

A note on the Roman domatic number of a digraph

L. Volkmann and D. Meierling

Lehrstuhl II für Mathematik, RWTH Aachen University, 52056 Aachen, Germany volkm@math2.rwth-aachen.de meierling@math2.rwth-aachen.de

Received: 1 February 2019; Accepted: 23 June 2019 Published Online: 26 June 2019

Abstract: A Roman dominating function on a digraph D with vertex set V(D) is a labeling $f\colon V(D)\to \{0,1,2\}$ such that every vertex with label 0 has an in-neighbor with label 2. A set $\{f_1,f_2,\ldots,f_d\}$ of Roman dominating functions on D with the property that $\sum_{i=1}^d f_i(v) \leq 2$ for each $v\in V(D)$, is called a Roman dominating family (of functions) on D. The maximum number of functions in a Roman dominating family on D is the Roman domatic number of D, denoted by $d_R(D)$. In this note, we study the Roman domatic number in digraphs, and we present some sharp bounds for $d_R(D)$. In addition, we determine the Roman domatic number of some digraphs. Some of our results are extensions of well-known properties of the Roman domatic number of undirected graphs.

Keywords: Digraphs, Roman dominating function, Roman domination number, Roman domatic number

AMS Subject classification: 05C69, 05C20

1. Introduction

In this paper, D is a simple digraph with vertex set V = V(D) and arc set A = A(D). The order |V| of D is denoted by n = n(D). We write $d_D^+(v) = d^+(v)$ for the out-degree of a vertex v and $d_D^-(v) = d^-(v)$ for its in-degree. The minimum and maximum in-degree and minimum and maximum out-degree of D are denoted by $\delta^- = \delta^-(D)$, $\Delta^- = \Delta^-(D)$, $\delta^+ = \delta^+(D)$ and $\Delta^+ = \Delta^+(D)$, respectively. If uv is an arc of D, then we also write $u \to v$, and we say that v is an out-neighbor of u and u is an in-neighbor of v. For a vertex v of a digraph D, we denote the set of in-neighbors and out-neighbors of v by $N_D^-(v) = N^-(v)$ and $N_D^+(v) = N^+(v)$, respectively. In addition, $N^-[v] = N^-(v) \cup \{v\}$ and $N^+[v] = N^+(v) \cup \{v\}$. If $X \subset V(D)$, then

$$N_D^+[X] = N^+[X] = \bigcup_{v \in X} N^+[v].$$

We write K_n^* for the *complete digraph* of order n. An *oriented cycle* in a digraph is also called a *cycle*. For notation and graph theory terminology in general we follow [4].

A subset $S \subseteq V(D)$ is a dominating set if $N^+[S] = V(D)$. The domination number $\gamma(D)$ is the minimum cardinality of a dominating set of D. The domination number for digraphs was introduced by Lee [8]. A domatic partition is a partition of V(D) into dominating sets, and the domatic number d(D) is the largest number of sets in a domatic partition.

A Roman dominating function (RDF) on a digraph D is defined in [7,12] as a function $f\colon V(D)\to\{0,1,2\}$ satisfying the condition that every vertex v with f(v)=0 has an in-neighbor u with f(u)=2. The weight of an RDF f is the value $\omega(f)=\sum_{v\in V(D)}f(v)$. The Roman domination number of a digraph D, denoted by $\gamma_R(D)$, is the minimum taken over the weights of all Roman dominating functions on D. A $\gamma_R(D)$ -function is a Roman dominating function on D with weight $\gamma_R(D)$. A Roman dominating function $f\colon V\to\{0,1,2\}$ can be represented by the ordered partition (V_0,V_1,V_2) (or (V_0^f,V_1^f,V_2^f) to refer to f) of V(D), where $V_i=\{v\in V(D)\colon f(v)=i\}$. In this representation, the weight of f is $\omega(f)=|V_1|+2|V_2|$. Since $V_1^f\cup V_2^f$ is a dominating set when f is an RDF, and since placing weight 2 at the vertices of a dominating set yields an RDF, we observe that

$$\gamma(D) \le \gamma_R(D) \le 2\gamma(D).$$

A set $\{f_1, f_2, \ldots, f_d\}$ of distinct Roman dominating functions on D with $\sum_{i=1}^d f_i(v) \leq 2$ for each $v \in V(D)$, is called in [14] a Roman dominating family (of functions) on D. The maximum number of functions in a Roman dominating family (RD family) on D is the Roman domatic number of D, denoted by $d_R(D)$. The Roman domatic number is well-defined and $d_R(D) \geq 1$ for all digraphs D since the set consisting of any RDF forms an RD family on D (see [14]).

