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Abstract: A Roman dominating function on a digraph D with vertex set V (D) is

a labeling f : V (D) → {0, 1, 2} such that every vertex with label 0 has an in-neighbor
with label 2. A set {f1, f2, . . . , fd} of Roman dominating functions on D with the

property that
∑d

i=1 fi(v) ≤ 2 for each v ∈ V (D), is called a Roman dominating family
(of functions) on D. The maximum number of functions in a Roman dominating family

on D is the Roman domatic number of D, denoted by dR(D). In this note, we study the

Roman domatic number in digraphs, and we present some sharp bounds for dR(D).
In addition, we determine the Roman domatic number of some digraphs. Some of

our results are extensions of well-known properties of the Roman domatic number of

undirected graphs.
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man domatic number
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1. Introduction

In this paper, D is a simple digraph with vertex set V = V (D) and arc set A = A(D).

The order |V | of D is denoted by n = n(D). We write d+D(v) = d+(v) for the

out-degree of a vertex v and d−D(v) = d−(v) for its in-degree. The minimum and

maximum in-degree and minimum and maximum out-degree of D are denoted by

δ− = δ−(D), ∆− = ∆−(D), δ+ = δ+(D) and ∆+ = ∆+(D), respectively. If uv is an

arc of D, then we also write u→ v, and we say that v is an out-neighbor of u and u is

an in-neighbor of v. For a vertex v of a digraph D, we denote the set of in-neighbors

and out-neighbors of v by N−D (v) = N−(v) and N+
D (v) = N+(v), respectively. In

addition, N−[v] = N−(v) ∪ {v} and N+[v] = N+(v) ∪ {v}. If X ⊂ V (D), then

N+
D [X] = N+[X] =

⋃
v∈X

N+[v].
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We write K∗n for the complete digraph of order n. An oriented cycle in a digraph is

also called a cycle. For notation and graph theory terminology in general we follow

[4].

A subset S ⊆ V (D) is a dominating set if N+[S] = V (D). The domination number

γ(D) is the minimum cardinality of a dominating set of D. The domination number

for digraphs was introduced by Lee [8]. A domatic partition is a partition of V (D)

into dominating sets, and the domatic number d(D) is the largest number of sets in

a domatic partition.

A Roman dominating function (RDF) on a digraph D is defined in [7, 12] as a function

f : V (D) → {0, 1, 2} satisfying the condition that every vertex v with f(v) = 0 has

an in-neighbor u with f(u) = 2. The weight of an RDF f is the value ω(f) =∑
v∈V (D) f(v). The Roman domination number of a digraph D, denoted by γR(D),

is the minimum taken over the weights of all Roman dominating functions on D. A

γR(D)-function is a Roman dominating function on D with weight γR(D). A Roman

dominating function f : V → {0, 1, 2} can be represented by the ordered partition

(V0, V1, V2) (or (V f
0 , V

f
1 , V

f
2 ) to refer to f) of V (D), where Vi = {v ∈ V (D) : f(v) = i}.

In this representation, the weight of f is ω(f) = |V1| + 2|V2|. Since V f
1 ∪ V

f
2 is a

dominating set when f is an RDF, and since placing weight 2 at the vertices of a

dominating set yields an RDF, we observe that

γ(D) ≤ γR(D) ≤ 2γ(D).

A set {f1, f2, . . . , fd} of distinct Roman dominating functions on D with∑d
i=1 fi(v) ≤ 2 for each v ∈ V (D), is called in [14] a Roman dominating fam-

ily (of functions) on D. The maximum number of functions in a Roman dominating

family (RD family) on D is the Roman domatic number of D, denoted by dR(D).

The Roman domatic number is well-defined and dR(D) ≥ 1 for all digraphs D since

the set consisting of any RDF forms an RD family on D (see [14]).

Our purpose in this paper is to improve some results given in [14], and to determine

the Roman domatic number of some classes of digraphs. Some of our results are

extensions of well-known properties of the Roman domatic number dR(G) of graphs G.

The following known results are interesting.

Theorem 1 ([14]). If D is a digraph of order n, then γR(D) · dR(D) ≤ 2n.

