On trees with equal Roman domination and outer-independent Roman domination number

S. Nazari-Moghaddam, S.M. Sheikholeslami*

Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, I.R. Iran
{s.nazari;s.m.sheikholeslami}@azaruniv.ac.ir

Received: 2 August 2018; Accepted: 9 April 2019
Published Online: 12 April 2019

In honor of Lutz Volkmann on the occasion of his seventy-fifth birthday.

Abstract: A Roman dominating function (RDF) on a graph G is a function $f : V(G) \rightarrow \{0, 1, 2\}$ satisfying the condition that every vertex u for which $f(u) = 0$ is adjacent to at least one vertex v for which $f(v) = 2$. A Roman dominating function f is called an outer-independent Roman dominating function (OIRDF) on G if the set $\{v \in V \mid f(v) = 0\}$ is independent. The (outer-independent) Roman domination number $\gamma_R(G)$ ($\gamma_{oiR}(G)$) is the minimum weight of an RDF (OIRDF) on G. Clearly for any graph G, $\gamma_R(G) \leq \gamma_{oiR}(G)$. In this paper, we provide a constructive characterization of trees T with $\gamma_R(T) = \gamma_{oiR}(T)$.

Keywords: Roman domination, outer-independent Roman domination, tree

AMS Subject classification: 05C69

1. Introduction

Throughout this paper, G is a simple graph with vertex set $V(G)$ and edge set $E(G)$ (briefly V,E). The order $|V|$ of G is denoted by $n = n(G)$. For every vertex $v \in V(G)$, the open neighborhood of v is the set $N_G(v) = N(v) = \{u \in V(G) \mid uv \in E(G)\}$ and its closed neighborhood is the set $N_G[v] = N[v] = N(v) \cup \{v\}$. The degree of a vertex $v \in V$ is $\deg(v) = |N(v)|$. A leaf of G is a vertex with degree one in G, a support vertex is a vertex adjacent to a leaf, a strong support vertex is a support vertex adjacent to at least two leaves, an end support vertex is a support vertex whose all neighbors with exception at most one are leaves, and a weak support vertex is a support vertex with exactly one leaf neighbor. For every vertex $v \in V(G)$, the set of all leaves adjacent to

* Corresponding Author

© 2019 Azarbaijan Shahid Madani University
Observation 1. For every graph G, the outer-independent Roman domination function $\gamma_{oiR}(G) \geq \gamma_R(T)$.

In this paper, we provide a constructive characterization of trees T with $\gamma_R(T) = \gamma_{oiR}(T)$.

We make use of the following observations in this paper.

Observation 2. Let H be a subgraph of a graph G. If $\gamma_{oiR}(H) = \gamma_R(H)$, $\gamma_{oiR}(G) \leq \gamma_{oiR}(H) + s$ and $\gamma_R(G) \geq \gamma_R(H) + s$ for some non-negative integer s, then $\gamma_R(G) = \gamma_{oiR}(G)$, $\gamma_{oiR}(G) = \gamma_{oiR}(H) + s$ and $\gamma_R(G) = \gamma_R(H) + s$.

v is denoted by L_v. A double star $DS_{p,q}$ is a tree containing exactly two non-pendant vertices which one is adjacent to p leaves and the other is adjacent to q leaves. We denote by P_n the path on n vertices. The distance $d_G(u,v)$ between two vertices u and v in a connected graph G is the length of a shortest $u-v$ path in G. The diameter of a graph G, denoted by $\text{diam}(G)$, is the greatest distance between two vertices of G. For a vertex v in a rooted tree T, let $C(v)$ denote the set of children of v, $D(v)$ denotes the set of descendants of v and $D[v] = D(v) \cup \{v\}$. Also, the depth of v, $\text{depth}(v)$, is the largest distance from v to a vertex in $D(v)$. The maximal subtree at v is the subtree of T induced by $D[v]$, and is denoted by T_v. A proper induced subgraph H of a graph G is called a pendant subgraph if there is exactly one edge between $V(H)$ and $V(G) - V(H)$.

A function $f : V(G) \rightarrow \{0, 1, 2\}$ is called a Roman dominating function (RDF) on G if every vertex $u \in V$ for which $f(u) = 0$ is adjacent to at least one vertex v for which $f(v) = 2$. The weight of an RDF is the value $f(V(G)) = \sum_{u \in V(G)} f(u)$. The Roman domination number $\gamma_R(G)$ is the minimum weight of an RDF on G. Roman domination was introduced by Cockayne et al. in [8] and was inspired by the work of ReVelle and Rosing [10] and Stewart [12]. It is worth mentioning that since 2004, more than hundred papers have been published on this topic, where several new variations were introduced: weak Roman domination [9], Roman $\{2\}$-domination [7], maximal Roman domination [1], mixed Roman domination [3], double Roman domination [6], independent Roman domination [5], signed Roman domination [4, 11], signed total Roman domination [13, 14] and recently outer-independent Roman domination introduced by [2].

For a Roman dominating function f, let $V_i = \{v \in V \mid f(v) = i\}$ for $i = 0, 1, 2$. Since these three sets determine f, we can equivalently write $f = (V_0, V_1, V_2)$ (or $f = (V_0^f, V_1^f, V_2^f)$ to refer f). We note that $\omega(f) = |V_1| + 2|V_2|$.

A function $f : V(G) \rightarrow \{0, 1, 2\}$ is an outer-independent Roman dominating function (OIRDF) on G if f is an RDF and the set $\{v \in V \mid f(v) = 0\}$ is an independent set. The outer-independent Roman domination number $\gamma_{oiR}(G)$ is the minimum weight of an OIRDF on G. The concept of outer-independent Roman domination in graphs was introduced by Ahangar et al. in [2]. Since each outer-independent Roman dominating function is a Roman dominating function, we have the following observation.

Observation 1. For every graph G, $\gamma_{oiR}(T) \geq \gamma_R(T)$.

In this paper, we provide a constructive characterization of trees T with $\gamma_R(T) = \gamma_{oiR}(T)$.

We make use of the following observations in this paper.

