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1. Introduction and preliminaries

By a graph, we mean a finite, undirected graph with neither loops nor multiple edges.

We denote the vertex set and the edge set of a graph G by V (G) and E(G), respec-

tively. In a graph G, for a subset S ⊆ V (G) the subgraph induced by S is the graph

〈S〉 with vertex set S and edge set {xy ∈ E(G) | x, y ∈ S}. We write Kn for the

complete graph of order n, Km,n for the complete bipartite graph with partite sets of

order m and n, Pn for the path on n vertrices, and Cm for the cycle of length m.

For any vertex x of a graph G, NG(x) denotes the set of all neighbors of x in G,

NG[x] = NG(x) ∪ {x} and the degree of x is deg(x,G) = |NG(x)|. The minimum

and maximum degrees of a graph G are denoted by δ(G) and ∆(G), respectively. For

a subset A ⊆ V (G), let NG[A] = ∪x∈ANG[x]. If e = uv is an edge of a graph G

with deg(u) = 1 and deg(v) > 1, then we call e a pendant edge, u a leaf and v a

support vertex. Let L(G) and S(G) be the sets of all leaves and all support vertices

of a graph G, respectively. The corona cor(G) of a graph G is constructed from G,

where for each vertex v ∈ V (G), a new vertex v′ and a pendant edge vv′ are added.
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For two graphs G1 and G2, the Cartesian product ’G1�G2 is the graph with vertex

set V (G1)×V (G2) and (x1, x2)(y1, y2) ∈ E(G1�G2) if and only if x1y1 ∈ E(G1) and

x2 = y2, or x2y2 ∈ E(G2) and x1 = y1.

Let P be a property of vertex subsets of a graph G and let µ(G) denote the minimum

cardinality of sets with property P. Any set with property P of cardinality µ(G) is

called a µ-set of G.

A vertex in a graph G dominates itself and its neighbors. A set of vertices D in a

graph G is a dominating set if each vertex of G is dominated by some vertex of D.

The domination number γ(G) of G is the minimum cardinality of a dominating set

of G. Cockayne and Hedetniemi [3] defined the domatic number d(G) of a graph G

to be the maximum number of elements in a partition of V (G) into dominating sets.

A dominating set D of G is called an efficient dominating set (an ED-set) of G if

the distance between any two vertices in D is at least three. Not all graphs have

ED-sets. If G has an ED-set, then any ED-set is a γ-set of G [1]. For a comprehensive

introduction to the theory of domination in graphs we refer the reader to Haynes et

al. [10].

The distance dG(u, v) between two vertices u and v in G is the length of a shortest

u− v path or ∞, if no such path exists. The diameter of G, denoted by diam(G), is

the maximum distance between two vertices in G. A u− v path of length dG(u, v) is

called a u − v geodesic. Any geodesic of length diam(G) is called a diametral path.

Two vertices u and v of G are called antipodal if d(u, v) = diam(G). A vertex w is

said to lie on a u − v geodesic P if w is an internal vertex of P . The closed interval

IG[u, v] consists of u, v and all vertices lying on some u − v geodesic of G. For a set

S of vertices, let the interval IG[S] of S be the union of the intervals IG[u, v] over

all pairs of vertices u and v in S. Note that a vertex w belongs to IG[u, v] if and

only if dG(u, v) = dG(u,w) + dG(w, v). A set S ⊆ V (G) is a geodetic set of G if

IG[S] = V (G). Harary et al. [9] define the geodetic number g(G) of a graph G as

the minimum cardinality of a geodetic set. It is NP -complete to decide for a given

chordal or chordal bipartite graph G and a given integer k whether G has a geodetic

set of cardinality at most k ([4]).

Let G be a connected graph and u, v ∈ V (G). The set IeG[u, v] consists of all edges

of G lying in any u − v geodesic in G. If S ⊆ V (G), then the set IeG[S] denotes the

union of all IeG[u, v], where u, v ∈ S. A subset S of V (G) is an edge geodetic set of G if

IeG[S] = E(G). Clearly, any edge geodetic set of a graph is geodetic. The edge geodetic

number of G, denoted by ge(G), is the minimum cardinality of an edge geodetic set

of G (Santhakumaran and John [16]).

A subset S of V (G) is a geodetic dominating set (a GD-set for short) in G if S is

both a geodetic set and a dominating set. The minimum cardinality of a geodetic

dominating set of G is its the geodetic domination number, and is denoted by γg(G).

The study of the geodetic domination was initiated by Escuardo et al. [5] in 2011.

Some other interesting results can also be found in Hansberg and Volkmann [8].

The notion of edge geodetic domination was introduced by Arul Paul Sudhahar et

al. [19]. A set of vertices S of a graph G is an edge geodetic dominating set (an

EGD-set) if it is both an edge geodetic set and a dominating set of G. The minimum
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cardinality among all the EGD sets of G is called the edge geodetic domination number

(EGD-number) and is denoted by γge(G).

