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Instituto de Matemáticas, UNAM Juriquilla, Querétaro, Mexico

ahansberg@im.unam.mx

Received: 2 December 2018; Accepted: 3 April 2019

Published Online: 5 April 2019

This paper is dedicated to Lutz Volkmann on the occasion of his 75th birthday.

Abstract: Erdős [On Schütte problem, Math. Gaz. 47 (1963)] proved that every

tournament on n vertices has a directed dominating set of at most log(n + 1) vertices,
where log is the logarithm to base 2. He also showed that there is a tournament on n

vertices with no directed domination set of cardinality less than logn− 2 log logn + 1.

This notion of directed domination number has been generalized to arbitrary graphs by
Caro and Henning in [Directed domination in oriented graphs, Discrete Appl. Math.

(2012) 160:7–8.]. However, the generalization to directed r-uniform hypergraphs seems

to be rare. Among several results, we prove the following upper and lower bounds

on
−→
Γ r−1(H(n, r)), the upper directed (r − 1)-domination number of the complete

r-uniform hypergraph on n vertices H(n, r), which is the main theorem of this paper:

c(lnn)
1

r−1 ≤
−→
Γ r−1(H(n, r)) ≤ C lnn,

where r is a positive integer and c = c(r) > 0 and C = C(r) > 0 are constants

depending on r.
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1. Introduction

Erdős [5] proved that every tournament on n vertices has a directed dominating set of

at most log(n+ 1) vertices, where log is the logarithm to base 2. He also showed that

there is a tournament on n vertices with no directed domination set of cardinality

∗ Corresponding Author



174 Directed domination in oriented hypergraphs

less than log n− 2 log log n+ 1. This notion of directed domination number has been

generalized to arbitrary graphs by Caro and Henning [3, 4] and was recently treated

in [6]. A generalization to directed domination in directed r-uniform hypergraphs

seems to be rare [8]. For results on domination in hypergraphs, see [1, 2, 7].

We consider an r-uniform hypergraph H = (V, E), where V is the vertex set and E
is the edge set consisting of r-subsets of V . An orientation D of H is an oriented

hypergraph D = (V, E(D)), where the edge set E(D) consists of all edges in E such

that each of them is provided with a linear ordering of its elements (exactly one of

the r! possible orders).

Let D be an orientation of H = H(V, E). For 1 ≤ p ≤ r − 1, a set S ⊆ V is called a

directed p-dominating set of D if for every vertex u ∈ V \ S there is an ordered edge

E ∈ E(D) with u ∈ E such that the first p vertices from E are in S. Observe that

the definition covers the cases when H(V, E) contains isolated vertices or even when

H is edgeless, in which case we must have S = V . A minimum directed p-dominating

set S is a directed p-dominating set of D of minimum cardinality and −→γ p(D) = |S|.
We denote with −→γ p(H) and

−→
Γ p(H) the minimum and, respectively, the maximum of

−→γ p(D), where D ranges over all possible orientations D of H. We will call −→γ p(H)

and
−→
Γ p(H) the lower and, respectively, the upper directed p-domination numbers.

An immediate observation is that

−→
Γ i(H) ≤

−→
Γ j(H) (1)

for 1 ≤ i < j ≤ r − 1.

Back to the seminal result of Erdős, it can be translated to

log n− 2 log log n+ 1 ≤
−→
Γ 1(H(n, 2)) ≤ log(n+ 1),

where H(n, r) stands for the complete r-uniform hypergraph on n vertices. Surpris-

ingly, even to prove that
−→
Γ 1(H(n, 3)) is unbounded as a function of n (a problem

raised by A. Gyárfás, see [8]) turns to be highly non trivial and it only has been solved

recently [8] with a growth function which is poly-logarithmic in log∗(n).

Our first aim in this work is to prove the following theorem.

Theorem 1. Let n ≥ r and r ≥ 2 be positive integers.

(i) For every integer p with 1 ≤ p ≤ r − 1,

−→
Γ p(H(n, r)) < r

(
1 + ln(n+ (r − 1)2)

)
.

(ii) There is a constant c = c(r) > 0 such that

−→
Γ r−1(H(n, r)) ≥ c (lnn)

1
r−1 .
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The upper bound is proved by a standard application of the so called Greedy Partition

Lemma (GPL), which is developed in [3] in full generality. The lower bound is proved

by the probabilistic method via, a bit involved yet, standard expectation argument.

Note that while, for r = 2, p = 1, the lower and upper bounds in Theorem 1 have

the same order of magnitude (which is weaker than the nearly exact result of Erdős),

already for r = 3 and p = 2 the most we get is c
√

log n ≤
−→
Γ 2(H(n, 3)) ≤ C log n, for

some other constant C > 0. Closing the gap for r = 3 and p = 2 is an interesting

problem in view of the much more dramatic gap in case r = 3 and p = 1.