Observation 2. Let H be a subgraph of a graph G. If $\gamma_{oiR}(H) = \gamma_R(H)$, $\gamma_{oiR}(G) \leq \gamma_{oiR}(H) + s$ and $\gamma_R(G) \geq \gamma_R(H) + s$ for some non-negative integer s, then $\gamma_R(G) = \gamma_{oiR}(G)$, $\gamma_{oiR}(G) = \gamma_{oiR}(H) + s$ and $\gamma_R(G) = \gamma_R(H) + s$.

$\}$
Proof. We deduce from the assumptions and Observation 1 that
\[\gamma_{oiR}(G) \geq \gamma_{R}(G) \geq \gamma_{R}(H) + s = \gamma_{oiR}(H) + s \geq \gamma_{oiR}(G). \]
Hence, all inequalities occurring in above chain, become equalities and so \(\gamma_{R}(G) = \gamma_{oiR}(G), \gamma_{oiR}(G) = \gamma_{oiR}(H) + s \) and \(\gamma_{R}(G) = \gamma_{R}(H) + s \).

\[\square \]

Observation 3. Let \(H \) be a subgraph of a graph \(G \). If \(\gamma_{R}(G) = \gamma_{oiR}(G), \gamma_{R}(G) \leq \gamma_{R}(H) + s \) and \(\gamma_{oiR}(G) \geq \gamma_{oiR}(H) + s \) for some non-negative integer \(s \), then \(\gamma_{R}(H) = \gamma_{oiR}(H), \gamma_{oiR}(G) = \gamma_{oiR}(H) + s \) and \(\gamma_{R}(G) = \gamma_{R}(H) + s \).

\[\square \]

2. A characterization of trees \(T \) with \(\gamma_{R}(T) = \gamma_{oiR}(T) \)

In this section we give a constructive characterization of all trees \(T \) satisfying \(\gamma_{R}(T) = \gamma_{oiR}(T) \). We start with a definition.

Definition 1. For a graph \(G \) and each vertex \(v \in V(G) \), we say \(v \) has property \(P \) in \(G \) if there exists a \(\gamma_{oiR}(G) \)-function \(f \) such that \(f(v) \neq 0 \). Define
\[W_{G} = \{ v \mid v \text{ has property } P \text{ in } G \}. \]

Proposition 1. Let \(G \) be a graph and \(v \) be a strong support vertex in \(G \). Then there exists a \(\gamma_{oiR}(G) \)-function (resp. \(\gamma_{R}(G) \)-function) \(f \) such that \(f(v) = 2 \).

Proof. Suppose \(w_{1}, w_{2} \in L_{v} \) and let \(f \) be a \(\gamma_{oiR}(G) \)-function. If \(f(v) = 2 \), then we are done. Let \(f(v) \leq 1 \). If \(f(v) = 1 \), then we must have \(f(w_{1}) = f(w_{2}) = 1 \) and the function \(g : V(G) \to \{0, 1, 2\} \) defined by \(g(w_{1}) = g(w_{2}) = 0, g(v) = 2 \) and \(g(u) = f(u) \) otherwise, is an OIRDF of \(G \) of weight less than \(\gamma_{oiR}(G) \) which is a contradiction. Hence, we assume \(f(v) = 0 \). Since \(f \) is an OIRDF of \(G \), we have \(f(x) \geq 1 \) for each \(x \in N(v) \). Now the function \(g \) defined above, is a \(\gamma_{oiR}(G) \)-function with \(g(v) = 2 \), as desired.

Using a similar argument, we can see that there exists a \(\gamma_{R}(G) \)-function \(f \) such that \(f(v) = 2 \).

\[\square \]

Corollary 1. Any strong support vertex of a graph \(G \), has property \(P \) in \(G \).
In order to presenting our constructive characterization, we define a family of trees as follows. Let \mathcal{T} be the family of trees T that can be obtained from a sequence T_1, T_2, \ldots, T_k of trees for some $k \geq 1$, where $T_1 \in \{P_2, P_3, P_4\}$ and $T = T_k$. If $i \geq 2$, T_{i+1} can be obtained from T_i by one of the following operations.

Operation O_1: If $x \in V(T_i)$ is a strong support vertex, then O_1 adds a pendant edge xy to obtain T_{i+1}.

Operation O_2: If $x \in V(T_i)$ is a strong support vertex or is adjacent to the center of a pendant star $K_{1,r}$ ($r \geq 1$), then O_2 adds a star $K_{1,2}$ and joins x to the center of $K_{1,2}$ to obtain T_{i+1}.

Operation O_3: If $x \in W_{T_i}$, then O_3 adds a star $K_{1,r}$ ($r = 2, 3$) and joins x to a leaf of $K_{1,r}$ to obtain T_{i+1}.

Operation O_4: If $x \in V(T_i)$ satisfies in one of the following statement:

1. x is a strong support vertex,
2. x is adjacent to the center of a pendant star $K_{1,r}$ ($r \geq 1$),
3. x is adjacent to a support vertex of a pendant path P_4,
4. x is adjacent to the center of a pendant path P_5,

then O_4 adds a path $y_1y_2y_3y_4y_5$ or a path $y_1y_2y_3y_4$ and joins x to y_3 to obtain T_{i+1}.

Operation O_5: If $x \in W_{T_i}$, then O_5 adds a double star $DS_{2,1}$ and joins x to the support vertex of degree 2 in $DS_{2,1}$ to obtain T_{i+1}.
Operation O_6: If $x \in V(T_i)$ satisfies in one of the following statement:

1. x is a strong support vertex,
2. x is a support vertex and there is a path xx_2x_1 such that $\deg(x_1) = 1$ and $\deg(x_2) = 2$,
3. there are two paths xx_2x_1 and xz_2z_1 such that $\deg(x_1) = \deg(z_1) = 1$ and $\deg(x_2) = \deg(z_2) = 2$,

then O_6 adds a path y_1y_2 and joins x to y_1 to obtain T_{i+1}.

Operation O_7: If $x \in W_{T_i}$, then O_7 adds the graph F_1 illustrated in Figure 1 and joins x to y to obtain T_{i+1}.

Operation O_8: If $x \in W_{T_i}$, then O_8 adds the graph F_2 illustrated Figure 2 and joins x to y to obtain T_{i+1}.

Operation O_9: If $x \in W_{T_i}$, then O_9 adds the graph F_3 illustrated in Figure 3 and the edge xy to obtain T_{i+1}.