Theorem 2 ([14]). If D is a digraph of order n ≥ 2, then γR(D) + dR(D) ≤ n+ 2.

2. Roman domatic number of digraphs

The following upper bound on the Roman domatic number can be found in [14].
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Theorem 3. For every digraph D,

dR(D) ≤ δ−(D) + 2

and this bound is sharp.

We will prove the following extension of Theorem 3.

Theorem 4. For every digraph D,

dR(D) ≤ δ−(D) + 2.

Moreover, if dR(D) = δ−(D) + 2, then the set of vertices of minimum in-degree is an inde-
pendent set.

Proof. If dR(D) ≤ 2, then the bound is immediate. Let now dR(D) ≥ 3 and let

{f1, f2, . . . , fd} be an RD family on D such that d = dR(D). Assume that v is a

vertex of minimum in-degree δ−(D). Since the equality
∑

x∈N−[v] fi(x) = 1 holds for

at most two indices i ∈ {1, 2, . . . , d}, we have

2d− 2 ≤
d∑

i=1

∑
x∈N−[v]

fi(x) =
∑

x∈N−[v]

d∑
i=1

fi(x) ≤
∑

x∈N−[v]

2 = 2(δ−(D) + 1).

This implies the desired bound dR(D) ≤ δ−(D)+2. Moreover, if dR(D) = δ−(D)+2,

then the following holds for every vertex v of minimum in-degree.

(i) There exist precisely two indices j, k ∈ {1, 2, . . . , d} such that∑
x∈N−[v]

fj(x) =
∑

x∈N−[v]

fk(x) = 1;

(ii) For every index i ∈ {1, 2, . . . , d} \ {j, k}:
∑

x∈N−[v] fi(x) = 2;

(iii) For every vertex x ∈ N−[v] and every index i ∈ {1, 2, . . . , d}:
∑d

i=1 fi(x) = 2.

In particular, (i) implies that fj(v) = fk(v) = 1 and fj(x) = fk(x) = 0 for every

x ∈ N−(v), (ii) implies that for every index i ∈ {1, 2, . . . , d} \ {j, k} there exists a

unique vertex xi ∈ N−(v) such that fi(xi) = 2, and (iii) implies that fi(y) = 0 for

every vertex xi 6= y ∈ N−[v]. This is impossible if D contains two adjacent vertices

of minimum in-degree.

The complement D of a digraph D is the digraph with vertex set V (D) such that

for any two distinct vertices u, v the arc uv belongs to D if and only if uv does not

belong to D. A digraph D is in-regular when δ−(D) = ∆−(D) and out-regular when

δ+(D) = ∆+(D). Xie, Hao and Wei [14] proved the following Nordhaus-Gaddum

type inequality.
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Theorem 5. If D is a digraph of order n ≥ 2, then

dR(D) + dR(D) ≤ n+ ε

with ε = 1 when D is out-regular, ε = 2 when D is not in-regular and ε = 3 otherwise.

As an application of Theorem 4, we shall prove the following improvement of Theorem

5

Theorem 6. If D is a digraph of order n, then

dR(D) + dR(D) ≤ n+ 1. (1)

Proof. If, without loss of generality, D = K∗n, then dR(D) = n and dR(D) = 1 and

the inequality holds. So assume that D 6= K∗n and D 6= K∗n.

If D and D contain adjacent vertices of minimum in-degree, then let x be a vertex

such that d−D(x) = δ−(D). By Theorem 4, it follows that

dR(D) + dR(D) ≤ (δ−(D) + 1) + (δ−(D) + 1) ≤ d−D(x) + d−
D

(x) + 2 = n+ 1.

If, without loss of generality, D contains adjacent vertices of minimum in-degree and

D does not contain adjacent vertices of minimum in-degree, then D is not in-regular

and thus δ−(D) < ∆−(D). Let x and y be two vertices such that d−D(x) = δ−(D)

and d−D(y) = ∆−(D). Using Theorem 3, we obtain

dR(D) + dR(D) ≤ (δ−(D) + 2) + (δ−(D) + 1) ≤ d−D(x) + d−
D

(y) + 3

< d−D(y) + d−
D

(y) + 3 = n+ 2

and thus dR(D) + dR(D) ≤ n+ 1.