The paper is organized as follows. The next section consists of some known results

which will be useful in proving our main results. In Section 3, we give some general

results and sharp bounds for the geodetic domination number and the edge geodetic

domination number. To present our results obtained in Section 4 we need the following

definitions. For every connected n-order graph G we define the geodetic partitionable

number (edge geodetic partitionable number, geodetic domatic number, edge geodetic

domatic number, respectively), denoted gp(G) (gep(G), gd(G), ged(G), respectively),

to be the maximum number of elements in a partition of V (G) into geodetic sets (edge

geodetic sets, geodetic dominating sets, edge geodetic dominating sets, respectively).

In Section 4 we give upper bounds on these four parameters and present some families

of graphs, that achieve these bounds.

2. Known results

A vertex v is an extreme vertex of a graph G if the subgraph induced by its neighbours

is complete. The set of all extreme vertices of G is denoted by Ext(G). A vertex v

in a connected graph G is said to be a semi-extreme vertex if it has a neighbor, say

u, with N [v] ⊆ N [u]. The set of all semi-extreme vertices of G is denoted by Se(G).

Theorem A. Let G be a connected n-order graph, n ≥ 2.

(i) [9] 2 ≤ g(G) ≤ n and g(G) = n if and only if G = Kn.

(ii) [16] 2 ≤ g(G) ≤ ge(G) ≤ n.

(iii) [9] Each geodetic set of G contains all extreme vertices of G.

(iv) [18] Each semi-extreme vertex of G is contained in every edge geodetic set of G. The
equality ge(G) = n holds if and only if all vertices of G are semi-extreme.

(v) [5] 2 ≤ max{g(G), γ(G)} ≤ γg(G) ≤ n.

(vi) [19] 2 ≤ ge(G) ≤ γge(G) ≤ n and γg(G) ≤ γge(G).

(vii) [17] If S = {u, v} is an edge geodetic set of a connected graph G, then u and v are
antipodal vertices of G.

A vertex cover of a graph is a set of vertices such that each edge of the graph is

incident to at least one vertex of the set. The vertex cover number of G, denoted by

α(G), is the minimum cardinality among all vertex covers of G.

Theorem B. [14] Let G be a connected graph with δ(G) ≥ 2. Then γ(G) = α(G) if and
only if G is bipartite such that for every pair x and y of distance 2 of the smaller partite set,
there exist at least two common neighbors of x and y of degree 2.
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A subset X of V (G) is called independent if its vertices are mutually non-adjacent.

The independence number β0(G) is the largest cardinality among all independent sets

of a graph G.

Theorem C. [7] Let G be a graph without isolated vertices. A subset I of V (G) is
independent if and only if V (G)− I is a vertex cover of G. In particular, β0(G) = |V (G)| −
α(G).

Theorem D. Let G be a connected n-order graph, n ≥ 2.

(i) [12] γ(G) ≤ n/2;

(ii) [6, 13] γ(G) = n/2 if and only if either G = C4 or G is the corona cor(H) for any
connected graph H.

Theorem E. [3] If G is a connected n-order graph, then d(G) ≤ δ(G)+1 and d(G)γ(G) ≤
n.

3. Edge geodetic domination

We begin with a result on graphs G with ge(G) = 2.

Proposition 1. If G is a graph with ge(G) = 2, then G is bipartite.

Proof. Let S = {u, v} be a ge-set of G, P a u−v geodesic of length k, and N i(u) the

set of all vertices at distance i from u, i = 0, 1, .., k. Clearly N0(u), N1(u), .., Nk(u)

form a partition of V (G). Since S is an edge geodetic set of G, each N i(u) is inde-

pendent. But then the union of all N i(u) with i even and the union of all N i(u) with

i odd are both independent and form a partition of V (G). Thus, G is bipartite.

Corollary 1. If G is a connected graph having a cycle of odd length, then ge(G) ≥ 3.

A characterization of all connected graphs whose edge geodetic domination number

is 2 follows.

Theorem 1. Let G be a connected n-order graph, n ≥ 2. Then γge(G) = 2 if and only if
either G = K2 or G = K2,n−2, n ≥ 3, or G = (V1, V2;E) is a bipartite graph having vertices
v1 ∈ V1 and v2 ∈ V2 such that N(v1) = V2 − {v2}, N(v2) = V1 − {v1}, and no vertex in
V (G)− {v1, v2} is a leaf.

Proof. Necessity: Let γge(G) = 2 and S = {v1, v2} a γge-set of G. Then G =

(V1, V2;E) is bipartite (by Proposition 1) and d(v1, v2) = diam(G) because of Theo-

rem A(vii). Hence if diam(G) ≤ 2, then clearly either G = K2 or G = K2,n−2, n ≥ 3.