Operation O_{10}: If $x \in W_{T_i}$, then O_{10} adds the graph F_4 illustrated Figure 4 and the edge xy to obtain T_{i+1}.

The proof of the first lemma is trivial by Proposition 1 and Observation 2 and therefore omitted.

Lemma 1. If T_i is a tree with $\gamma_R(T_i) = \gamma_{oiR}(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation O_1, then $\gamma_R(T_{i+1}) = \gamma_{oiR}(T_{i+1})$.

Lemma 2. If T_i is a tree with $\gamma_R(T_i) = \gamma_{oiR}(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation O_2, then $\gamma_R(T_{i+1}) = \gamma_{oiR}(T_{i+1})$.

Proof. Let the Operation O_2 add a star $K_{1,2}$ centered at y and join x to y. Clearly, any outer-independent Roman dominating function of T_i can be extended to an outer-independent Roman dominating function of T_{i+1} by assigning weight 2 to y and 0 to the vertices in L_y yielding $\gamma_{oiR}(T_{i+1}) \leq \gamma_{oiR}(T_i) + 2$.

Now let f be a $\gamma_R(T_{i+1})$-function such that $f(y) + f(x)$ is as large as possible. Obviously $f(y) = 2$. If $f(x) \geq 1$, then the function f, restricted to T_i is an RDF of T_i and so $\gamma_R(T_{i+1}) \geq 2 + \gamma_R(T_i)$. Let $f(x) = 0$. Then x is not a strong support vertex and so x is adjacent to the center, say w, of a pendant star $K_{1,r} \ (r \geq 1)$. We may assume without loss of generality that $f(w) = 2$. As above, the function f, restricted to T_i is an RDF of T_i and so $\gamma_R(T_{i+1}) \geq 2 + \gamma_R(T_i)$. Now the result follows by Observation 2.\square

Lemma 3. If T_i is a tree with $\gamma_R(T_i) = \gamma_{oiR}(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation O_3, then $\gamma_R(T_{i+1}) = \gamma_{oiR}(T_{i+1})$.
Proof. Let O_3 add a star $K_{1,r}$ ($r = 2, 3$) centered at z and an edge xy where y is a leaf of $K_{1,r}$. It is easy to see that $\gamma_R(T_{i+1}) \geq \gamma_R(T_i) + 2$. On the other hand, since $x \in W(T_i)$, there exists a $\gamma_{oiR}(T_i)$-function f with $f(x) \geq 1$. Then f can be extended to an outer-independent Roman dominating function of T_{i+1} by assigning weight 2 to z and 0 to the neighbors of z implying that $\gamma_{oiR}(T_{i+1}) \leq \gamma_{oiR}(T_i) + 2$. Now the result follows by Observation 2.

![Figure 3. The graph F_3 used in Operation O_9](image)

Lemma 4. If T_i is a tree with $\gamma_R(T_i) = \gamma_{oiR}(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation O_4, then $\gamma_R(T_{i+1}) = \gamma_{oiR}(T_{i+1})$.

Proof. Let O_4 add a path $y_1y_2y_3y_4y_5$ (resp. $y_1y_2y_3y_4$) and join x to y_3. Clearly, any outer-independent Roman dominating function of T_i can be extended to an outer-independent Roman dominating function of T_{i+1} by assigning the value 2 to y_3, 1 to y_1, y_5 and 0 to y_2, y_4 (resp. the value 2 to y_3, 1 to y_1 and 0 to y_2, y_4) and so $\gamma_{oiR}(T_{i+1}) \leq \gamma_{oiR}(T_i) + 4$ (resp. $\gamma_{oiR}(T_{i+1}) \leq \gamma_{oiR}(T_i) + 3$).

Assume now that f is a $\gamma_R(T_{i+1})$-function such that $f(N[x])$ is as large as possible. Obviously, $f(y_3) = 2$. Since, x is a strong support vertex or is adjacent to the center of a pendant star $K_{1,r}$ ($r \geq 1$) or is adjacent to a support vertex of a pendant path P_4 or is adjacent to the center of a pendant path P_5, by the choice of f we have $f(y) = 2$ for some $y \in N[x] \setminus \{y_3\}$. Hence, the function f, restricted to T_i is a Roman dominating function of T_i and we have $\gamma_R(T_{i+1}) \geq 4 + \gamma_R(T_i)$ (resp. $\gamma_R(T_{i+1}) \geq \gamma_R(T_i) + 3$). Now the result follows by Observation 2.

Lemma 5. If T_i is a tree with $\gamma_R(T_i) = \gamma_{oiR}(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation O_5, then $\gamma_R(T_{i+1}) = \gamma_{oiR}(T_{i+1})$.

Proof. Let O_5 add a double star $DS_{2,1}$ with the support vertices a, b and join x to a where $\deg(a) = 2$. Since, $x \in W(T_i)$, there exists a $\gamma_{oiR}(T_i)$-function f such that $f(x) \geq 1$. Then f can be extended to an outer-independent Roman dominating function of T_{i+1} by assigning weight 2 to b, 1 to the leaf adjacent to a and 0 to the vertices in $L_b \cup \{a\}$ yielding $\gamma_{oiR}(T_{i+1}) \leq \gamma_{oiR}(T_i) + 3$.

Assume that w is the leaf adjacent to a and g is a $\gamma_R(T_{i+1})$-function such that $g(b) + g(w)$ is as large as possible. Obviously, we have $g(b) = 2$ and $g(w) = 1$. Then the function g, restricted to T_i is a Roman dominating function of T_i and we have $\gamma_R(T_{i+1}) \geq 3 + \gamma_R(T_i)$. Now the result follows by Observation 2.

Lemma 6. If T_i is a tree with $\gamma_R(T_i) = \gamma_{oiR}(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation O_6, then $\gamma_R(T_{i+1}) = \gamma_{oiR}(T_{i+1})$.

Proof. Let O_6 add a path y_1y_2 and the edge xy_1. Suppose that f is a $\gamma_{oiR}(T_i)$-function such that $f(x)$ is as large as possible. Then $f(x) = 2$ and f can be extended to an outer-independent Roman dominating function of T_{i+1} by assigning a 1 to y_2 and a 0 to y_1 and this implies that $\gamma_{oiR}(T_{i+1}) \leq \gamma_{oiR}(T_i) + 1$.