Our purpose in this paper is to improve some results given in [14], and to determine the Roman domatic number of some classes of digraphs. Some of our results are extensions of well-known properties of the Roman domatic number $d_R(G)$ of graphs G.

The following known results are interesting.

Theorem 1 ([14]). If D is a digraph of order n, then $\gamma_R(D) \cdot d_R(D) \leq 2n$.

Theorem 2 ([14]). If D is a digraph of order $n \geq 2$, then $\gamma_R(D) + d_R(D) \leq n + 2$.

2. Roman domatic number of digraphs

The following upper bound on the Roman domatic number can be found in [14].

Theorem 3. For every digraph D,

$$d_R(D) \leq \delta^-(D) + 2$$

and this bound is sharp.

We will prove the following extension of Theorem 3.

Theorem 4. For every digraph D,

$$d_R(D) \leq \delta^-(D) + 2.$$

Moreover, if $d_R(D) = \delta^-(D) + 2$, then the set of vertices of minimum in-degree is an independent set.

Proof. If $d_R(D) \leq 2$, then the bound is immediate. Let now $d_R(D) \geq 3$ and let $\{f_1, f_2, \ldots, f_d\}$ be an RD family on D such that $d = d_R(D)$. Assume that v is a vertex of minimum in-degree $\delta^-(D)$. Since the equality $\sum_{x \in N^-[v]} f_i(x) = 1$ holds for at most two indices $i \in \{1, 2, \ldots, d\}$, we have

$$2d - 2 \le \sum_{i=1}^{d} \sum_{x \in N^{-}[v]} f_i(x) = \sum_{x \in N^{-}[v]} \sum_{i=1}^{d} f_i(x) \le \sum_{x \in N^{-}[v]} 2 = 2(\delta^{-}(D) + 1).$$

This implies the desired bound $d_R(D) \leq \delta^-(D) + 2$. Moreover, if $d_R(D) = \delta^-(D) + 2$, then the following holds for every vertex v of minimum in-degree.

(i) There exist precisely two indices $j, k \in \{1, 2, ..., d\}$ such that

$$\sum_{x \in N^{-}[v]} f_j(x) = \sum_{x \in N^{-}[v]} f_k(x) = 1;$$

- (ii) For every index $i \in \{1, 2, \dots, d\} \setminus \{j, k\}$: $\sum_{x \in N^-[v]} f_i(x) = 2$;
- (iii) For every vertex $x \in N^-[v]$ and every index $i \in \{1, 2, \dots, d\}$: $\sum_{i=1}^d f_i(x) = 2$.

In particular, (i) implies that $f_j(v) = f_k(v) = 1$ and $f_j(x) = f_k(x) = 0$ for every $x \in N^-(v)$, (ii) implies that for every index $i \in \{1, 2, ..., d\} \setminus \{j, k\}$ there exists a unique vertex $x_i \in N^-(v)$ such that $f_i(x_i) = 2$, and (iii) implies that $f_i(y) = 0$ for every vertex $x_i \neq y \in N^-[v]$. This is impossible if D contains two adjacent vertices of minimum in-degree.

The complement \overline{D} of a digraph D is the digraph with vertex set V(D) such that for any two distinct vertices u, v the arc uv belongs to \overline{D} if and only if uv does not belong to D. A digraph D is in-regular when $\delta^-(D) = \Delta^-(D)$ and out-regular when $\delta^+(D) = \Delta^+(D)$. Xie, Hao and Wei [14] proved the following Nordhaus-Gaddum type inequality.

Theorem 5. If D is a digraph of order $n \geq 2$, then

$$d_R(D) + d_R(\overline{D}) \le n + \epsilon$$

with $\epsilon = 1$ when D is out-regular, $\epsilon = 2$ when D is not in-regular and $\epsilon = 3$ otherwise.