Since {v1, v2} is a dominating set of G, diam(G) ≤ 3. So, let d(v1, v2) = 3. As S is
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an edge geodetic set of G, clearly no vertex in V (G)−S is a leaf, v1 is adjacent to all

vertices in Vi−{v2} and v2 is adjacent to all vertices in Vj−{v1}, where {i, j} = {1, 2}.
Sufficiency: In all three cases {v1, v2} is a γge-set of G. So, γge = 2.

Let µ ∈ {g, ge, γg, γge}. We say that a graph G is a µ-excellent if each its vertex

belongs to some µ-set. An n-crown graph Hn,n is a graph obtained from the complete

bipartite graph Kn,n by removing a perfect matching, n ≥ 3. By the above theorem

we immediately obtain the following characterization of γge-excellent graphs G with

γge(G) = 2.

Corollary 2. All γge-excellent graphs with the edge geodetic domination number equals
2 are K2,K2,2 = C4 and all crown graphs.

Proposition 2. Let G be an n-order connected graph, n ≥ 2.

(i) Let ge(G) < γge(G). Then for each ge-set S of G the set V (G)−S contains the closed
neighborhood of some vertex of G. In particular, ge(G) ≤ min{n− δ(G)− 1, n− 3}.

(ii) γge(G) = n if and only if ge(G) = n.

(iii) If G has k ≥ 1 vertices of degree n−1, then γge(G) = n when k ≥ 2, and γge(G) = n−1
when k = 1.

Proof. (i) If S is a ge-set of G, then since ge(G) < γge(G), S is not a dominating

set of G. Hence there is a vertex xS with N [xS ] ⊆ V (G)−S. Clearly xS is not a leaf

and then γge(G) = |S| ≤ n− deg(xS)− 1 ≤ min{n− δ(G)− 1, n− 3}.
(ii) If ge(G) = n, then γge(G) = n because Theorem A(vi). So let γge(G) = n. Then

by (i), ge(G) ≥ γge(G) and by Theorem A(vi), the equality γge(G) = ge(G) = n

follows.

(iii) Let x be a vertex of degree n− 1 in G. Hence each vertex of V (G)−{x} is semi-

extreme. By Theorem A(iv), (a) exactly one of V (G)− {x} and V (G) is a γge-set of

G, and (b) γge(G) = n when k ≥ 2. So, let x be the only vertex of G of degree n− 1

and xy ∈ E(G). Since deg(y) < n− 1, there is z ∈ V (G)− {x, y} non-adjacent to y.

But then z, x, y is a z − y geodesic that contains xy. Thus γge(G) = n− 1.

Remark 1. The bound in Proposition 2 is tight. Indeed, (a) for the (r + s + 1)-order
graph G obtained from the stars K1,r and K1,s having a leaf in common, where r, s ≥ 2, is
fulfilled δ(G) = 1 and ge(G) = (r+ s+ 1)− 3, and (b) for a graph H, having a cut-vertex x
such that deg(x) = r ≥ 3 and H − x has r components each of which is a complete graph of
order more than r, is fulfilled δ(H) = r and ge(H) = |V (H)| − r − 1 < |V (H)| − 3.

Theorem 2. Let G be a connected n-order graph, n ≥ 2. Then 2−n/2 ≤ ge(G)−γ(G) ≤
γge(G) − γ(G) ≤ n − 1. Let µ ∈ {ge, γge}. Then (a) 2 − n/2 = µ(G) − γ(G) if and only if
G ∈ {P2, P4, C4}, and (b) µ(G) − γ(G) = n − 1 if and only if G has at least 2 vertices of
degree n− 1.
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Proof. By Theorems A and D we know that 2 ≤ µ(G) ≤ n and 1 ≤ γ(G) ≤ n/2.

Hence 2−n/2 ≤ µ(G)−γ(G) ≤ n−1. First note that µ(G)−γ(G) = n−1 if and only

if both µ(G) = n and γ(G) = 1 hold, which by Proposition 2 is equivalent to G has

at least 2 vertices of degree n− 1. Second clearly µ(G)− γ(G) = 2− n/2 if and only

if both µ(G) = 2 and γ(G) = n/2 are valid, which is equivalent to G ∈ {P2, P4, C4},
because of Theorem D(ii).

Let µ, ν ∈ {γ, g, ge, γg, γge}. In a graph G, µ(G) is strongly equal to ν(G), written

µ(G) ≡ ν(G), if each µ-set of G is a ν-set of G and vice versa.

Observation 3. If T is a nontrivial tree, then (a) the set of all leaves in T is the unique
g-set of T and the unique ge-set of T , (b) g(T ) ≡ ge(T ), (c) each γg-set of T is a γge-set of
T and vice versa, and (d) γg(T ) ≡ γge(T ).