On the other hand, if g is a $\gamma_R(T_{i+1})$-function, then $g(x) = 2$ and $g(y_2) = 1$, and the function g, restricted to T_i is a Roman dominating function of T_i yielding $\gamma_R(T_{i+1}) \geq 1 + \gamma_R(T_i)$. As in the above lemmas, we obtain $\gamma_{oiR}(T_{i+1}) = \gamma_R(T_{i+1})$.

Lemma 7. If T_i is a tree with $\gamma_R(T_i) = \gamma_{oiR}(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation O_7, then $\gamma_R(T_{i+1}) = \gamma_{oiR}(T_{i+1})$.

Proof. Let O_7 add the graph F_1 and the edge xy. Since, $x \in W_{T_i}$, there exists a $\gamma_{oiR}(T_i)$-function f such that $f(x) \geq 1$. Then f can be extended to an outer-independent Roman dominating function of T_{i+1} by assigning a 2 to y_3, a 1 to y_1, y_5 and a 0 to the vertices $N(y_3)$, and so $\gamma_{oiR}(T_{i+1}) \leq \gamma_{oiR}(T_i) + 4$.

On the other hand, let g be a $\gamma_R(T_{i+1})$-function such that $g(y_3)$ is as large as possible. Clearly, $g(y_3) = 2$, $g(y_1) = g(y_5) = 1$ and $g(y) = 0$. Hence, g restricted to T_i is an RDF of T_i implying that $\gamma_R(T_{i+1}) \geq 4 + \gamma_R(T_i)$. Now the result follows by Observation 2.

Lemma 8. If T_i is a tree with $\gamma_R(T_i) = \gamma_{oiR}(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation O_8, then $\gamma_R(T_{i+1}) = \gamma_{oiR}(T_{i+1})$.
Proof. Let O_8 add the graph F_2 and joins x to y. Since, $x \in W_{T_1}$, there exists a $\gamma_{oiR}(T_i)$-function f such that $f(x) \geq 1$ and f can be extended to an outer-independent Roman dominating function of T_{i+1} by assigning a 2 to y_3, a 1 to y_1, y_5, z and a 0 to y, y_2, y_4. Thus $\gamma_{oiR}(T_{i+1}) \leq \gamma_{oiR}(T_i) + 5$.

Now let g be a $\gamma_R(T_{i+1})$-function such that $g(y_3) + g(z)$ is as large as possible. Then we must have $g(y_3) = 2, g(z) = g(y_1) = g(y_5) = 1$ and $g(y) = 0$. Hence, the function g, restricted to T_i is an Roman dominating function of T_i and so $\gamma_R(T_{i+1}) \geq 5 + \gamma_R(T_i)$. Now the result follows by Observation 2.

\[\square \]

Lemma 9. If T_i is a tree with $\gamma_R(T_i) = \gamma_{oiR}(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation O_9, then $\gamma_R(T_{i+1}) = \gamma_{oiR}(T_{i+1})$.

Proof. Let O_9 add a graph F_3 and the edge xy. Since $x \in W_{T_1}$, there exists a $\gamma_{oiR}(T_i)$-function f such that $f(x) \geq 1$ and f can be extended to an outer-independent Roman dominating function of T_{i+1} by assigning a 2 to y_3, 1 to y_1 and 0 to the vertices in $N(y_3)$. Hence, $\gamma_{oiR}(T_{i+1}) \leq \gamma_{oiR}(T_i) + 3$.

Now let g be a $\gamma_R(T_{i+1})$-function such that $g(y_3)$ is as large as possible. Clearly, $g(y_3) = 2, g(y_1) = 1$ and $g(y) = 0$. Then the function g, restricted to T_i is an RDF of T_i yielding $\gamma_R(T_{i+1}) \geq 3 + \gamma_R(T_i)$. Now the result follows by Observation 2. \[\square \]

The proof of the next lemma is similar to the proof of Lemma 9 and therefore it is omitted.

Lemma 10. If T_i is a tree with $\gamma_R(T_i) = \gamma_{oiR}(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation O_{10}, then $\gamma_R(T_{i+1}) = \gamma_{oiR}(T_{i+1})$.

Theorem 4. If $T \in \mathcal{T}$, then $\gamma_R(T) = \gamma_{oiR}(T)$.

Proof. If $T \in \{P_2, P_3, P_4\}$, then obviously $\gamma_R(T) = \gamma_{oiR}(T)$. Suppose now that $T \in \mathcal{T}$. Then there exists a sequence of trees $T_1, T_2, \ldots, T_k (k \geq 1)$ such that $T_1 \in \{P_2, P_3, P_4\}, T = T_k$ and if $k \geq 2$, then T_{i+1} can be obtained from T_i by one of the Operations O_1, O_2, \ldots, O_{10} for $i = 1, 2, \ldots, k - 1$. We apply induction on the number of operations used to construct T. If $k = 1$, the result is trivial. Assume the result holds for each tree $T \in \mathcal{T}$ which can be obtained from a sequence of operations of length $k - 1$ and let $T' = T_{k-1}$. By the induction hypothesis, we have $\gamma_R(T') = \gamma_{oiR}(T')$. Since $T = T_k$ is obtained by one of the Operations O_1, O_2, \ldots, O_{10} from T', we conclude from the above Lemmas that $\gamma_R(T) = \gamma_{oiR}(T)$.

Now we are ready to prove our main result.

Theorem 5. Let T be a non-trivial tree. Then $\gamma_R(T) = \gamma_{oiR}(T)$ if and only if $T \in \mathcal{T}$.

Proof. According to Theorem 4, we need only to prove necessity. Let T be a tree of order $n \geq 3$ with $\gamma_R(T) = \gamma_{oiR}(T)$. The proof is by induction on n. If $n \leq 3$, then clearly $T \in \mathcal{T}$. Let $n \geq 4$ and let the statement hold for all trees of order less than n. Assume that T is a tree of order n with $\gamma_R(T) = \gamma_{oiR}(T)$. If $\text{diam}(T) \leq 3$, then $T = P_4$ or T is a star or double star. If $T = P_4$, then obviously $T \in \mathcal{T}$, if T is a star, then T can be obtained from P_3 by repeated application of operation \mathcal{O}_1, and if T is a double star different from P_4, then T can be obtained from P_3 by applying operation \mathcal{O}_2 once and operation \mathcal{O}_1 repeatedly, and this implies that $T \in \mathcal{T}$. Hence let $\text{diam}(T) \geq 4$.