Our second aim in this note is to generalize a theorem first proved in [4] for directed

graphs to the context of directed r-uniform hypergraphs using Theorem 1. Given a

hypergraph H = (V, E), we call a subset S ⊆ V (H) independent if no edge is fully

contained in S, that is, E \ S 6= ∅ for every edge E ∈ E . We denote with α(H)

the maximum cardinality of an independent set of H. A proper coloring of H is a

mapping f : V → N such that no edge is monochromatic, that is, |f(E)| ≥ 2 for every

edge E ∈ E . The minimum number of colors that is needed for a proper coloring of H

is denoted with χ(H). A clique S ⊆ V in H is a set of vertices such that every r-set

E ⊆ S is an edge E ∈ E . The cardinality of a clique of maximum size is called the

clique number ω(H) of H. Observe that, for the complementary hypergraph H of H,

we have α(H) = ω(H). Moreover, every proper coloring of H with k colors induces

a partition of the vertex set into k different color classes, each being an independent

set of H. Hence, α(H) ≥ n
χ(H) , where n = |V |.

Theorem 2. Let r ≥ 2 and p be integers such that 1 ≤ p ≤ r− 1. Let H be an r-uniform
hypergraph. Then

−→
Γ p(H) ≤ r χ(H)

(
1 + ln

(
n

χ(H)
+ (r − 1)2

))
.

2. Further notation and definitions

We shall now complete the notation used in this paper. Given a hypergraph

H = (V, E), the number of vertices and edges of H is denoted with n(H) and e(H),

respectively. Let E(v) be the set of edges that contains v and deg(v) = |E(v)| the

degree of v. We denote with H(n, r) the complete r-uniform hypergraph on n vertices.

For a hypergraph H = (V, E) and a subset U ⊂ V , the induced subhypergraph H[U ] of

H by U is the hyperpgraph with vertex set U and all edges E ∈ E such that E ⊆ U .

Let H = (V, E) be an r-uniform hypergraph and let p be an integer such that 1 ≤ p ≤
r − 1. A set S ⊆ V (H) is called p-dominating set if for every vertex u ∈ V \ S there

is an edge E ∈ E(u) such that |E ∩ S| ≥ p. If S is a p-dominating set of minimum

cardinality, we call it a minimum p-dominating set and we set γp(H) = |S|. Note that

γ1(H) coincides with the concept of domination studied in [1, 2, 7].

Let D be an orientation of H. For a set A ⊆ V with 1 ≤ |A| ≤ r−1, define
−→
ED(A) as

the set of edges E ∈ EH where A occupies the first |A| positions in E under orientation
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D and
−→
ND(A) = ∪

E∈
−→
ED(A)

E \A. Let
−→
degD(A) = |

−→
ED(A)| and −→n D(A) = |

−→
ND(A)|.

For simplicity, we set
−→
ED({v}) =

−→
ED(v),

−→
ND({v}) =

−→
ND(v),

−→
degD({v}) =

−→
degD(v)

and −→n D({v}) = −→n D(v) for any vertex v ∈ V . We denote
−→
∆p(D) = max

−→
degD(A),

among all sets A ⊆ V with |A| = p, and
−→
∆p(H) = max

−→
∆p(D), where the maximum

is taken among all possible orientations D of H.

3. Proofs of the theorems

Before proving our main results, we need to formulate the so called Greedy Patition

Lemma or, for short, GPL, that was given in [3] and which will be the main tool

in proving upper bounds on directed domination. Note that the authors of [3] give

a much more general version of this lemma, here we will state it just in the form

that we will require along this paper. The GPL lemma as stated in [3] is just one

of several forms suitable to approximate through a greedy algorithm that in each

step deletes certain subset of the vertex set of the considered hypergraph H that

satisfies a particular property. Here this subset consists of a set A of cardinality p

and all the vertices directed dominated by A in certain orientation D of the considered

hypergraph, namely
−→
ND(A) ∪ A. The crucial point in this lemma and its variations

is that, in each step, we approximate from below the order of the deleted subset by

a function f(x) where x is the cardinality of the current structure (from which then

this vertex subset is deleted). So adaptation of the GPL version from [3] is simply

done by observing that, for x ≥ 2r−1, the directed dominating set we remove at each

step has cardinality at least (x− r + 1)/r + p.

