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Abstract: Let G = (V,E) be a graph. A subset S ⊂ V is a hop dominating set if
every vertex outside S is at distance two from a vertex of S. A hop dominating set

S which induces a connected subgraph is called a connected hop dominating set of G.

The connected hop domination number of G, γch(G), is the minimum cardinality of a
connected hop dominating set of G. A hop Roman dominating function (HRDF) of a

graph G is a function f : V (G) −→ {0, 1, 2} having the property that for every vertex
v ∈ V with f(v) = 0 there is a vertex u with f(u) = 2 and d(u, v) = 2. The weight of

an HRDF f is the sum f(V ) =
∑

v∈V f(v). The minimum weight of an HRDF on G

is called the hop Roman domination number of G and is denoted by γhR(G). We give
an algorithm that decides whether γhR(T ) = 2γch(T ) for a given tree T .

Keywords: hop dominating set, connected hop dominating set, hop Roman dominat-
ing function

AMS Subject classification: 05C69

1. Introduction

For notation and graph theory terminology not given here, we refer to [7]. Let G =

(V,E) be a graph with the vertex set V = V (G) and the edge set E = E(G). The

order of G is n(G) = |V (G)|. The open neighborhood of v ∈ V is NG(v) = {u ∈
V (G)|uv ∈ E(G)}. The open neighborhood of S is NG(S) = ∪v∈SNG(v) and the

closed neighborhood of S is NG[S] = NG(S) ∪ S, where S ⊆ V . The degree of v,

∗ Corresponding Author



202 On Hop Roman Domination in Trees

denoted by deg(v), is |NG(v)|. The distance between two vertices u and v in G,

denoted by d(u, v), is the minimum length of a (u, v)-path in G. The diameter of G,

diam(G), is the maximum distance among all pairs of vertices in G. For an integer

k ≥ 1, the set of all vertices at distance k from v is denoted by Nk(v). Also, we

denote Nk(v)∪{v} by Nk[v]. A vertex of degree one in a tree is referred as a leaf and

its unique neighbor as the support vertex. We denote the set of leaves of a tree T by

L(T ) and the set of support vertices by S(T ).

Ayyaswamy and Natarajan [4] introduced the concept of hop domination in graphs.

A set S ⊆ V is a hop dominating set (HDS) if every vertex outside S is at distance two

from a vertex of S. Furthermore, if S induces a subgraph of G that is connected, then

S is a connected hop dominating set of G. The (connected) hop domination number

of G, (γch(G)) γh(G), is the minimum cardinality of a (connected) hop dominating set

of G. An HDS of G of minimum cardinality is referred as a γh(G)-set. The concept

of hop domination was further studied in [3, 8, 10].

A function f : V −→ {0, 1, 2} having the property that for every vertex v ∈ V with

f(v) = 0, there exists a vertex u ∈ N(v) with f(u) = 2, is called a Roman dominating

function or just an RDF. The mathematical concept of Roman domination defined

and discussed by Stewart [14] and ReVelle and Rosing [11] and subsequently developed

by Cockayne et al. [5]. Several variations of Roman domination have been already

studied, see for example, [1, 2, 6, 15, 16].

A hop Roman dominating function (HRDF) is a function f : V −→ {0, 1, 2} having

the property that for every vertex v ∈ V with f(v) = 0 there is a vertex u with

f(u) = 2 and d(u, v) = 2. The weight of an HRDF f is the sum f(V ) =
∑

v∈V f(v).

The minimum weight of an HRDF on G is called the hop Roman domination number

of G and is denoted by γhR(G). An HRDF with minimum weight is referred as a

γhR(G)-function. For an HRDF f in a graph G, we denote by Vi (or V f
i to refer to f)

the set of all vertices of G with label i under f . Thus, an HRDF f can be represented

by a triple (V0, V1, V2) and we can use the notation f = (V0, V1, V2). We remark that

by this time there is no polynomial algorithms for hop Roman domination number.

Hop Roman domination in graphs was introduced by Shabani in [12] and further

studied in [9, 13]. Assigning the value 2 to every vertex in an HDS of a graph and

zero to each other vertex yeilds an HRDF, as it is observed by Shabani.

Theorem 1 (Shabani [12]). For any graph G, γhR(G) ≤ 2γh(G).

Since always, γh(G) ≤ γch(G) for every graph G, we thus have γhR(G) ≤ 2γh(G) ≤
2γhc(G) for every graph G.

In this paper, we give an algorithm that decides whether γhR(T ) = 2γch(T ) for a

given tree T .
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Algorithm 2.1: Compute-Inner-Vertices (T )

Input: A tree T .