As an application of Theorem 4, we shall prove the following improvement of Theorem 5

Theorem 6. If D is a digraph of order n, then

such that $d_D^-(x) = \delta^-(D)$. By Theorem 4, it follows that

$$d_R(D) + d_R(\overline{D}) \le n + 1. \tag{1}$$

Proof. If, without loss of generality, $D = K_n^*$, then $d_R(D) = n$ and $d_R(\overline{D}) = 1$ and the inequality holds. So assume that $D \neq K_n^*$ and $\overline{D} \neq K_n^*$. If D and \overline{D} contain adjacent vertices of minimum in-degree, then let x be a vertex

$$d_R(D) + d_R(\overline{D}) \le (\delta^-(D) + 1) + (\delta^-(\overline{D}) + 1) \le d_D^-(x) + d_{\overline{D}}^-(x) + 2 = n + 1.$$

If, without loss of generality, \overline{D} contains adjacent vertices of minimum in-degree and D does not contain adjacent vertices of minimum in-degree, then D is not in-regular and thus $\delta^-(D) < \Delta^-(D)$. Let x and y be two vertices such that $d_D^-(x) = \delta^-(D)$ and $d_D^-(y) = \Delta^-(D)$. Using Theorem 3, we obtain

$$d_R(D) + d_R(\overline{D}) \le (\delta^-(D) + 2) + (\delta^-(\overline{D}) + 1) \le d_D^-(x) + d_{\overline{D}}^-(y) + 3$$

$$< d_D^-(y) + d_{\overline{D}}^-(y) + 3 = n + 2$$

and thus $d_R(D) + d_R(\overline{D}) \le n + 1$.

It remains to check the case that neither D nor \overline{D} contain adjacent vertices of minimum in-degree. Then both digraphs are not in-regular. First we assume that $\delta^-(D) \leq \Delta^-(D) - 2$ or $\delta^-(\overline{D}) \leq \Delta^-(\overline{D}) - 2$, say $\delta^-(D) \leq \Delta^-(D) - 2$. Then let x and y be two vertices such that $d_D^-(x) = \delta^-(D)$ and $d_D^-(y) = \Delta^-(D)$. Again by Theorem 4, it follows that

$$\begin{split} d_R(D) + d_R(\overline{D}) &\leq (\delta^-(D) + 2) + (\delta^-(\overline{D}) + 2) \leq d_D^-(x) + d_{\overline{D}}^-(y) + 4 \\ &\leq d_D^-(y) + d_{\overline{D}}^-(y) + 2 = n + 1. \end{split}$$

So assume that $\delta^-(D) = \Delta^-(D) - 1$ and $\delta^-(\overline{D}) = \Delta^-(\overline{D}) - 1$. If $d_R(D) = \delta^-(D) + 2$ and $d_R(\overline{D}) = \delta^-(\overline{D}) + 2$, then let $A = \{v : d_D^-(v) = \delta^-(D)\}$ and $B = \{v : d_{\overline{D}}^-(v) = \delta^-(\overline{D})\}$. Note that $A \cup B = V(D)$. Since A is independent in D, it follows that $\overline{D}[A]$

is complete. Likewise, B is independent in \overline{D} and D[B] is complete. Let $d = d_R(D)$ and $\{f_1, f_2, \ldots, f_d\}$ be an RD family on D. Note that $f_i(a) \leq 1$ for every vertex $a \in A$ and thus, $f_i(b) = 2$ for at least one vertex $b \in B$ for every index i. It follows that $d \leq |B| \leq \delta^-(D) + 1$, a contradiction. Hence, without loss of generality, $d_R(D) \leq \delta^-(D) + 1$, and thus

$$d_R(D) + d_R(\overline{D}) \le (\delta^-(D) + 1) + (\delta^-(\overline{D}) + 2) \le d_D^-(x) + d_{\overline{D}}^-(y) + 3$$
$$\le d_D^-(y) + d_{\overline{D}}^-(y) + 2 = n + 1.$$

This completes the proof.

If D is isomorphic to the complete graph K_n^* , then $d_R(D) = n$ and $d_R(\overline{D}) = 1$ and therefore $d_R(D) + d_R(\overline{D}) = n + 1$. This example demonstrates that the bound (1) is sharp.

For out-regular graphs, the following upper bound on the Roman domatic number is valid (see [14]).

Theorem 7. If D is a δ -out-regular digraph of order $n = p(\delta + 1) + r$ with integers $p \ge 1$ and $0 \le r \le \delta$, then

$$d_R(D) \le \delta + \varepsilon \tag{2}$$

with $\varepsilon = 1$ when $\delta = 0$ or r = 0 or $2r = \delta + 1$ and $\varepsilon = 0$ otherwise.