Theorem 3. (Greedy Partition Lemma (GPL), [3]) Let H be a class of hypergraphs
closed under induced subhypergraphs. Let t ≥ 2 be an integer and let f : [t,∞) → [1,∞)
be a positive nondecreasing continuous function. If for any hypergraph H ∈ H and any
orientation D of H, we have that

max
A⊆V (H),|A|=p

nD(A) + p ≥ f(|V (H)|),

then
−→
Γ p(H) ≤ t+

∫ max{|V (H)|,t}

t

1

f(x)
dx.

We can now prove our main result.

Theorem 4. Let n ≥ r and r ≥ 2 be positive integers.

(i) For every integer p with 1 ≤ p ≤ r − 1,

−→
Γ p(H(n, r)) < r

(
1 + ln(n+ (r − 1)2)

)
.
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(ii) There is a constant c = c(r) > 0 such that

−→
Γ r−1(H(n, r)) ≥ c (lnn)

1
r−1 .

Proof. (i) For proving the upper bound, observe that, because of the monotonicity

(1), it suffices to prove the theorem for p = r − 1.

We take an orientation D of the edges of H(n, r). Let A∆ ⊆ V (H(n, r)) be a set of

r − 1 vertices such that
−→
degD(A∆) =

−→
∆r−1(D) and observe that

−→n D(A∆) ≥
−→
degD(A∆) =

−→
∆r−1(D).

On the other hand, since
∑

A⊆V (D),|A|=r−1

−→
degD(A) =

(
n

r

)
, we have

−→
∆r−1(D) ≥

(
n

r − 1

)−1 ∑
A⊆V (D),|A|=r−1

−→
degD(A)

=

(
n

r − 1

)−1(
n

r

)
=

(r − 1)!(n− r + 1)!

r!(n− r)!

=
n− r + 1

r
.

Hence, combining both inequalities, we obtain −→n D(A∆) ≥ n−r+1
r .

Setting f(x) = x+(r−1)2

r , we have a non-decreasing function f with f(x) ≥ 1 for

x ≥ 2r − 1 and such that

f(n) =
n+ (r − 1)2

r
=
n− r + 1

r
+ r − 1 ≤ −→n D(A∆) + r − 1.

Thus, we can apply the GPL, which leads to

−→
Γ r−1(H) ≤ 2r − 1 +

∫ n

2r−1

r

x+ (r − 1)2
dx

= 2r − 1 + r ln(n+ (r − 1)2)− r ln(2r − 1 + (r − 1)2)

= 2r − 1 + r ln(n+ (r − 1)2)− r ln(r2)

= r

(
2− 1

r
+ ln(n+ (r − 1)2)− ln(r2)

)
= r

(
1 + ln(n+ (r − 1)2) + ln

(
e1− 1

r

r2

))
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Finally, noting that e1− 1
r < r2 for r ≥ 2, we obtain

−→
Γ r−1(H) < r

(
1 + ln(n+ (r − 1)2)

)
.

(ii) Let D be a random orientation of the edges of H such that every edge is given

independently one of the possible r! linear orders. Let S ⊆ V be a set of t ≥ r − 1

vertices and v ∈ V \S a vertex not in S. Consider a fixed set A ⊆ V of r− 1 vertices.

Then the probability that A occupies the first r − 1 positions in an edge E ∈ E(H),

say E = A ∪ {v}, under orientation D is equal to (r−1)!
r! = 1

r , namely the number of

linear orders of the edge E = A ∪ {v} where v appears last divided by the number

of all possible linear orders of E = A ∪ {v}. Thus the probability that A does not

(r − 1)-dominate v is 1 − 1
r = r−1

r . This implies that the probability that there is a

set A ⊆ S with |A| = r−1 that (r−1)-dominates v is equal to 1− ( r−1
r )(

t
r−1), namely

1 minus the probability that no (r − 1)-subset of S (r − 1)-dominates v. Therefore,

the probability that S (r − 1)-dominates all vertices in V \ S is equal to

(
1−

(
r − 1

r

)( t
r−1)

)n−t
.

Let x be the number of directed (r − 1)-dominating sets of cardinality t in H under

orientation D. Then we have

E[x] =

(
n

t

)(
1−

(
r − 1

r

)( t
r−1)

)n−t
.

Note that, if E[x] < 1, then there is an orientation of H such that there is no directed

(r−1)-domination set of cardinality t. We will now determine the best possible t, i.e.

we will try to find a t as large as possible such that E[x] < 1. Since

E[x] =

(
n

t

)(
1−

(
1− 1

r

)( t
r−1)

)n−t
<
(n · e

t

)t
e−(n−t)( r−1

r )(
t

r−1)
,

it is sufficient to solve (n · e
t

)t
< e(n−t)( r−1

r )(
t

r−1)
,

or, equivalently,

t · lnn+ t− t ln t < (n− t)
(
r − 1

r

)( t
r−1)

or rather

(t · lnn+ t− t ln t)

(
r

r − 1

)( t
r−1)

+ t < n.
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Since 2 < ln t for t > 7, which we may assume for n large enough,

(t · lnn+ t− t ln t)

(
r

r − 1

)( t
r−1)

+ t < (t · lnn+ 2t− t ln t)

(
r

r − 1

)( t
r−1)

.