It remains to check the case that neither D nor D contain adjacent vertices of min-

imum in-degree. Then both digraphs are not in-regular. First we assume that

δ−(D) ≤ ∆−(D) − 2 or δ−(D) ≤ ∆−(D) − 2, say δ−(D) ≤ ∆−(D) − 2. Then

let x and y be two vertices such that d−D(x) = δ−(D) and d−D(y) = ∆−(D). Again by

Theorem 4, it follows that

dR(D) + dR(D) ≤ (δ−(D) + 2) + (δ−(D) + 2) ≤ d−D(x) + d−
D

(y) + 4

≤ d−D(y) + d−
D

(y) + 2 = n+ 1.

So assume that δ−(D) = ∆−(D)− 1 and δ−(D) = ∆−(D)− 1. If dR(D) = δ−(D) + 2

and dR(D) = δ−(D) + 2, then let A = {v : d−D(v) = δ−(D)} and B = {v : d−
D

(v) =

δ−(D)}. Note that A∪B = V (D). Since A is independent in D, it follows that D[A]
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is complete. Likewise, B is independent in D and D[B] is complete. Let d = dR(D)

and {f1, f2, . . . , fd} be an RD family on D. Note that fi(a) ≤ 1 for every vertex

a ∈ A and thus, fi(b) = 2 for at least one vertex b ∈ B for every index i. It

follows that d ≤ |B| ≤ δ−(D) + 1, a contradiction. Hence, without loss of generality,

dR(D) ≤ δ−(D) + 1, and thus

dR(D) + dR(D) ≤ (δ−(D) + 1) + (δ−(D) + 2) ≤ d−D(x) + d−
D

(y) + 3

≤ d−D(y) + d−
D

(y) + 2 = n+ 1.

This completes the proof.

If D is isomorphic to the complete graph K∗n, then dR(D) = n and dR(D) = 1 and

therefore dR(D) + dR(D) = n+ 1. This example demonstrates that the bound (1) is

sharp.

For out-regular graphs, the following upper bound on the Roman domatic number is

valid (see [14]).

Theorem 7. If D is a δ-out-regular digraph of order n = p(δ+1)+ r with integers p ≥ 1
and 0 ≤ r ≤ δ, then

dR(D) ≤ δ + ε (2)

with ε = 1 when δ = 0 or r = 0 or 2r = δ + 1 and ε = 0 otherwise.

Let q ≥ 4 be an integer, and let K∗q,q be the complete bipartite digraph with the

partite sets {u1, u2, . . . , uq} and {v1, v2, . . . , vq}. Define the RDFs f1, f2, . . . , fq by

fi(ui) = fi(vi) = 2 and fi(uj) = fi(vj) = 0 for j 6= i and 1 ≤ i, j ≤ q. Because of∑q
i=1 fi(x) = 2 for each vertex x in K∗q,q, the set {f1, f2, . . . , fq} is an RD family on

K∗q,q. Thus dR(K∗q,q) ≥ q and therefore Theorem 7 implies that dR(K∗q,q) = q. This

example demonstrates that Theorem 7 is sharp.

If D is a digraph, then we denote by D−1 the digraph obtained by reversing all arcs

of D. A digraph without cycles of length 2 is called an oriented graph. An oriented

graph D is a tournament when either xy ∈ A(D) or yx ∈ A(D) for each pair of

distinct vertices x, y ∈ V (D).

For regular tournaments the following upper bound is valid.

Theorem 8. If D is a δ-regular tournament of order n ≥ 3, then

dR(D) + dR(D
−1) ≤ n− 1.

Proof. Since D is a δ-regular tournament, D−1 is also a δ-regular tournament of

order n = 2δ + 1. If δ ≥ 2, then Theorem 7 leads to

dR(D) + dR(D−1) ≤ 2δ = n− 1.