Let $v_1v_2 \ldots v_k$ ($k \geq 5$) be a diametral path in T such that $\text{deg}_T(v_2)$ is as large as possible and root T at v_k. If $\text{deg}_T(v_2) \geq 4$, then clearly $\gamma_R(T-v_1) = \gamma_{oiR}(T-v_1)$. It follows from the induction hypothesis that $T - v_1 \in \mathcal{T}$ and hence T can be obtained from $T - v_1$ by Operation \mathcal{O}_1 implying that $T \in \mathcal{T}$. Assume that $\text{deg}_T(v_2) \leq 3$.

First let $\text{deg}_T(v_3) = 2$. Suppose that $T' = T - v_3$. Clearly, any Roman dominating function of T' can be extended to a Roman dominating function of T by assigning a 2 to v_2 and a 0 to the vertices in $N_T(v_2)$ yielding

$$\gamma_R(T) \leq \gamma_R(T') + 2. \quad (1)$$

Similarly, any outer-independent Roman dominating function of T' can be extended to an outer-independent Roman dominating function of T by assigning a 1 to v_3, a 2 to v_2 and a 0 to the vertices in L_{v_2} yielding $\gamma_{oiR}(T) \leq \gamma_{oiR}(T') + 3$. On the other hand, assume that f is a $\gamma_{oiR}(T)$-function. Clearly $f(N[v_2]) \geq 2$. If $f(v_3) \leq 1$, then the function f restricted to T' is an OIRDF of T' that implies $\gamma_{oiR}(T) \geq \gamma_{oiR}(T') + 2$. If $f(v_3) = 2$, then $f(L_{v_2}) \geq 1$, and the function $g : V(T') \to \{0, 1, 2\}$ defined by $g(v_4) = \min\{f(v_4) + 1, 2\}$ and $g(x) = f(x)$ otherwise is an OIRDF of T' of weight at most $\gamma_{oiR}(T) - 2$ yielding $\gamma_{oiR}(T) \geq \gamma_{oiR}(T') + 2$. Thus $\gamma_{oiR}(T) - 3 \leq \gamma_{oiR}(T') \leq \gamma_{oiR}(T) - 2$. If $\gamma_{oiR}(T') = \gamma_{oiR}(T) - 3$, then

$$\gamma_{oiR}(T') = \gamma_{oiR}(T) - 3 = \gamma_R(T) - 3 \leq \gamma_R(T') - 1$$

which is a contradiction by Observation 1. Hence,

$$\gamma_{oiR}(T') = \gamma_{oiR}(T) - 2. \quad (2)$$

By (1), (2) and Observation 3, we obtain $\gamma_R(T') = \gamma_{oiR}(T')$. By the induction hypothesis we have $T' \in \mathcal{T}$. Now we show that $v_4 \in W_{T'}$. Let h be a $\gamma_{oiR}(T)$-function such that $h(v_4)$ is as large as possible. Clearly $h(N[v_2]) \geq 2$. Since $\gamma_R(T) = \gamma_{oiR}(T)$, h is also a $\gamma_R(T)$-function. If $h(v_4) \geq 1$, then h restricted to T' is a $\gamma_{oiR}(T')$-function and we are done. Assume that $h(v_4) = 0$. Since h is an OIRDF of T, we must have $h(v_3) \geq 1$. If $h(v_3) = 1$, then to Roman dominate the vertices of v_1, v_2, we must have $h(N[v_2] - \{v_3\}) \geq 2$. But then the function $h_1 : V(T) \to \{0, 1, 2\}$ defined by $h_1(v_2) = 2, h_1(x) = 0$ for $x \in N(v_2)$ and $h_1(x) = h(x)$ otherwise, is an RDF of T of
On the other hand, let f dominate ω weight less than 194. On trees with equal Roman domination and... yield a Roman dominating function of T defined by h_T.

Let T' be a $\gamma_{oiR}(T)$-function such that $f(v_2) + f(v_3)$ is as large as possible. Clearly, $f(v_2) = 2$. If $f(v_3) \geq 1$, then the function f, restricted to T' is an outer-independent Roman dominating function of T' which implies that $\gamma_{oiR}(T') \leq \gamma_{oiR}(T) - 2$. Assume that $f(v_3) = 0$. We deduce from the assumption that v_3 is not a strong support vertex, and thus v_3 has one child with depth 1, say u, different from v_2. Since f is an OIRDF of T, we have $f(u) \geq 1$. To Roman dominate the leaves adjacent to u, we must have $f(u) + f(L(u)) \geq 2$. Without loss of generality, we may assume that $f(u) = 2$. Now the function f, restricted to T' is an outer-independent Roman dominating function of T' which implies that $\gamma_{oiR}(T') \leq \gamma_{oiR}(T) - 2$. Thus

\[
\gamma_{oiR}(T') \leq \gamma_{oiR}(T) - 2
\]

We conclude from (3), (4), Observation 3 and the induction hypothesis that $T' \in \mathcal{T}$. Now T can be obtained from T' by Operation O_3 and so $T \in \mathcal{T}$.

Subcase 1.2 $\deg_T(v_3) = 3$ and v_3 has one child with depth 0.

Assume that $T' = T - T_{v_3}$ and $L(v_3) = \{u\}$. Clearly, any Roman dominating function of T' can be extended to a Roman dominating function of T by assigning weight 2 to v_2, 1 to u and 0 to the vertices in $N_T(v_2)$ which implies that

\[
\gamma_R(T) \leq \gamma_R(T') + 3.
\]

Consider now a $\gamma_{oiR}(T)$-function f such that $f(v_2) + f(u)$ is as large as possible. Then we must have $f(v_2) = 2$, $f(u) = 1$ and $f(x) = 0$ for $x \in N(v_2)$. Then the function f, restricted to T' is an outer-independent Roman dominating function of T' which implies that

\[
\gamma_{oiR}(T') \leq \gamma_{oiR}(T) - 3.
\]
It follows from (3), (4) and Observation 3 that \(\gamma_{oiR}(T') = \gamma_R(T') \) and by the induction hypothesis we have \(T' \in \mathcal{T} \). Since \(\gamma_{oiR}(T') = \gamma_R(T') \), the function \(f \) restricted to \(T' \) is a \(\gamma_{oiR}(T') \)-function. Since \(f \) is an OIRDF of \(T \) and \(f(v_3) = 0 \), we deduce that \(f(v_4) \geq 1 \) and \(v_4 \in W_{T'} \). Now \(T \) can be obtained from \(T' \) by Operation \(\mathcal{O}_5 \) yielding \(T \in \mathcal{T} \).