Let $q \geq 4$ be an integer, and let $K_{q,q}^*$ be the complete bipartite digraph with the partite sets $\{u_1, u_2, \ldots, u_q\}$ and $\{v_1, v_2, \ldots, v_q\}$. Define the RDFs f_1, f_2, \ldots, f_q by $f_i(u_i) = f_i(v_i) = 2$ and $f_i(u_j) = f_i(v_j) = 0$ for $j \neq i$ and $1 \leq i, j \leq q$. Because of $\sum_{i=1}^q f_i(x) = 2$ for each vertex x in $K_{q,q}^*$, the set $\{f_1, f_2, \ldots, f_q\}$ is an RD family on $K_{q,q}^*$. Thus $d_R(K_{q,q}^*) \geq q$ and therefore Theorem 7 implies that $d_R(K_{q,q}^*) = q$. This example demonstrates that Theorem 7 is sharp.

If D is a digraph, then we denote by D^{-1} the digraph obtained by reversing all arcs of D. A digraph without cycles of length 2 is called an *oriented graph*. An oriented graph D is a tournament when either $xy \in A(D)$ or $yx \in A(D)$ for each pair of distinct vertices $x, y \in V(D)$.

For regular tournaments the following upper bound is valid.

Theorem 8. If D is a δ -regular tournament of order $n \geq 3$, then

$$d_R(D) + d_R(D^{-1}) \le n - 1.$$

Proof. Since D is a δ -regular tournament, D^{-1} is also a δ -regular tournament of order $n = 2\delta + 1$. If $\delta \geq 2$, then Theorem 7 leads to

$$d_R(D) + d_R(D^{-1}) \le 2\delta = n - 1.$$

Since this remains valid for $\delta = 1$, the proof is complete.

The class of round regular tournaments shows that the bound in Theorem 8 is sharp. A tournament D on $V = \{v_0, v_1, \ldots, v_{2p}\}$ is called round if for every vertex v_i the out- and in-neighborhood are given by $N^+(v_i) = \{v_{i+1}, v_{i+2}, \ldots, v_{i+p}\}$ and $N^-(v_i) = \{v_{i-1}, v_{i-2}, \ldots, v_{i-p}\}$, where all indices are taken modulo n = 2p + 1. For $i = 1, 2, \ldots, p$, define $f_i \colon V \to \{0, 1, 2\}$ by $f_i(v_i) = f_i(v_{i+p+1}) = 2$ and $f_i(v_j) = 0$ for $j \notin \{i, i+p+1\}$. Then $\{f_1, f_2, \ldots, f_p\}$ is an RD family on D. Since D is isomorphic to D^{-1} , it follows that $d_R(D) \geq p$ and $d_R(D^{-1}) \geq p$ and thus $d_R(D) + d_R(D^{-1}) = 2p = n - 1$ by Theorem 8.

For arbitrary oriented digraphs we shall prove a slightly weaker upper bound.

Theorem 9. If D is an oriented graph of order n, then

$$d_R(D) + d_R(D^{-1}) \le n + 1.$$

Proof. For regular tournaments the bound is true by Theorem 8. If D is an almost-regular tournament, then D^{-1} is also an almost-regular tournament and $\delta^{-}(D) = \delta^{-}(D^{-1}) = (n-2)/2$. Furthermore, D and D^{-1} contain adjacent vertices of minimum in-degree. By Theorem 3, it follows that

$$d_R(D) + d_R(D^{-1}) \le \delta^-(D) + 1 + \delta^-(D^{-1}) + 1 = n.$$

If D is a tournament that is neither regular nor almost-regular, then $\delta^-(D) + \delta^-(D^{-1}) \le n-3$. Again Theorem 3 implies that

$$d_R(D) + d_R(D^{-1}) \le \delta^-(D) + 2 + \delta^-(D^{-1}) + 2 \le n + 1.$$

If D is not a tournament, then it is a subdigraph of a tournament. Since every RD family on D is also an RD family on every superdigraph D' of D, it follows that $d_R(D) \leq d_R(D')$. Using this observation, it is immediate that $d_R(D) + d_R(D^{-1}) \leq n+1$ for every oriented digraph D. This completes the proof.

3. The Roman domatic number of a graph

A Roman dominating function on a graph G = (V(G), E(G)) is defined in [10, 13] as a function $f \colon V(G) \to \{0,1,2\}$ satisfying the condition that every vertex v with f(v) = 0 is adjacent to at least one vertex u with f(u) = 2. The weight of an RDF f is the value $\omega(f) = \sum_{v \in V(G)} f(v)$. The Roman domination number of a graph G, denoted by $\gamma_R(G)$, is the minimum weight of an RDF on G. In [1–3, 5, 6, 9] the reader can find a lot of results on Roman domination.