Output: The set of all inner vertices of T , i.e., I(T ).
1 I(T ) := ∅.
2 for each v ∈ T Compute Tv .

3 if diam(T ) = 4 then
4 I(T ) = I(T ) ∪ {v};
5end

6 return I(T ) ;

2. Trees T with γhR(T ) = 2γch(T )

Let Tc be the set of all trees T with γhR(T ) = 2γch(T ). It is easy to see that the

following is true.

Observation 1. If T ∈ Tc, then there is a γhR(T )-function f = (V0, V1, V2) with V1 = ∅
such that V2 induces a connected subtree of T .

We propose an algorithm to decide whether a given tree is or not in Tc. We first

present some definitions. We say that a vertex u of a tree T is adjacent to a hop leaf

v if v is a leaf of T with the support vertex s such that deg(s) = 2 and vertices u

and s are adjacent. Given a positive integer n, let Tn be a tree obtained from Pn by

adding (at least) two hop leaves to any vertex of Pn, where Pn is a path graph with

n vertices. It is easy to see that Tn ∈ Tc. So, Tc is an infinite family.

Given a tree T , we say that v is an inner vertex of T if there are (at least) two

distinct vertices x and y at distance 2 from v in T with d(x, y) = 4. Let I(T ) be

the set of all inner vertices of T . Let N ′2(v) = {u ∈ V (T )\I(T )|d(u, v) = 2}, and let

Sv = N ′2(v)−∪u∈I(T )\{v}N
′
2(u). Let Tx be the subtree of T induced by N2[x], where

x ∈ V (T ). Clearly, diam(Tx) ≤ 4. It is easy to see that the following result is true.

Observation 2. Given a tree T , vertex v is an inner vertex of T if and only if diam(Tv) =
4.

Lemma 1. Let T be a tree. Algorithm 2.1 computes the set of all inner vertices of T ,
i.e., I(T ), in O(|V (T )|) time.

Proof. Clearly, there is an algorithm to compute Tv and the diameter of Tv in

O(|V (Tv)|) time. We have |V (Tv)| = 1 +
∑

u∈N(v) deg(u). To compute I(T ) by

Observation 2 it suffices to compute Tv for any vertex v of T and check whether

diam(Tv) = 4. Clearly, Algorithm Compute-Inner-Vertices does this. It remains

to compute the time complexity of Algorithm Compute-Inner-Vertices. Clearly,

the running time of Algorithm Compute-Inner-Vertices is O(
∑

v∈V (T ) |V (Tv)|).
Let V (T ) = {v1, v2, . . . , vn}, and let ST = {Tv1 , Tv2 , . . . , Tvn}. Assume that |ST | =
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|V (Tv1)| + . . . + |V (Tvn)|, that is,
∑

v∈V (T ) |V (Tv)| = |ST |. Let e = xy be an edge

of T . It is easy to see that e appears in deg(x) + deg(y) trees of ST . So, |ST | =

n +
∑

e=xy∈E(T )(deg(x) + deg(y)) = n + 2
∑

v∈V (T ) deg(v). Therefore, Algorithm

Compute-Inner-Vertices computes I(T ) in O(|V (T )|) time.

Lemma 2. Let T be a tree with diam(T ) ≥ 5. Then T ∈ Tc if and only if |Sv| ≥ 2 for
any inner vertex v of T .

Proof. (⇒) Let T be a tree of Tc with diam(T ) ≥ 5, and let v1, v2, . . . , vdiam(T )+1

be any longest path of T .

Assume first that diam(T ) = 5. It is easy to see that T ∈ Tc and I(T ) = {v3, v4}.
We have {v1, v5} ⊆ N ′2(v3), both v1, v5 are not in N ′2(v4), {v2, v6} ⊆ N ′2(v4) and

both v2, v6 are not in N ′2(v3). Therefore, |Sv3 | = |N ′2(v3) − N ′2(v4)| ≥ 2 and |Sv4 | =

|N ′2(v4)−N ′2(v3)| ≥ 2. It follows that the claim holds for any tree with diameter 5.

Assume that diam(T ) = 6. By Observation 1 there is a γhR(T )-function f with

V1 = ∅ such that V2 induces a connected subtree of T . It is easy to see that all vertices

v3, v4, v5 are in V2; otherwise the subtree of T induced by V2 is a disconnected tree.

So, |V2| ≥ 3. Clearly, v4 ∈ I(T ) and both v2, v6 ∈ N ′2(v4). Also, there is no vertex of

I(T )− {v4} at distance 2 from v2 or v6. It means that v4 is the only vertex of I(T )

for which N ′2(v4) contains v2 (respectively, v6). It follows that we have |Sv4 | ≥ 2.