Example 1. Let D be a γ-set of Cn. Clearly γge(C4) = 2 = γ(C4) and if n = 3, 5 then
γge(Cn) = 3 > γ(G). Let n ≥ 6. Then the distance between any 2 elements u and v of D is
at most 3 whenever there is no other element of D belonging to the shortest (u − v)-paths
in Cn. Hence each γ-set of Cn is a γge-set when n ≥ 6. Thus, γge(G) ≡ γ(Cn) = dn/3e for
n ≥ 6.

To continue, we need the following obvious observation.

Observation 4. Let G be a connected graph of order n ≥ 2. Then γge(G) = min{|S∪D| :
S is an EG-set and D is a dominating set of G} ≤ γ(G) + ge(G).

A realization result concerning the numbers γ(G), g(G), ge(G), γg(G) and γge(G) fol-

lows.

Theorem 5. Let a, b and c be positive integers. Then there is a connected graph G such
that γ(G) = a, g(G) ≡ ge(G) = b and γg(G) ≡ γge(G) = c if and only if either a, b ≥ 2 and
max{a, b} ≤ c ≤ a+ b, or a = 1 and 2 ≤ b = c.

Proof. ⇒ Denote by Ga,b,c the class of all graphs G with γ(G) = a, g(G) ≡ ge(G) = b

and γg(G) ≡ γge(G) = c. Clearly, a ≥ 1. By Theorem A, max{g(G), γ(G)} ≤ γg(G)

and max{γg(G), ge(G)} ≤ γge(G). Hence for any G ∈ Ga,b,c are fulfilled: a ≥ 1, b ≥ 2

and max{a, b} ≤ c. On the other hand, Observation 4 implies c ≤ a + b. If a ≥ 2,

we are done. If a = 1, then b = c = n − 1 or b = c = n depending of the number of

vertices of degree n− 1 by Proposition 2.

⇐ Case 1: a = 1. Clearly, for the star K1,b with b ≥ 2 we have γ(K1,b) = 1. On the

other hand, the set of all leaves is the unique µ-set of K1,b, for each µ ∈ {g, ge, γg, γge}.
Therefore, K1,b ∈ G1,b,b.
Case 2: 2 ≤ a = b = c. If T is a tree of order a, then obviously cor(T ) ∈ Ga,a,a.
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Case 3: 2 ≤ a < b = c. Let Ha,b be the graph obtained from K1,b by subdividing

a− 1 edges once. Then the vertex of maximum degree and all leaves nonadjacent to

it form a γ-set of Ha,b. Hence Ha,b is in Ga,b,b, a < b, because of Observation 3.

Case 4: 2 ≤ b < a = c. Take a copy of K1,b−1 with the leaves x1, x2, ..., xb−1 and the

support vetex x (if b = 2 then let V (K1,1) = {x, x1}). Subdivide the edges xxi, i =

1, 2, ..., b−1. Obtain the graph Ub,c by taking a copy of the path P : w0, w1, .., w3(a−b),

and joining w0 to x. Since Ub,c is a tree, Ub,c is in some Gp,q,r (by Observation 3).

Since Ub,c has b leaves, q = b. Finally, N(x) ∪ {w3, w6, ..., w3(a−b)} is clearly a γ-set

of G which is also a geodetic dominating set of Ub,c. Thus, p = r = a = c.

Case 5: 2 ≤ min{a, b} and max{a, b} < c ≤ a+ b− 1. Take a copy of K1,c−b with the

leaves y1, y2, ..., yc−b and the support vertex y when c−b ≥ 2, and V (K1,c−b) = {y, y1}
if c − b = 1. Subdivide each edge once. Obtain the graph G5 by taking a copy of

K1,c−1 (with the central vertex x and x1, x2, .., xc−1 as leaves) and adding the edges

xby1, xb+1y2, .., xc−1yc−b. If c < a + b − 1, then let G6 be a graph obtained from G5

by subdividing each of the edges xxc−a+1, xxc−a+2, .., xxb−1 once.

Let us first consider the case c = a + b − 1. Note that S = {y, x1, x2, .., xc−a} with

|S| = b is the unique g-set of G5 and the unique ge-set of G5. Also it is obvious that

each γg-set D of G5 is the union of S and some (c−b)-cardinality set {z1, z2, ..., zc−b},
where zi ∈ {yi, xb−1+i}, i = 1, 2, .., c−b. Clearly, D is also a γge-set of G5. It remains

to note that D′ = N(y) ∪ {x} is the unique γ-set of G5 and |D′| = a.

Second, assume that c < a + b − 1. Now S1 = {y, x1, x2, .., xb−1} with |S1| = b is

the unique g-set of G6 and the unique ge-set of G6. Note also that each γg-set D1 of

G6 has the form S1 ∪ {z1, z2, ..., zc−b}, where zi ∈ {yi, xb−1+i}, i = 1, 2, .., c− b. It is

obvious that D1 is also a γge-set of G6 and |D1| = c. Finally, each γ-set D′′ of G6

has the form N(y)∪ {x} ∪ {uc−a+1, .., ub−1}, where ui ∈ N [xi], i = c− a+ 1, .., b− 1.