Since this remains valid for δ = 1, the proof is complete.
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The class of round regular tournaments shows that the bound in Theorem 8 is

sharp. A tournament D on V = {v0, v1, . . . , v2p} is called round if for every ver-

tex vi the out- and in-neighborhood are given by N+(vi) = {vi+1, vi+2, . . . , vi+p} and

N−(vi) = {vi−1, vi−2, . . . , vi−p}, where all indices are taken modulo n = 2p + 1. For

i = 1, 2, . . . , p, define fi : V → {0, 1, 2} by fi(vi) = fi(vi+p+1) = 2 and fi(vj) = 0

for j /∈ {i, i + p + 1}. Then {f1, f2, . . . , fp} is an RD family on D. Since D

is isomorphic to D−1, it follows that dR(D) ≥ p and dR(D−1) ≥ p and thus

dR(D) + dR(D−1) = 2p = n− 1 by Theorem 8.

For arbitrary oriented digraphs we shall prove a slightly weaker upper bound.

Theorem 9. If D is an oriented graph of order n, then

dR(D) + dR(D
−1) ≤ n+ 1.

Proof. For regular tournaments the bound is true by Theorem 8.

If D is an almost-regular tournament, then D−1 is also an almost-regular tournament

and δ−(D) = δ−(D−1) = (n − 2)/2. Furthermore, D and D−1 contain adjacent

vertices of minimum in-degree. By Theorem 3, it follows that

dR(D) + dR(D−1) ≤ δ−(D) + 1 + δ−(D−1) + 1 = n.

If D is a tournament that is neither regular nor almost-regular, then δ−(D) +

δ−(D−1) ≤ n− 3. Again Theorem 3 implies that

dR(D) + dR(D−1) ≤ δ−(D) + 2 + δ−(D−1) + 2 ≤ n+ 1.

If D is not a tournament, then it is a subdigraph of a tournament. Since every RD

family on D is also an RD family on every superdigraph D′ of D, it follows that

dR(D) ≤ dR(D′). Using this observation, it is immediate that dR(D) + dR(D−1) ≤
n+ 1 for every oriented digraph D. This completes the proof.

3. The Roman domatic number of a graph

A Roman dominating function on a graph G = (V (G), E(G)) is defined in [10, 13]

as a function f : V (G) → {0, 1, 2} satisfying the condition that every vertex v with

f(v) = 0 is adjacent to at least one vertex u with f(u) = 2. The weight of an RDF

f is the value ω(f) =
∑

v∈V (G) f(v). The Roman domination number of a graph G,

denoted by γR(G), is the minimum weight of an RDF on G. In [1–3, 5, 6, 9] the

reader can find a lot of results on Roman domination.

A set {f1, f2, . . . , fd} of distinct RDFs on G with
∑d

i=1 fi(v) ≤ 2 for each v ∈ V (G),

is called a Roman dominating family (of functions) on G. The maximum number

of functions in an RD family on G is the Roman domatic number of G, denoted by

dR(G).
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The associated digraph D(G) of a graph G is the digraph obtained from G by replacing

each edge of G by a 2-cycle. Since N−D(G)[v] = NG[v] for each vertex v ∈ V (G) =

V (D(G)), the following useful observation is valid.

Observation 10. IfD(G) is the associated digraph of a graphG, then γR(D(G)) = γR(G)
and dR(D(G)) = dR(G).

There are a lot of interesting applications of Observation 10, as for example the

following results. Using Theorem 1, we obtain the first one.

Corollary 1 ([11]). If G is a graph of order n, then γR(G) · dR(G) ≤ 2n.

Theorem 2 and Observation 10 imply the next corollary immediately.

Corollary 2 ([11]). If G is a graph of order n ≥ 2, then γR(G) + dR(G) ≤ n+ 2.

Since δ−(D(G)) = δ(G) and a set of vertices is independent in G if and only if it is

independent in D(G), Theorem 4 and Observation 10 lead to the following result.

Corollary 3. If G is a graph, then dR(G) ≤ δ(G) + 2. Moreover, if dR(G) = δ(G) + 2,
then the set of vertices of minimum degree is an independent set.

The bound dR(G) ≤ δ(G) + 2 can be found in [11]. Finally, we obtain the following

Nordhaus-Gaddum bound in view of Theorem 6 and Observation 10.

Corollary 4. If G is a graph of order n, then

dR(G) + dR(G) ≤ n+ 1.

In [11] Corollary 4 was only proved for regular graphs.
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