Case 2. \(\deg_T(v_2) = 2 \).

First let \(\deg_T(v_2) \geq 4 \). Assume that \(T' = T - \{v_1, v_2\} \). By the choice of diametrical path, \(v_3 \) is a strong support vertex or is a weak support vertex and there is a path \(x x_2 x_1 \) such that \(\deg(x_1) = 1 \) and \(\deg(x_2) = 2 \) or there are two paths \(x x_2 x_1 \) and \(x_2 z_1 \) such that \(\deg(x_1) = \deg(z_1) = 1 \) and \(\deg(x_2) = \deg(z_2) = 2 \). If \(f \) is a \(\gamma_{oiR}(T) \)-function, then \(f \) is a \(\gamma_R(T) \)-function (since \(\gamma_{oiR}(T) = \gamma_R(T) \)) and we must have \(f(v_3) = 2 \) and \(f(v_1) = 1 \). Thus the function \(f \) restricted to \(T' \) is an OIRDF of \(T' \) and so \(\gamma_{oiR}(T) \geq \gamma_{oiR}(T') + 1 \). On the other hand, if \(g \) is a \(\gamma_R(T') \)-function such that \(g(v_3) \) is as large as possible, then clearly \(g(v_3) = 2 \) and \(g \) can be extended to an RDF of \(T \) by assigning a 1 to \(v_1 \) and a 0 to \(v_2 \) yielding \(\gamma_R(T) \leq \gamma_R(T') + 1 \). We conclude from Observation 3 that \(\gamma_{oiR}(T') = \gamma_R(T') \) and by the induction hypothesis we have \(T' \in \mathcal{T} \). Now \(T \) can be obtained from \(T' \) by Operation \(\mathcal{O}_6 \) and so \(T \in \mathcal{T} \).

Now, let \(\deg_T(v_3) = 3 \). Then \(T_{v_3} \) is a pendant path \(P_4 \) or a pendant path \(P_5 \) in \(T \). If \(\text{diam}(T) = 4 \), then \(T \) can be obtained from \(P_4 \) by Operation \(\mathcal{O}_6 \) or from \(P_2 \) by Operations \(\mathcal{O}_3, \mathcal{O}_6 \) and so \(T \in \mathcal{T} \). Suppose that \(\text{diam}(T) \geq 5 \). We distinguish the following subcases.

Subcase 2.1. \(v_3 \) is a support vertex and \(\deg_T(v_4) = 2 \).

Let \(u \) be the leaf adjacent to \(v_3 \) and let \(T' = T - T_{v_4} \). Clearly, any Roman dominating function of \(T' \) can be extended to a Roman dominating function of \(T \) by assigning a 2 to \(v_3 \), 1 to \(v_1 \) and 0 to \(v_2, v_4 \) which implies that \(\gamma_R(T) \leq \gamma_R(T') + 3 \). On the other hand, let \(f \) be a \(\gamma_{oiR}(T) \)-function such that \(f(v_3) \) is as large as possible. Then we must have \(f(v_3) = 2 \), \(f(v_1) = 1 \) and \(f(v_2) = f(u) = 0 \). Now the function \(g : V(T') \to \{0, 1, 2\} \) defined by \(g(v_3) = \min\{2, f(v_3) + f(v_4)\} \) and \(g(x) = f(x) \) otherwise, is an OIRDF of \(T' \) of weight \(\gamma_{oiR}(T) - 3 \) and this implies that \(\gamma_{oiR}(T') \leq \gamma_{oiR}(T) - 3 \). It follows that Observation 3 that \(\gamma_{oiR}(T') = \gamma_R(T') \) and so \(g \) is a \(\gamma_R(T') \)-function yielding \(v_5 \in W_{T'} \). By the induction hypothesis, we obtain \(T' \in \mathcal{T} \). Now \(T \) can be obtained from \(T' \) by Operation \(\mathcal{O}_9 \) and so \(T \in \mathcal{T} \).

Subcase 2.2. \(v_3 \) is a support vertex and \(v_4 \) has a child with depth 2.

Let \(u \) be the leaf adjacent to \(v_3 \) and let \(v_4 y_3 y_2 y_1 \) be a path in \(T \) such that \(y_3 \notin \{v_3, v_5\} \). By the choice of diametrical path we have \(\deg(y_2) = 1 \). Considering above arguments, we may assume that \(T_{y_3} = P_4 \) or \(T_{y_3} = P_5 \) since otherwise we can rename \(y_i \) as \(v_i \) and are in the case that \(\deg_T(v_3) = 2 \) which we have considered already. Let \(T' = T - T_{v_4} \). As in the Subcase 2.1, we have \(\gamma_R(T) \leq \gamma_R(T') + 3 \). Now let \(f \) be a \(\gamma_{oiR}(T) \)-function such that \(f(y_3) \) is as large as possible. Clearly, \(f(y_3) = 2 \) and \(f(u) + f(v_1) + f(v_2) + f(v_3) \geq 3 \). Hence the function \(f \) restricted to \(T' \) is an OIRDF of \(T' \) of weight at most \(\gamma_{oiR}(T) - 3 \) implying that \(\gamma_{oiR}(T) \geq \gamma_{oiR}(T') + 3 \). It follows that Observation 3 and the induction hypothesis that \(T' \in \mathcal{T} \). Since \(T \) can be obtained from \(T' \) by Operation \(\mathcal{O}_4 \), we have \(T \in \mathcal{T} \).
Subcase 2.3. \(v_3 \) is a support vertex and \(v_4 \) has a child with depth 1.
Let \(u \) be the leaf adjacent to \(v_3 \) and let \(v_4 y_2 y_1 \) be a path in \(T \) such that \(y_2 \not= v_5 \). Let \(T' = T - T_{v_3} \). As in the Subcase 2.1, we have \(\gamma_R(T) \leq \gamma_R(T') + 3 \). Now let \(f \) be a \(\gamma_{oiR}(T) \)-function such that \(f(v_3) + f(y_2) \) is as large as possible. Then clearly, \(f(v_3) = 2 \), \(f(u) + f(v_1) + f(v_2) + f(v_3) \geq 3 \) and either \(f(v_4) \geq 1 \) or \(f(v_4) = 0 \) and \(f(y_2) = 2 \). Hence, the function \(f \) restricted to \(T' \) is an OIRDF of \(T' \) of weight at most \(\gamma_{oiR}(T) - 3 \) yielding \(\gamma_{oiR}(T') \geq \gamma_{oiR}(T') + 3 \). By Observation 3 and the induction hypothesis, we have \(T' \in \mathcal{T} \). Since \(T \) can be obtained from \(T' \) by Operation \(O_4 \), we have \(T \in \mathcal{T} \).

