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Abstract: Let G = (V,E) be a graph. A subset S C V is a hop dominating set if
every vertex outside S is at distance two from a vertex of S. A hop dominating set
S which induces a connected subgraph is called a connected hop dominating set of G.
The connected hop domination number of G, v.,(G), is the minimum cardinality of a
connected hop dominating set of G. A hop Roman dominating function (HRDF) of a
graph G is a function f : V(G) — {0, 1,2} having the property that for every vertex
v € V with f(v) = 0 there is a vertex u with f(u) = 2 and d(u,v) = 2. The weight of
an HRDF f is the sum f(V) = > oy f(v). The minimum weight of an HRDF on G
is called the hop Roman domination number of G and is denoted by v,r(G). We give
an algorithm that decides whether v, gr(T") = 27,1 (T) for a given tree T'.

Keywords: hop dominating set, connected hop dominating set, hop Roman dominat-
ing function
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1. Introduction

For notation and graph theory terminology not given here, we refer to [7]. Let G =
(V,E) be a graph with the vertex set V = V(@) and the edge set E = E(G). The
order of G is n(G) = |[V(G)|. The open neighborhood of v € V is Ng(v) = {u €
V(G)luv € E(G)}. The open neighborhood of S is Ng(S) = UyesNg(v) and the
closed neighborhood of S is Ng[S] = Ng(S) U S, where S C V. The degree of v,
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denoted by deg(v), is |[Ng(v)|. The distance between two vertices u and v in G,
denoted by d(u,v), is the minimum length of a (u,v)-path in G. The diameter of G,
diam(G), is the maximum distance among all pairs of vertices in G. For an integer
k > 1, the set of all vertices at distance k from v is denoted by Ni(v). Also, we
denote Ni(v)U{v} by Ni[v]. A vertex of degree one in a tree is referred as a leaf and
its unique neighbor as the support vertex. We denote the set of leaves of a tree T' by
L(T) and the set of support vertices by S(T').

Ayyaswamy and Natarajan [4] introduced the concept of hop domination in graphs.
A set S C Vis a hop dominating set (HDS) if every vertex outside S is at distance two
from a vertex of S. Furthermore, if S induces a subgraph of G that is connected, then
S is a connected hop dominating set of G. The (connected) hop domination number
of G, (7ern(G)) Yr(G), is the minimum cardinality of a (connected) hop dominating set
of G. An HDS of G of minimum cardinality is referred as a v, (G)-set. The concept
of hop domination was further studied in [3, 8, 10].

A function f : V — {0, 1,2} having the property that for every vertex v € V with
f(v) =0, there exists a vertex u € N(v) with f(u) = 2, is called a Roman dominating
function or just an RDF. The mathematical concept of Roman domination defined
and discussed by Stewart [14] and ReVelle and Rosing [11] and subsequently developed
by Cockayne et al. [5]. Several variations of Roman domination have been already
studied, see for example, [1, 2, 6, 15, 16].

A hop Roman dominating function (HRDF) is a function f : V — {0,1,2} having
the property that for every vertex v € V with f(v) = 0 there is a vertex u with
f(u) =2 and d(u,v) = 2. The weight of an HRDF f is the sum f(V) =3 oy f(v).
The minimum weight of an HRDF on G is called the hop Roman domination number
of G and is denoted by v,r(G). An HRDF with minimum weight is referred as a
Ynr(G)-function. For an HRDF f in a graph G, we denote by V; (or Vif to refer to f)
the set of all vertices of G with label i under f. Thus, an HRDF f can be represented
by a triple (Vy, V1, V) and we can use the notation f = (Vy, V1, Va). We remark that
by this time there is no polynomial algorithms for hop Roman domination number.
Hop Roman domination in graphs was introduced by Shabani in [12] and further
studied in [9, 13]. Assigning the value 2 to every vertex in an HDS of a graph and
zero to each other vertex yeilds an HRDF, as it is observed by Shabani.

Theorem 1 (Shabani [12]). For any graph G, yhr(G) < 29:(G).

Since always, 7,(G) < v, (G) for every graph G, we thus have y,r(G) < 2v,(G) <
29hc(G) for every graph G.