Clearly, |D′′| = a.

Case 6: 2 ≤ a, b and a + b = c. Let x and y be antipodal vertices of a copy of a

cycle C6. Add new vertices x1, x2, ..., xb−1 and join each of them to the vertex x to

obtain the graph H. Define the graph G as obtained from H by taking a copy of the

path on 3(a− 2) + 1 vertices y0, y1, ..., y3(a−2) and joining y0 to the vertex y. Clearly,

(a) the set A = {x, y, y2, y5, ..., y3(a−2)−1} is the unique γ-set of G and |A| = a, (b)

the set B = {x1, x2, ..., xb−1, y3(a−2)} has b elements and it is the unique g-set of G

and the unique ge-set of G. Let C be a γg-set of G. Then, it contains all vertices

in B, necessarily. On the other hand, it is easy to observe that such a γg-set must

have at least a vertices of G − C in order to be a dominating set in G. Therefore,

|C| ≥ a+ b = c. Moreover, S2 = B ∪ {x, y} ∪∪a−3i=0 {y3i} if a ≥ 3, and S2 = B ∪ {x, y}
if a = 2 is a geodetic dominating set in G of cardinality c. So, γg(G) = c. Finally, it

is obvious that C is an EGD-set of G as well, which implies that γg(G) ≡ γge(G).

Theorem 5 shows that the bound in Observation 4 is attainable.

Observation 6. Let G be a connected n-order graph, n ≥ 2, S an edge geodetic set of
G and F a dominating set of G − N [S]. Then S ∪ F is an EGD-set of G. In particular,
γge(G) ≤ ge(G) + γ(G−N [S]).
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Remark 2. Clearly {x1, xn} is the unique ge-set of Pn : x1, x2, .., xn and if 2 ≤ n ≤ 4
then {x1, xn} is the unique γge-set of Pn. Let n ≥ 5 and S be a γge-set of Pn. Then we can
choose S so that x2, xn−1 6∈ S. Hence S−{x1, xn} is a γ-set of Pn−{x1, x2, xn−1, xn}. Thus
γge(Pn) = ge(Pn) + γ(Pn − {x1, x2, xn−1, xn}), which shows that the bound in Observation
6 is attainable and in addition γge(Pn) = 2 + d(n− 4)/3e = d(n+ 2)/3e.

In the next theorem we give some conditions under which ge(G) ≤ α(G) is valid for

a graph G.

Theorem 7. Let G be an n-order connected graph, n ≥ 2.

(i) If F ( V (G) is a vertex cover of G which contains all extreme vertices of G, then F
is a geodetic dominating set of G.

(ii) If G has no extreme vertices, then (a) each vertex cover of G is an GD-set of G and
(b) γg(G) ≤ α(G) = n− β0(G).

(iii) If U is a vertex cover of G which contains all semi-extreme vertices of G, then U is
an EGD-set of G.

(iv) If G has no semi-extreme vertices then (a) each vertex cover of G is an EGD-set of G
and (b) γge(G) ≤ α(G) = n− β0(G).

Proof. (i) By Theorem C, V (G) − F is independent. As F contains all extreme

vertices of G, each vertex x in V (G)−F has 2 nonadjacent neighbors both belonging

in F , say they are yx and zx. But then F is a dominating set and yx, x, zx is geodesic.

This shows that F is a geodetic dominating set of G.

(ii) The required immediately follows by (i) and Theorem C.

(iii) The set V (G)−U is independent because of Theorem C. Hence U is a dominating

set of G. Let xy be an arbitrary edge of G with x ∈ U and y ∈ V (G) − U . Since

all semi-extreme vertices are in U , the vertex y has a neighbor, say zy ∈ U , which is

nonadjacent to x. Since x, y, zy is geodetic, U is an edge geodetic dominating set of

G.

(iv) Immediately by (iii) and Theorem C.

Corollary 3. Let G be a connected n-order triangle-free graph with δ(G) ≥ 2. Then each
vertex cover of G is an EGD-set of G. In particular, γge(G) ≤ α(G) = n− β0(G).

Corollary 4. Let G = (X,Y ;E) be a connected bipartite graph. Then both X ∪ L(G)
and Y ∪ L(G) are edge geodetic dominating sets of G. In particular, if δ(G) ≥ 2 then
γge(G) ≤ min{|X|, |Y |}.

Two edges in a graph G are independent if they have no a common endpoint. A

matching in G is a set of (pairwise) independent edges. A maximal matching is a

matching M of a graph G with the property that if any edge not in M is added to

M , it is no longer a matching.
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Corollary 5. Let G be a triangle-free graph with minimum degree δ(G) ≥ 2. Then
γge(G) ≤ 2 min{|M | |M is a maximal matching of G}.