Assume that diam(T ) ≥ 7. By Observation 1 there is a γhR(T )-function f with

V1 = ∅ such that V2 induces a connected subtree of T . It is easy to see that |V2| ≥ 4.

Suppose for a contradiction there is a vertex v in I(T ) such that |Sv| < 2. If f(v) = 0,

then the subtree of T induced by V2 is a disconnected tree. So, f(v) = 2. There are

the following cases to consider.

• Sv = ∅.
As mentioned in Case 1, when diam(T ) = 6, we have v 6= v4. So, there is a

vertex w in V2 (in both Cases 1 and 2) such that d(v, w) = 2. We replace f(v)

by 0 to obtain an HRDF on T with weight less than w(f), a contradiction.

• Sv = {x}.
We replace f(v) by 0 and f(x) by 1 to obtain an HRDF on T with weight less

than w(f), a contradiction.

So, if T ∈ Tc with diam(T ) ≥ 5, then |Sv| ≥ 2 for any inner vertex v of T .

(⇐) Assume that for any inner vertex v of tree T with diam(T ) ≥ 5 we have |Sv| ≥ 2.

Since diam(T ) ≥ 5, we have γh(T ) ≥ 2. We prove that T ∈ Tc by induction on the

hop domination number of T .

Base case: It is easy to see that γh(T ) = 2 holds only for trees with the diameter

5. (Note that by the hypothesis of the claim diam(T ) ≥ 5.) We know that the claim

holds for any tree with diameter 5. This proves the base case of the induction.

Induction hypothesis: Assume that all trees with γh(T ) = m ≥ 2 and with |Sv| ≥ 2

for any inner vertex v of T are in Tc.
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Figure 1. For the proof of Lemma 2.

The inductive step: Let T be a tree with γh(T ) = m+ 1 such that |Sv| ≥ 2 for any

inner vertex v of T . Let v1, v2, . . . , vt be any longest path of T , where t ≥ 7. Both

v1, v2 /∈ I(T ), but all vertices v3, . . . , vt−2 ∈ I(T ), where t− 2 ≥ 5. We have v1 ∈ Sv3 .

Let v be any node adjacent to v4. Clearly, if v ∈ I(T ), then v /∈ Sv3 and if v /∈ I(T ),

then v ∈ N ′2(v5). Therefore, v /∈ Sv3 . See Figure 1. Since |Sv3 | ≥ 2, either there is at

least one leaf u1 adjacent to v2 with u1 6= v1; see Figure 1(a) or there is one leaf u2
with d(v3, u2) = 2 such that u2 is not adjacent to v2 and v4; see Figure 1(b).

So, Sv3 contains only leaves of T . Let T ′ = T − Sv3 . Note that diam(T ′) ≥ 5. It is

easy to see that v3 is not an inner vertex of T ′. So, T ′ is a tree such that |Sv| ≥ 2

for any inner vertex v of T ′. Let D be a γh(T )-set. If v3 /∈ D, then Sv3 ⊂ D. If

Sv3 ⊂ D, then D ∪ {v3} − Sv3 is an HDS of T with |D ∪ {v3} − Sv3 | < |D|, which

is a contradiction. So, v3 ∈ D. It is easy to see that D − {v3} is an HDS of T ′. So,

γh(T ′) ≤ γh(T )−1, i.e., γh(T ′) ≤ m. Therefore, by the induction hypothesis T ′ ∈ Tc.
So, there is a γh(T ′)-set D′ such that D′ induces a connected subtree of T ′. Because

of diam(T ′) ≥ 5, v5 ∈ D′. Clearly, v3 /∈ D′ and so D′ ∪ {v3} is a γh(T )-set, that is,

γh(T ) ≤ γh(T ′)+1. This, together with γh(T ′) ≤ γh(T )−1, implies that γh(T ′) = m.

Since T ′ ∈ Tc, by Observation 1 there is a γhR(T ′)-function f ′ = (V f ′

0 , V f ′

1 , V f ′

2 ) with

V f ′

1 = ∅ such that V f ′

2 induces a connected subtree of T ′. Since γh(T ′) = m, we have

γhR(T ′) = 2m. If f ′(v4) = 0, then the subtree of T ′ induced by V f ′

2 is a disconnected

tree. So, we have v4 ∈ V f ′

2 . Then f = (V f ′

0 ∪ Sv3 , ∅, V
f ′

2 ∪ {v3}) is an HRDF on T .