Subcase 2.4. \(v_3 \) is a support vertex and \(v_4 \) is a strong support vertex.
Let \(u \) be the leaf adjacent to \(v_3 \) and let \(T' = T - T_{v_3} \). As in the Subcase 2.1, we have \(\gamma_R(T) \leq \gamma_R(T') + 3 \). Consider now a \(\gamma_{oiR}(T) \)-function \(f \) such that \(f(v_4) = 2 \) to according Proposition 1. Clearly, \(f(u) + f(v_1) + f(v_2) + f(v_3) \geq 3 \) and the function \(f \) restricted to \(T' \) is an OIRDF of \(T' \) of weight at most \(\gamma_{oiR}(T) - 3 \) yielding \(\gamma_{oiR}(T') \geq \gamma_{oiR}(T') + 3 \). By Observation 3 and the induction hypothesis, we have \(T' \in \mathcal{T} \). Now, \(T \) can be obtained from \(T' \) by Operation \(O_4 \), we have \(T \in \mathcal{T} \).

Subcase 2.5. \(v_3 \) is a support vertex, \(\deg_T(v_4) = 3 \) and \(v_4 \) has a child with depth 0. Let \(z \) be the leaf adjacent to \(v_4 \). If \(\text{diam}(T) = 4 \), then \(T \) can be obtained from \(P_3 \) by Operation \(O_4 \) and so \(T \in \mathcal{T} \). Let \(\text{diam}(T) \geq 5 \) and let \(T' = T - T_{v_4} \). Clearly, any \(\gamma_R(T') \)-function can be extended to an RDF of \(T \) by assigning a 2 to \(v_3 \), a 1 to \(v_1, z \) and a 0 to \(u, v_2, v_4 \) and so

\[
\gamma_R(T) \leq \gamma_R(T') + 4. \tag{7}
\]

Let \(f \) be a \(\gamma_{oiR}(T) \)-function such that \(f(v_3) + f(z) \) is as large as possible. Clearly, \(f(v_3) = 2 \), \(f(V(T_{v_3})) \geq 3 \) and \(f(V(T_{v_4})) \geq 4 \). We claim that \(f(v_4) = 0 \). Suppose, to the contrary, that \(f(v_4) \geq 1 \). Since \(\gamma_R(T) = \gamma_{oiR}(T) \), \(f \) is also a \(\gamma_R(T) \)-function. This implies that \(f(v_4) = 2 \), otherwise we must have \(f(z) = 1 \) and the function \(h : V(T) \to \{0, 1, 2\} \) defined by \(h(v_4) = 0 \), and \(h(t) = f(t) \) otherwise, is an RDF of \(T \) of weight less that \(\omega(f) = \gamma_R(T) \) which is a contradiction. Now the function \(g : V(T) \to \{0, 1, 2\} \) defined by \(g(v_4) = 0, g(z) = 1, g(v_5) = \min\{2, f(v_5) + 1\} \) and \(g(x) = f(x) \) otherwise, is a \(\gamma_{oiR}(T) \)-function contradicting the choice of \(f \). Thus \(f(v_4) = 0 \) and so \(f(v_3) \geq 1 \) because \(f \) is an OIRDF of \(T \). Then the function \(f \) restricted to \(T' \) is an OIRDF of \(T' \) and so

\[
\gamma_{oiR}(T) \geq \gamma_{oiR}(T') + 4. \tag{8}
\]

We deduce from (7), (8) and Observation 3 that \(\gamma_{oiR}(T') = \gamma_R(T') \) and so \(f \) restricted to \(T' \) is a \(\gamma_{oiR}(T') \)-function implying that \(v_5 \in W_{T'} \). By the induction hypothesis, we have \(T' \in \mathcal{T} \) and since \(T \) can be obtained from \(T' \) by Operation \(O_{10} \), we have \(T \in \mathcal{T} \).

Subcase 2.6. There is a pendant path \(v_3 y_2 y_1 \) such that \(y_2 \not\in \{v_2, v_4\} \), and \(\deg_T(v_4) = 2 \).
Then \(T_{v_3} = P_5 \). If \(\text{diam}(T) = 4 \), then \(T \) can be obtained from \(P_5 \) by Operation \(O_6 \) and so \(T \in \mathcal{T} \). Suppose \(\text{diam}(T) \geq 5 \) and let \(T' = T - T_{v_4} \). Clearly, any Roman
dominating function of T' can be extended to a Roman dominating function of T by assigning a 2 to v_3, 1 to v_1, y_1 and 0 to v_2, y_2, v_4 which implies that

$$\gamma_R(T) \leq \gamma_R(T') + 4. \quad (9)$$

Consider now a $\gamma_{oiR}(T)$-function f such that $f(v_3)$ is as large as possible. Then we must have $f(v_3) = 2$, $f(v_1) = f(y_1) = 1$ and $f(v_2) = f(y_2) = 0$. Now the function $g : V(T') \to \{0, 1, 2\}$ defined by $g(v_5) = \min\{2, f(v_5) + f(v_4)\}$ and $g(x) = f(x)$ otherwise, is an OIRDF of T' of weight $\gamma_{oiR}(T) - 4$ yielding

$$\gamma_{oiR}(T') \leq \gamma_{oiR}(T) - 4. \quad (10)$$

By inequalities (9), (10) and Observation 3, we have $\gamma_{oiR}(T') = \gamma_R(T')$ and so g is a $\gamma_R(T')$-function. Since f is an OIRDF of T, we must have $f(v_4) + f(v_5) \geq 1$ and so $g(v_5) = \min\{2, f(v_5) + f(v_4)\} \geq 1$ yielding $v_5 \in W_{T'}$. By the induction hypothesis, we obtain $T' \in \mathcal{T}$. Since T can be obtained from T' by Operation O_7, we have $T \in \mathcal{T}$.