In this paper, we give an algorithm that decides whether y,r(T) = 27.,(T) for a
given tree T'.
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Algorithm 2.1: COMPUTE-INNER-VERTICES (T

Input: A tree T.
Output: The set of all inner vertices of T, i.e., I(T).
1 I(T):=0.
2 for each v €T  Compute T),.
3 if diam(T) = 4 then
4 I(T) = I(T) U {v};
send
6 return I(7T) ;

2. Trees T with y,r(T) = 27 (T)

Let 7. be the set of all trees T' with v,r(T) = 279.,(T). It is easy to see that the
following is true.

Observation 1. IfT € T., then there is a yor(T)-function f = (Vo, Vi, Vo) with Vi =0
such that Va induces a connected subtree of T'.

We propose an algorithm to decide whether a given tree is or not in 7.. We first
present some definitions. We say that a vertex u of a tree T' is adjacent to a hop leaf
v if v is a leaf of T" with the support vertex s such that deg(s) = 2 and vertices u
and s are adjacent. Given a positive integer n, let T, be a tree obtained from P,, by
adding (at least) two hop leaves to any vertex of P,, where P, is a path graph with
n vertices. It is easy to see that T, € T.. So, 7. is an infinite family.

Given a tree T, we say that v is an inner vertex of T if there are (at least) two
distinct vertices x and y at distance 2 from v in T with d(z,y) = 4. Let I(T) be
the set of all inner vertices of T'. Let Nj(v) = {u € V(T)\I(T)|d(u,v) = 2}, and let
Sy = N3(v) = Uuerry\ v} Na(u). Let T, be the subtree of T' induced by Na[x], where
x € V(T). Clearly, diam(T,) < 4. It is easy to see that the following result is true.

Observation 2. Given a tree T, vertex v is an inner vertez of T if and only if diam(T,) =
4.

Lemma 1. Let T be a tree. Algorithm 2.1 computes the set of all inner vertices of T,
i.e., I(T), in O(|V(T)|) time.

Proof. Clearly, there is an algorithm to compute T, and the diameter of T, in
O(|V(Ty)|) time. We have |V(T,)] = 1+ >, cn(,) deg(u). To compute I(T) by
Observation 2 it suffices to compute T, for any vertex v of T' and check whether
diam(T,) = 4. Clearly, Algorithm COMPUTE-INNER-VERTICES does this. It remains
to compute the time complexity of Algorithm COMPUTE-INNER-VERTICES. Clearly,
the running time of Algorithm COMPUTE-INNER-VERTICES is O3, cv () [V (Tv)])-
Let V(T) = {v1,v2,...,vn}, and let Sy = {1y, Ty, - - -, Lo, }. Assume that |Sp| =
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V(To)| + ...+ [V(To,)l, that is, 3= cy oy [V(T0)| = [Sr|. Let e = zy be an edge
of T. It is easy to see that e appears in deg(x) + deg(y) trees of Sy. So, |Sr| =
n+ 3 pyenr)(deg(z) + deg(y)) = n+ 23 oy deg(v). Therefore, Algorithm
COMPUTE-INNER-VERTICES computes I(T) in O(|V(T')|) time. O

Lemma 2. Let T be a tree with diam(T) > 5. Then T € Tc if and only if |S,| > 2 for
any inner vertex v of T'.

Proof. (=) Let T be a tree of 7. with diam(T) > 5, and let v1,va, ..., Vgiam(T)+1
be any longest path of T.

Assume first that diam(T) = 5. It is easy to see that T € 7. and I(T) = {vs,v4}.
We have {v1,v5} C Ni(v3), both vy,vs are not in Nj(vy), {va,v6} C Nj(vy) and
both v, vg are not in Nj(v3). Therefore, |S,,| = |NVj(vs) — Nj(vg)| > 2 and |S,,| =
|NS(vg) — Nj(v3)| > 2. Tt follows that the claim holds for any tree with diameter 5.
Assume that diam(T) = 6. By Observation 1 there is a y,g(T)-function f with
V1 = 0 such that V5 induces a connected subtree of T'. It is easy to see that all vertices
V3, Vg, V5 are in Vo; otherwise the subtree of T' induced by V5 is a disconnected tree.
So, |Va] > 3. Clearly, vy € I(T) and both ve,vs € Nj(vy4). Also, there is no vertex of
I(T) — {v4} at distance 2 from v or vg. It means that vy is the only vertex of I(T)
for which Nj(v4) contains v (respectively, vg). It follows that we have |S,,| > 2.
Assume that diam(T) > 7. By Observation 1 there is a y,g(T)-function f with
V1 = () such that V5 induces a connected subtree of T'. Tt is easy to see that |Va| > 4.
Suppose for a contradiction there is a vertex v in I(7T') such that |S,| < 2. If f(v) =0,
then the subtree of T' induced by V5 is a disconnected tree. So, f(v) = 2. There are
the following cases to consider.