So, γhR(T ) ≤ w(f) = 2m+ 2. On the other hand, let g be a γhR(T )-function. Since

|Sv3 | ≥ 2 and |Sv5 | ≥ 2, we may assume g(v3) = g(v5) = 2. Let g′ be the restriction

of g on T ′ with g′(v3) = 0. Then g′ is an HRDF on T ′. So, γhR(T ′) ≤ γhR(T ) − 2.

It follows that γhR(T ) = 2m + 2, and, therefore, T is a hop Roman tree. Since

f = (V f
0 = V f ′

0 ∪ Sv3 , V
f
1 = ∅, V f

2 = V f ′

2 ∪ {v3}) is a γhR(T )-function with V f
1 = ∅
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Algorithm 2.2: Connected-Hop-Roman-Tree (T )

Input: A tree T .

Output: Yes: if T ∈ Tc; otherwise, NO.
1 Let d be the diameter of T . If d ∈ {0, 1, 2}, then return NO; if d ∈ {3, 4}, then return YES.

2 I(T ) := Compute-Inner-Vertices (T ) ;

3 for each v ∈ I(T ) |Sv | := 0 ;
4 for each x ∈ N(v) find := true ;

5 for each y ∈ N(x)\{v} if y ∈ I(T ) then

6 find := false ;
7end

8 if find then
9 |Sv | = |Sv |+ deg(x)− 1 ;

10end

11 if |Sv | < 2 then
12 return NO;

13end

14 return YES;

such that V f
2 induces a connected subtree of T , it follows that T ∈ Tc. This completes

the proof.

Lemma 3. Let T be a tree. Algorithm 2.2 decides whether T ∈ Tc in O(|V (T )|) time.

Proof. If the diameter of T is in {0, 1, 2}, then T /∈ Tc and if the diameter of T is in

{3, 4}, then T ∈ Tc. So, if diam(T ) ≥ 5, then Algorithm Connected-Hop-Roman-

Tree works correctly. Let diam(T ) ≥ 5. Let v be any inner vertex of T . Recall that

Sv = N ′2(v) − ∪u∈I(T )\{v}N
′
2(u), where N ′2(v) = {u ∈ V (T )\I(T )|d(u, v) = 2}. Let

x ∈ N(v) and let y ∈ N(x)\{v}. Clearly, y ∈ N2(v). Clearly, if y ∈ I(T ), then w /∈ Sv

for any w ∈ N(x). If there is u ∈ I(T ) such that y ∈ N2(u) and d(u, v) = 4, then

y ∈ I(T ).So, for computing Sv it suffices to check whether there is an inner vertex of T

in N(x)\{v}. If all vertices in N(x)\{v} do not belong to I(T ), then N(x)\{v} ⊆ Sv.

If there is an inner vertex of T in N(x)\{v}, then any vertex in N(x)\{v} does not

belong to Sv. It is easy to see that Algorithm Connected-Hop-Roman-Tree does

this.

Assume that Algorithm Connected-Hop-Roman-Tree considers v ∈ I(T ) and

x ∈ N(v), where I(T ) is the set of all inner vertices of T . If all vertices in N(x)\{v}
do not belong to I(T ), then the condition in line #8 of Algorithm Connected-

Hop-Roman-Tree does not hold for all vertices in N(x)\{v}. It follows that the

variable find has the value true. So, Algorithm Connected-Hop-Roman-Tree

executes the instruction “ |Sv| = |Sv| + deg(x) − 1 ”, i.e., Algorithm Connected-

Hop-Roman-Tree add N(x)\{v} to Sv. If there is an inner vertex of T in N(x)\{v},
then the condition in line #8 of Algorithm Connected-Hop-Roman-Tree holds for

at least one vertex in N(x)\{v}. It follows that the variable find has the value false.

So, Algorithm Connected-Hop-Roman-Tree does not execute the instruction “
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|Sv| = |Sv|+ deg(x)− 1 ”, i.e., Algorithm Connected-Hop-Roman-Tree does not

add any vertex of N(x)\{v} to Sv.

It remains to compute the time complexity of Algorithm Connected-Hop-Roman-

Tree. Let V (T ) = {v1, v2, . . . , vn}. It is easy to see that the running time of Algo-

rithm Connected-Hop-Roman-Tree is at most |ST | = |V (Tv1)| + . . . + |V (Tvn)|.
We know by the proof of Lemma 1 that |ST | = O(n). This completes the proof.

By Lemma 3 we have the following result.

Theorem 2. Given a tree T , there is an optimal algorithm that decides whether T ∈ Tc.

We close with the following problem.

Problem 1: Does there exist an algorithm that decides whether γhR(T ) = 2γh(T )

for a given tree T?
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