Proof. Let M be an arbitrary maximal matching of a graph G. The maximality

of M shows that V (G) − V (M) is an independent set, where V (M) is the set of all

vertices incident with an edge of M . By Theorem C, V (M) is a vertex cover of G

and the required follows immediately by Corollary 3.

The girth of a graph G, denoted by girth(G), is the length of a shortest cycle contained

in G.

Theorem 8. Let G be a connected graph with δ(G) ≥ 2 and girth at least 6. Then
ge(G) ≤ γge(G) ≡ γ(G) < α(G).

Proof. Let D be an arbitrary minimum dominating set of G. Suppose that D is not

edge geodetic. Then there is an edge e = xy, with x 6∈ D, which lies in no shortest

path connecting two vertices of D. Since G has no leaves, x has at least one more

neighbor, say z. Clearly, yz 6∈ E(G) and at most one of y and z is in D.

Case 1. y ∈ D. Hence z 6∈ D and there is a vertex t ∈ D − {y} which is adjacent to

z. Since the girth of G is at lest 6, the path y, x, z, t is a y − t geodesic and y, t ∈ D.

But this contradicts the choice of e = xy.

Case 2. y 6∈ D. Then there are different u, v ∈ D such that ux, vy ∈ E(G). As

G has girth at lest 6, the path u, x, y, v is a u − v geodesic and u, v ∈ D. Again a

contradiction.

Thus D is an EGD-set of cardinality γ(G). Since D was chosen arbitrarily, and

γge(G) ≥ γ(G), we immediately obtain γge(G) ≡ γ(G). Finally, Theorem B and

girth(G) ≥ 6 imply γ(G) 6= α(G).

A graph G is a geodetic graph if for every pair of its vertices there is a unique path

of minimum length between them [12]. The concept of geodetic graph is a natural

generalization of a tree. A subgraph H of a graph G is called an isometric subgraph

if for every two vertices of H, the distance between them in G equals the distance in

H. Notice that an isometric subgraph is an induced subgraph.

Theorem 9. Let G be a geodetic graph and H its isometric subgraph with no isolated
vertices. Let F be an edge geodetic set of H. Then all the following hold.

(i) S = (V (G)− V (H)) ∪ F is an edge geodetic set of G. If F is a dominating set of H,
then S is an edge geodetic dominating set of G.

(ii) ge(G) ≤ |V (G)| − |V (H)|+ ge(H) and γge(G) ≤ |V (G)| − |V (H)|+ γge(H).

Proof. (i) Clearly, to prove that S = (V (G)− V (H)) ∪ F is an edge geodetic set of

G, it is sufficient to show that each edge of G with one end in V (H−F ) and the other

end in G−V (H) belongs to some a−b geodesic, where a, b ∈ S. So, let v′ ∈ V (H)−F
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be adjacent to x ∈ V (G)−V (H). Let P : v0, v1, .., vd be a v0− vd geodesic in H, and

hence in G, with v′ = vi ∈ V (P ) and V (P ) ∩ F = {v0, vd}. Assume that neither the

path P1 : v0, v1, .., vi = v′, x nor the path P2 : x, v′ = vi, vi+1, .., vd is geodesic in G.

Let Q1 : u0 = v0, u1, .., uk = x and Q2 : x = w0, w1, .., wl−1, wl = vd be geodesics in G.

Then Q1.Q2 : u0 = v0, u1, .., uk = x = w0, w1, .., wl−1, wl = vd is a v0 − vd walk in G

with length |E(Q1.Q2)| = |E(Q1)|+ |E(Q2)| ≤ (E(P1)|−1)+(|E(P2)|−1) = |E(P )|.
Since P is v0 − vd geodesic, Q1.Q2 is also v0 − vd geodesic. Since V (P ) 6= V (Q1.Q2)

and G is geodetic, we arrive at a contradiction. Hence at least one of P1 and P2 is

geodesic in G. Thus, S is an edge geodetic set of G. The rest is obvious.

(ii) Let µ ∈ {ge, γge}. Choose F to be a µ-set of H. Then by (i) we immediately

obtain µ(G) ≤ |V (G)| − |V (H)|+ µ(H).

Corollary 6. Let G be an n-order geodetic graph, n ≥ 2, with diameter d. Then
γge(G) ≤ n− b2d/3c and ([16]) ge(G) ≤ n− d+ 1.

Proof. Let H be any diametral path in G. Clearly H is an isometric subgraph of

G. Applying Theorem 9 to G and H we obtain µ(G) ≤ n − (d + 1) + µ(H), where

µ ∈ {ge, γge}. But ge(H) = 2 and γge(H) = d(d+ 3)/3e (by Remark 2). Thus, the

result immediately follows.