o S, =10.
As mentioned in Case 1, when diam(T) = 6, we have v # v4. So, there is a

vertex w in V2 (in both Cases 1 and 2) such that d(v,w) = 2. We replace f(v)
by 0 to obtain an HRDF on T with weight less than w(f), a contradiction.

o S, ={z}.
We replace f(v) by 0 and f(«) by 1 to obtain an HRDF on T with weight less
than w(f), a contradiction.

So, if T' € T, with diam(T) > 5, then |S,| > 2 for any inner vertex v of T'.

( <) Assume that for any inner vertex v of tree T' with diam(T") > 5 we have |S,| > 2.
Since diam(T) > 5, we have v, (T") > 2. We prove that T' € 7. by induction on the
hop domination number of 7.

Base case: It is easy to see that ~,(T) = 2 holds only for trees with the diameter
5. (Note that by the hypothesis of the claim diam(T) > 5.) We know that the claim
holds for any tree with diameter 5. This proves the base case of the induction.
Induction hypothesis: Assume that all trees with v, (T) = m > 2 and with |S,| > 2
for any inner vertex v of T are in 7.
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Figure 1. For the proof of Lemma 2.

The inductive step: Let T be a tree with v, (T) = m+ 1 such that |S,| > 2 for any
inner vertex v of T. Let vi,v9,...,v; be any longest path of T, where ¢ > 7. Both
v1,v2 ¢ I(T), but all vertices vs,...,vs—o € I(T), where t —2 > 5. We have vy € S,,.
Let v be any node adjacent to vs. Clearly, if v € I(T), then v ¢ S,, and if v ¢ I(T),
then v € Nj(vs). Therefore, v ¢ S,,. See Figure 1. Since |S,,| > 2, either there is at
least one leaf u; adjacent to v with u; # v1; see Figure 1(a) or there is one leaf g
with d(vs,u2) = 2 such that us is not adjacent to vy and vy; see Figure 1(b).

So, Sy, contains only leaves of T Let T/ =T — S,,. Note that diam(T") > 5. It is
easy to see that vz is not an inner vertex of 7. So, T” is a tree such that |S,| > 2
for any inner vertex v of 7". Let D be a ~v,(T)-set. If vs ¢ D, then S,, C D. If
Syps C D, then D U {vs} — S, is an HDS of T' with |D U {vs} — S,,| < |D|, which
is a contradiction. So, vs € D. It is easy to see that D — {vs} is an HDS of T". So,
Yo (T") < Y (T) =1, i.e., Yo (T") < m. Therefore, by the induction hypothesis 7”7 € 7.
So, there is a 4, (T")-set D’ such that D’ induces a connected subtree of T”. Because
of diam(T") > 5, vs € D'. Clearly, vs ¢ D" and so D' U {vs} is a vy, (T)-set, that is,
Y (T) <y (T")+1. This, together with v, (T") < 75, (T) — 1, implies that v, (T") =
Since T” € 7., by Observation 1 there is a v, g(T")-function f' = (Vof/,Vlfl, VQf,) with
Vi = " = 0 such that v " induces a connected subtree of 7". Since ’Yh(T/ ) =m, we have
Yor(T") =2m. If f'(vq) = 0 then the subtree of T 1nduced by V4 is a disconnected
tree. So, we have v4 € V2 . Then f = (VO U Sy, 0, V2 U {vs}) is an HRDF on T.
So, Yar(T) < w(f) = 2m + 2. On the other hand, let g be a v,r(T)-function. Since
|Sys| > 2 and |S,,| > 2, we may assume g(vs) = g(vs) = 2. Let ¢’ be the restriction
of g on T" with ¢’(vs) = 0. Then ¢’ is an HRDF on T”. So, yg(T") < vpr(T) — 2.
It follows that v4r(T) = 2m + 2, and, therefore, T' is a hop Roman tree. Since
F=i =vius,. v/ =0,V = v/ U{vs}) is a yur(T)-function with V;/ = ¢
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Algorithm 2.2: CONNECTED-HOP-ROMAN-TREE (T')