A set $\{f_1, f_2, \ldots, f_d\}$ of distinct RDFs on G with $\sum_{i=1}^d f_i(v) \leq 2$ for each $v \in V(G)$, is called a *Roman dominating family* (of functions) on G. The maximum number of functions in an RD family on G is the *Roman domatic number* of G, denoted by $d_R(G)$.

The associated digraph D(G) of a graph G is the digraph obtained from G by replacing each edge of G by a 2-cycle. Since $N_{D(G)}^-[v] = N_G[v]$ for each vertex $v \in V(G) = V(D(G))$, the following useful observation is valid.

Observation 10. If D(G) is the associated digraph of a graph G, then $\gamma_R(D(G)) = \gamma_R(G)$ and $d_R(D(G)) = d_R(G)$.

There are a lot of interesting applications of Observation 10, as for example the following results. Using Theorem 1, we obtain the first one.

Corollary 1 ([11]). If G is a graph of order n, then $\gamma_R(G) \cdot d_R(G) \leq 2n$.

Theorem 2 and Observation 10 imply the next corollary immediately.

Corollary 2 ([11]). If G is a graph of order $n \geq 2$, then $\gamma_R(G) + d_R(G) \leq n + 2$.

Since $\delta^-(D(G)) = \delta(G)$ and a set of vertices is independent in G if and only if it is independent in D(G), Theorem 4 and Observation 10 lead to the following result.

Corollary 3. If G is a graph, then $d_R(G) \leq \delta(G) + 2$. Moreover, if $d_R(G) = \delta(G) + 2$, then the set of vertices of minimum degree is an independent set.

The bound $d_R(G) \leq \delta(G) + 2$ can be found in [11]. Finally, we obtain the following Nordhaus-Gaddum bound in view of Theorem 6 and Observation 10.

Corollary 4. If G is a graph of order n, then

$$d_R(G) + d_R(\overline{G}) \le n + 1.$$

In [11] Corollary 4 was only proved for regular graphs.

References

- [1] E.W. Chambers, B. Kinnersley, N. Prince, and D.B. West, *Extremal problems for Roman domination*, SIAM J. Discrete Math. **23** (2009), no. 3, 1575–1586.
- [2] E.J. Cockayne, P.A. Dreyer Jr, S.M. Hedetniemi, and S.T. Hedetniemi, *Roman domination in graphs*, Discrete Math. **278** (2004), no. 1-3, 11–22.
- [3] O. Favaron, H. Karami, R. Khoeilar, and S.M. Sheikholeslami, On the Roman domination number of a graph, Discrete Math. **309** (2009), no. 10, 3447–3451.

- [4] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Fundamentals of domination in graphs, Marcel Dekker, Inc., New York, 1998.
- [5] M.A. Henning, A characterization of Roman trees, Discuss. Math. Graph Theory **22** (2002), no. 2, 325–334.
- [6] _____, Defending the Roman Empire from multiple attacks, Discrete Math. 271 (2003), no. 1-3, 101–115.
- [7] M. Kamaraj and P. Jakkammal, Directed Roman domination in digraphs, Int. J. Comb. Graph Theory Appl. 4 (2011), 103–116.
- [8] C. Lee, On the domination number of a digraph, Michigan State University. Department of Mathematics, 1994.
- [9] Mathieu Liedloff, Ton Kloks, Jiping Liu, and Sheng-Lung Peng, Efficient algorithms for roman domination on some classes of graphs, Discrete Appl. Math. 156 (2008), no. 18, 3400–3415.
- [10] C.S. ReVelle and K.E. Rosing, Defendens imperium Romanum: a classical problem in military strategy, Amer. Math. Monthly 107 (2000), no. 7, 585–594.
- [11] S.M. Sheikholeslami and L. Volkmann, *The Roman domatic number of a graph*, Appl. Math. Lett. **23** (2010), no. 10, 1295–1300.
- [12] ______, The Roman domination number of a digraph, Acta Univ. Apulensis Math. Inform. 27 (2011), 77–86.
- [13] I. Stewart, Defend the Roman empire!, Sci. Amer. 281 (1999), no. 6, 136–138.
- [14] Z. Xie, G. Hao, and S. Wei, The Roman domination and domatic numbers of a digraph, Commun. Comb. Optim. 4 (2019), no. 1, 47–59.