Theorem 10. Let G be a connected graph, γ(G) ≥ 2, D an ED-set of G and let
G − D contain no semi-extreme vertices. Then D is a γg-set of G, γ(G) = γg(G) and
IeG[D] ⊇ E(G)− {xy ∈ E(G) | x, y ∈ N(d) for some d ∈ D}. In particular, if no element of
D belongs to a triangle, then D is a γge-set of G and γ(G) = γge(G).

Proof. Choose x ∈ V (G) − D arbitrarily. Since D is an ED-set, x has exactly

one neighbor in D, say yx. Since x is not semi-extreme, choose arbitrarily z ∈
N(x) − N(yx). Denote by t the unique neighbor of z in D. Then yx, x, z, t is a

geodesic in G. Hence D is a geodetic set and as z was chosen arbitrarily, IeG[D] ⊇
E(G) − {xy ∈ E(G) | x, y ∈ N(d) for some d ∈ D}. Finally, if no element of D

belongs to a triangle, then IeG[D] ⊇ E(G) implies D is an EGD-set of G.

The next result follows immediately by the above theorem.

Corollary 7. Let G be a connected graph without semi-extreme vertices. If all γ-sets
of G are efficient dominating, then (a) γ(G) ≡ γg(G), and (b) if G has no triangles, then
γ(G) ≡ γg(G) ≡ γge(G).

4. Vertex partitions

Here we present some initial results on the parameters gd, ged, gp, gep.

Proposition 3. Let G be a connected n-order graph, n ≥ 2. Then
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(i) ged(G) ≤ gd(G) ≤ min{gp(G), d(G)} ≤ δ(G) + 1 and ged(G) ≤ gep(G) ≤ gp(G).

(ii) ged(G)γ(G) ≤ gd(G)γ(G) ≤ n, gp(G)g(G) ≤ n and gep(G)ge(G) ≤ n.

Proof. (i) Denote by S (G) (Se(G), D(G), S D(G), SeD(G), respectively) the

family of all geodetic sets of G (the family of all EG-sets of G, the family of all

dominating sets of G, the family of all GD-sets of G, the family of all EGD-sets of G,

respectively). Clearly,

S (G) ⊇ Se(G) and S D(G) = S (G) ∩D(G) ⊇ Se(G) ∩D(G) = SeD(G),

which implies ged(G) ≤ gd(G) ≤ gp(G), ged(G) ≤ gd(G) ≤ d(G) and ged(G) ≤
gep(G) ≤ gp(G). The rest immediately follows by Theorem E.

(ii) Let P = [U1, U2, .., Uk] be a partition of V (G) into geodetic sets, or into EG-sets,

or into GD-sets, or into EGD-sets. Then n = |U1| + |U2| + ... + |Uk| ≥ kmin{|Ur| |
1 ≤ r ≤ k}, which implies the required inequality.

The next example shows that there is a graph G for which all inequalities in Propo-

sition 3 become equalities.

Example 2. Let µ ∈ {gp, gep, d, gd, ged} and consider a crown graph Hn,n, n ≥ 3, with
V (Hn,n) = {1, 2, .., n, 1′, 2′, .., n′} and E(Hn,n) = {ij′ | i 6= j}. Clearly, all ν-sets of Hn.n are
Si = {i, i′}, i = 1, 2, .., n, where ν ∈ {γ, g, ge, γg, γge}. Hence ν(Hn,n) = 2 and since all Si

form a partition of V (Hn,n), µ(Hn,n) = n = δ(Hn,n) + 1 and µ(Hn,n)ν(Hn,n) = |V (Hn,n)|.

Let us consider the Cartesian product Cp�Cq of cycles as a p × q array of ver-

tices {xi,j | 0 ≤ i ≤ p − 1 and 0 ≤ j ≤ q − 1}, with an adjacency N(xij) =

{xi,j−1, xi,j+1, xi−1,j , xi+1,j}, where the first subscript is taken modulo p and the

second subscript is taken modulo q. We let x ≡z y mean x ≡ y (mod z).

Example 3. Note that diam(C2m�C2n) = m + n, xi,j and xi+m,j+n are antipodal,
g(C2m�C2n) = 2 and all g-sets of C2m�C2n are Xi,j = {xi,j , xi+m,j+n} ([2]). It is easy to see
that each Xi,j is also a ge-set of C2m�C2n. Clearly, all Xi,j form a partition of V (C2m�C2n).
Therefore gp(C2m�C2n) = gep(C2m�C2n) = 2mn and gep(C2m�C2n)ge(C2m�C2n) =
gp(C2m�C2n)g(C2m�C2n) = |V (C2m�C2n)|.