Input: A tree T.
Output: Yes: if T € 7T¢; otherwise, NO.
Let d be the diameter of T. If d € {0, 1,2}, then return NO; if d € {3,4}, then return YES.
I(T) := COMPUTE-INNER-VERTICES (T) ;
for each v € I(T) |Sy|:=0;
for each z € N(v) find:= true;
for each y € N(z)\{v} if y € I(T) then
6‘ find := false ;
7end
8 if find then
o [Su] = [Su] + deg(e) — 1 5
10end
11 if |Sy| < 2 then
12‘ return NO;
13end
14 return YES;

Qs W N

such that V2f induces a connected subtree of T', it follows that T € 7.. This completes
the proof. O

Lemma 3. Let T be a tree. Algorithm 2.2 decides whether T € Te in O(|V(T)|) time.

Proof.  If the diameter of T is in {0, 1,2}, then T ¢ 7. and if the diameter of T is in
{3,4}, then T € T.. So, if diam(T') > 5, then Algorithm CONNECTED-HOP-ROMAN-
TREE works correctly. Let diam(T) > 5. Let v be any inner vertex of 7. Recall that
Sy = N3(v) — Uyerry vy No(u), where Ny(v) = {u € V(T)\I(T)|d(u,v) = 2}. Let
x € N(v) and let y € N(z)\{v}. Clearly, y € Na(v). Clearly, ify € I(T), then w ¢ S,
for any w € N(z). If there is u € I(T) such that y € Na(u) and d(u,v) = 4, then
y € I(T).So, for computing S, it suffices to check whether there is an inner vertex of T'
in N(z)\{v}. If all vertices in N(x)\{v} do not belong to I(T'), then N(z)\{v} C S,.
If there is an inner vertex of T in N(z)\{v}, then any vertex in N(x)\{v} does not
belong to S,,. It is easy to see that Algorithm CONNECTED-HOP-ROMAN-TREE does
this.

Assume that Algorithm CONNECTED-HOP-ROMAN-TREE considers v € I(T) and
x € N(v), where I(T) is the set of all inner vertices of T. If all vertices in N(z)\{v}
do not belong to I(T), then the condition in line #8 of Algorithm CONNECTED-
HopP-ROMAN-TREE does not hold for all vertices in N(z)\{v}. It follows that the
variable find has the value true. So, Algorithm CONNECTED-HOP-ROMAN-TREE
executes the instruction “ |S,| = |S,| + deg(x) — 1 7, i.e., Algorithm CONNECTED-
Hopr-ROMAN-TREE add N(x)\{v} to S,. If there is an inner vertex of T"in N (z)\{v},
then the condition in line #8 of Algorithm CONNECTED-HOP-ROMAN-TREE holds for
at least one vertex in N(x)\{v}. It follows that the variable find has the value false.
So, Algorithm CONNECTED-HOP-ROMAN-TREE does not execute the instruction
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|Sy| = |Sy| +deg(z) — 17, i.e., Algorithm CONNECTED-HOP-ROMAN-TREE does not
add any vertex of N(z)\{v} to S,.

It remains to compute the time complexity of Algorithm CONNECTED-HOP-ROMAN-
TREE. Let V(T') = {v1,v2,...,v,}. It is easy to see that the running time of Algo-
rithm CONNECTED-HOP-ROMAN-TREE is at most |St| = |V(T,,)| + ... + |V(Ty,)]-
We know by the proof of Lemma 1 that |St| = O(n). This completes the proof. [

By Lemma 3 we have the following result.

Theorem 2. Given a tree T, there is an optimal algorithm that decides whether T € T..

We close with the following problem.
Problem 1: Does there exist an algorithm that decides whether v,z (T") = 2y, (T)
for a given tree 17
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