. Chem. Phys. 62 (1975), no. 9, 3399-3405.
[13] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total φ electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972), no. 4, 535-538.
[14] M. Matejić, E. Milovanović, and I. Milovanović, On bounds for harmonic topological index, Filomat 32 (2018), no. 1, 311-317.
[15] _, On lower bounds for VDB topological indices of graphs, Appl. Math. Comput. Sci. 3 (2018), no. 1, 5-11.
[16] , Some inequalities for general sum-connectivity index, MATCH Commun. Math. Comput. Chem. 79 (2018), 477-489.
[17] E. Milovanović, I. Milovanović, I. Gutman, and B. Furtula, Some inequalities for general sum-connectivity index, Int. J. Appl. Graph Theory 1 (2017), no. 1, 1-15.
[18] D.S. Mitrinović, J.E. Pečarić, and A.M. Fink, Classical and new inequalities in analysis, Kluwer Academic Publishers, Dordrecht, 1993.
[19] D.S. Mitrinović and P.M. Vasić, Analytic inequalities, Springer Verlag, Berlin-Heidelberg-New York, 1970.
[20] S. Nikolić, G. Kovačević, A. Miličević, and N. Trinajstić, The Zagreb indices 30 years after, Croat. Chem. Acta 76 (2003), no. 2, 113-124.
[21] J. Radon, Über die absolut additiven mengenfunktionen, Wiener Sitzungsber 122 (1913), 1295-1438.
[22] T. Réti and I. Felde, Novel Zagreb indices-based inequalities with particular regard to semiregular and generalized semiregular graphs, MATCH Commun. Math.

Comput. Chem. 76 (2016), 185-206.
[23] J.M. Rodríguez, J.L. Sánchez, and J.M. Sigarreta, CMMSE-on the first general Zagreb index, J. Math. Chem. 56 (2018), no. 7, 1849-1864.
[24] J.M. Rodríguez and J.M. Sigarreta, The harmonic index, In: Bounds in Chemical Graph Theory - Basics, (I. Gutman, B. Furtula, K. C. Das, E. Milovanović, I. Milovanović, Eds.), Mathematical Chemistry Monographs - MCM 19, Univ. Kragujevac, Kragujevac, 2017, pp. 229-281.
[25] _, New results on the harmonic index and its generalizations, MATCH Commun. Math. Comput. Chem. 78 (2017), 387-404.
[26] G.H. Shirdel, H. Rezapour, and A.M. Sayadi, The hyper-Zagreb index of graph operations, Iranian J. Math. Chem. 4 (2013), no. 2, 213-220.
[27] L. Zhong and K. Xu, Inequalities between vertex-degree-based topological indices, MATCH Commun. Math. Comput. Chem. 71 (2014), no. 3, 627-642.
[28] B. Zhou and N. Trinajstić, On a novel connectivity index, J. Math. Chem. 46 (2009), no. 4, 1252-1270.
[29] , On general sum-connectivity index, J. Math. Chem. 47 (2010), no. 1, 210-218.
[30] , Relations between the product-and sum-connectivity indices, Croat. Chem. Acta 85 (2012), no. 3, 363-365.

[^0]: * Corresponding Author