Example 4. Here we consider the graph C4�Cn, n ≥ 4. It is known that
γ(C4�Cn) = n ([11]). Define the sets Di = {xi,j | j ≡2 0} ∪ {xi+2,j | j ≡2 1},
i = 0, 1, 2, 3. It is easy to see that all these sets are EGD-sets of cardinality n. Hence
n = γ(C4�Cn) = γg(C4�Cn) = γge(C4�Cn). Since D0, D1, D2, D3 form a partition of
V (G), d(C4�Cn) = gd(C4�Cn) = ged(C4�Cn) = 4. Therefore d(C4�Cn)γ(C4�Cn) =
gd(C4�Cn)γg(C4�Cn) = ged(C4�Cn)γge(C4�Cn) = |V (C4�Cn)|.

An efficient domination partition (or an ED-partition) of a graph G is a partition

of V (G) into ED-sets. A graph G is said to be an efficient domination partitionable

graph (or an EDP-graph) if G has an ED-partition.
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Theorem 11. [15] Let G be a graph of order n. Then the following assertions are
equivalent.

(i) G is an EDP-graph.

(ii) G is regular and d(G) = δ(G) + 1.

(iii) n = γ(G)(∆(G) + 1) and n = d(G)γ(G).

If G is an EDP-graph, then each its γ-set is efficient dominating.

Theorem 12. Let G be an n-order connected EDP-graph without semi-extreme vertices,
n ≥ 3.

(i) Then γ(G) ≡ γg(G) and d(G) = gd(G).

(ii) If G has no triangles, then γ(G) ≡ γg(G) ≡ γge(G) and d(G) = gd(G) = ged(G).

Proof. By Theorem 11, all γ-sets of G are efficient dominating. Now Corollary 7

immediately implies γ(G) ≡ γg(G) and if G has no triangles then γ(G) ≡ γg(G) ≡
γge(G). Since G is an EDP-graph, d(G) = gd(G) and if there is no triangles in G,

d(G) = gd(G) = ged(G).

Denote by Zn = {0, 1, ..., n − 1} the additive group of order n. The generalized

Petersen graph P (n, k), where n ≥ 3 and k ∈ Zn−{0}, is the graph on the vertex set

{xi, yi | i ∈ Zn} with adjacencies xixi+1, xiyi, and yiyi+k for all i.

Example 5. If n ≡4 0 and k is odd then γ(P (n, k)) ≡ γg(P (n, k)) ≡ γge(P (n, k)) and
d(P (n, k)) = gd(P (n, k)) = ged(P (n, k)).

Proof. A graph P (n, k) is bipartite if and only if n is even and k is odd ([1]), and

it is an EDP-graph if and only if n ≡4 0 and k is odd ([15]). Now the required

immediately follows by Theorem 12.

Let S be a subset of Zn such that 0 6∈ S and x ∈ S implies −x ∈ S. The circulant

graph with distance set S is the graph C(n;S) with vertex set Zn and vertex x is

adjacent to vertex y if and only if x − y ∈ S. It is clear from the definition that

C(n;S) is vertex-transitive and regular of degree |S|.

Example 6. Let G = C(n = (2k+ 1)t; {1, .., k}∪ {n− 1, ..., n− k}), where k, t ≥ 1. Then
G is an EDP-graph, γ(G) = t and G has only one ED-partition ([15]). By Theorem 12,
γ(G) ≡ γg(G) and d(G) = gd(G).

Example 7. Let G = C(n; {±1,±s}) where 2 ≤ s ≤ n − 2, s 6= n/2, s ≡5 ±2 and 5|n.
Then G is an EDP-graph, γ(G) = n/5 and G has only one ED-partition ([15]). By Theorem
12, γ(G) ≡ γg(G) and d(G) = gd(G).
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Example 8. Let G = C5�C5k, k ≥ 1. Then G is an EDP -graph, γ(G) ≡ γg(G) ≡ γge(G)
and d(G) = gd(G) = ged(G).

Proof. Define the sets Di as the union of {xi,j | j ≡5 0}, {x1+i,j | j ≡5 3}, {x2+i,j |
j ≡5 1}, {x3+i,j | j ≡5 4}, and {x4+i,j | j ≡5 2}, i = 0, 1..., 4. Clearly, all these

sets are efficient dominating and they form an ED-partition of G. Thus G is an

EDP-graph with γ(G) = 5k (the fact that γ(G) = 5k is known, see [11]). Since G

has no triangles, by Theorem 12 we immediately have γ(G) ≡ γg(G) ≡ γge(G) and

d(G) = gd(G) = ged(G).

5. Problems

We conclude the paper by two problems.

Problem 1. Let G be a graph and µ ∈ {gd, ged, gp, gep}. Find a nontrivial characteriza-
tion of graphs with µ(G) ≤ 2.

Problem 2. Let G be an n-order graph and ν ∈ {g, ge, γg, γge}. Find results on ν-
excellent graphs.
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