Subcase 2.7. There is a pendant path $v_3y_2y_1$ such that $y_2 \notin \{v_2, v_4\}$, and v_4 has a child with depth 2.

Let $v_4z_3z_2z_1$ be a path in T such that $z_3 \notin \{v_3, v_5\}$. By the choice of diametrical path we have $\deg(z_2) = 1$. If $\deg(z_3) = 2$, then T can be obtained from $T - T_{z_3}$ by Operation O_3 (see the third paragraph of the proof), if $\deg(z_3) \geq 4$, then T can be obtained from $T - \{z_1, z_2\}$ by Operation O_6 (see the first paragraph of Case 2) and if $\deg(v_3) = 3$ and z_3 is a support vertex, then T can be obtained from $T - T_{z_3}$ by Operation O_4 (see Subcase 2.2). Henceforth, we may assume that $T_{y_3} = P_5$.

Let $T' = T - T_{v_3}$. Clearly, any Roman dominating function of T' can be extended to a Roman dominating function of T by assigning a 2 to v_3, 1 to v_1, y_1 and 0 to v_2, y_2 and so

$$\gamma_R(T) \leq \gamma_R(T') + 4. \quad (11)$$

Consider now a $\gamma_{oiR}(T)$-function f such that $f(v_3) + f(z_3)$ is as large as possible. Then we must have $f(v_3) = f(z_3) = 2$, $f(v_1) = f(y_1) = 1$ and $f(v_2) = f(y_2) = 0$, and f restricted to T' is an OIRDF of T' of weight $\gamma_{oiR}(T) - 4$ and so

$$\gamma_{oiR}(T) \geq \gamma_{oiR}(T') + 4. \quad (12)$$

By inequalities (11), (12), Observation 3 and the induction hypothesis $T' \in \mathcal{T}$. Since T can be obtained from T' by Operation O_4, we have $T \in \mathcal{T}$.

Subcase 2.8. There is a pendant path $v_3y_2y_1$ such that $y_2 \notin \{v_2, v_4\}$, and v_4 has a child z_2 with depth 1.

Let $v_4z_2z_1$ be a path in T. Assume that $T' = T - T_{v_3}$. As in the Subcase 2.7, we can see that $\gamma_R(T) \leq \gamma_R(T') + 4$. Now let f be a $\gamma_{oiR}(T)$-function such that $f(v_3) + f(z_2)$ is as large as possible. Then clearly, $f(v_3) = 2$, $f(y_2) + f(y_1) + f(v_1) + f(v_2) + f(v_3) \geq 4$ and either $f(v_4) \geq 1$ or $f(v_4) = 0$ and $f(z_2) = 2$. Hence, the function f restricted to
T' is an OIRDF of T' of weight at most $\gamma_{oiR}(T) - 4$ yielding $\gamma_{oiR}(T) \geq \gamma_{oiR}(T') + 4$. By Observation 3 and the induction hypothesis, we obtain $T' \in \mathcal{T}$ and since T can be obtained from T' by Operation O_4, we have $T \in \mathcal{T}$.

Subcase 2.9. There is a pendant path $v_3y_2y_1$ such that $y_2 \notin \{v_2, v_4\}$, and v_4 is a strong support vertex. Let $T' = T - T_{v_4}$. As in the subcase 2.4, we can see that $T' \in \mathcal{T}$, and since T can be obtained from T' by Operation O_4, we have $T \in \mathcal{T}$.

Subcase 2.10. There is a pendant path $v_3y_2y_1$ such that $y_2 \notin \{v_2, v_4\}$, $\deg_T(v_4) = 3$ and v_4 has a child with depth one. Let z be the child of v_4 with depth one and let $T' = T - T_{v_4}$. Clearly, any $\gamma_R(T')$-function can be extended to an RDF of T by assigning a 2 to v_3, a 1 to v_1, y_1, z and a 0 to y_2, v_2, v_4 and so $\gamma_R(T) \leq \gamma_R(T') + 5$. Consider now a $\gamma_{oiR}(T)$-function f such that $f(v_3) + f(z)$ is as large as possible. Clearly, $f(v_3) = 2$, $f(V(T_{v_4})) \geq 4$ and $f(V(T_{v_4})) \geq 5$. We claim that $f(v_4) = 0$. Suppose, to the contrary, that $f(v_4) \geq 1$. Since $\gamma_R(T) = \gamma_{oiR}(T)$, f is also a $\gamma_R(T)$-function. This implies that $f(v_4) = 2$, otherwise we must have $f(z) = 1$ and the function $h : V(T) \to \{0, 1, 2\}$ defined by $h(v_4) = 0$, and $h(t) = f(t)$ otherwise, is an RDF of T of weight less that $\omega(f) = \gamma_R(T)$ which is a contradiction. Define $g : V(T) \to \{0, 1, 2\}$ by $g(v_4) = 0, g(z) = 1, g(v_5) = \min\{2, f(v_5) + 1\}$ and $g(x) = f(x)$ otherwise. Clearly, g is a $\gamma_{oiR}(T)$-function contradicting the choice of f. Thus $f(v_4) = 0$ and so $f(v_5) \geq 1$ because f is an OIRDF of T. Now the function f restricted to T' is an OIRDF of T' and so $\gamma_{oiR}(T') \geq \gamma_{oiR}(T') + 5$. We deduce from Observation 3 that $\gamma_{oiR}(T') = \gamma_R(T')$ and hence f restricted to T' is a $\gamma_{oiR}(T')$-function with $f(v_5) \geq 1$ implying that $v_5 \in W_{T'}$. On the other hand, by the induction hypothesis, we have $T' \in \mathcal{T}$ and since T can be obtained from T' by Operation O_8, we have $T \in \mathcal{T}$. This completes the proof.

References