Hence, it is sufficient to solve

t lnn

(
r

r − 1

)( t
r−1)

< n.

Moreover, since
(
t

r−1

)
< ( t·e

r−1 )r−1, it will be enough to solve the inequality

t lnn(
r

r − 1
)( t·e

r−1 )(r−1)

< n,

which is equivalent to

ln t+ ln(lnn) +

(
t · e
r − 1

)(r−1)

ln

(
r

r − 1

)
< lnn.

From the upper bound given in (i), we know that t ≤ r + r ln(n − r + 1) = r(1 +

ln(n− r + 1)). Hence,

ln t+ ln(lnn) +

(
t · e
r − 1

)(r−1)

ln

(
r

r − 1

)
≤ ln(r(1 + ln(n− r + 1))) +

(
t · e
r − 1

)(r−1)

ln

(
r

r − 1

)
.

We may assume ln(r(1 + ln(n− r + 1))) + ln(lnn) < lnn
2 for n large enough, thus it

is sufficient to solve

lnn

2
+

(
t · e
r − 1

)(r−1)

ln

(
r

r − 1

)
< lnn,

which leads finally to

t <

(
lnn

2 ln( r
r−1 )

) 1
r−1

r − 1

e
= c (lnn)

1
r−1

for a constant c = c(r) > 0 depending on r. Altogether it follows that

−→
Γ r−1(H) ≥ c (lnn)

1
r−1 .
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We shall now use Theorem 4(i) to get a general upper bound for arbitrary r-uniform

hypergraphs. However, we first need a lemma.

Lemma 1. Let H be a hypergraph and let V1, V2, . . . , Vk be subsets of V , not necessarily
disjoint, such that ∪ki=1Vi = V . Let Hi = H[Vi]. Then

−→
Γ p(H) ≤

k∑
i=1

−→
Γ p(Hi).

Proof. Consider an arbitrary orientation D of H. For each i = 1, 2, . . . , k, let Di be

the orientation induced by D on Hi and let Si be a directed p-dominating set of Di

of minimum cardinality. Evidently
−→
Γ p(Hi) ≥ −→γ p(Di) = |Si|. Moreover, S = ∪ki=1Si

is a directed p-dominating set of D. This implies

−→γ p(D) ≤
k∑
i=1

|Si| =
k∑
i=1

−→γ p(Di) ≤
k∑
i=1

−→
Γ p(Hi).

Since D was chosen arbitrarily, the inequality holds also for
−→
Γ p(H) and thus

−→
Γ p(H) ≤

k∑
i=1

−→
Γ p(Hi).

Now we can state and prove our second main result. In [4], Caro and Henning prove

that, for a graph G of order n,

−→
Γ p(G) ≤ χ(G) log

(
n

χ(G)
+ 1

)

holds. Inspired by this result, we give in the next theorem a similar statement for

hypergraphs.

Theorem 5. Let r ≥ 2 and p be integers such that 1 ≤ p ≤ r− 1. Let H be an r-uniform
hypergraph. Then

−→
Γ p(H) ≤ r χ(H)

(
1 + ln

(
n

χ(H)
+ (r − 1)2

))
.

Proof. Let t = χ(H) and consider a proper coloring of H into t color classes

Q1, Q2, . . . , Qt with |Qi| = qi for 1 ≤ i ≤ t. Since every color class is an inde-

pendent set, we observe that the sets Q1, Q2, . . . , Qt correspond to cliques in H or to

trivial sets if 1 ≤ qi ≤ r − 1.
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Let D be an arbitrary orientation of H and let Di = D[Qi] denote the orientation of

H[Qi] induced by D. Then, by Lemma 1,

−→γ p(D) ≤
t∑
i=1

−→γ p(Di) ≤
t∑
i=1

−→
Γ p(H[Qi]) =

t∑
i=1

−→
Γ p(H(qi, r)).

If qi ≤ r − 1 for some i ∈ {1, 2, . . . , t}, then

−→
Γ p(H(qi, r)) = qi < r ≤ r

(
1 + ln(qi + (r − 1)2)

)
.

On the other hand, if qi ≥ r, then Theorem 4 yields

−→
Γ p(H(qi, r)) < r

(
1 + ln(qi + (r − 1)2)

)
.

Hence, since D was arbitrarily chosen and
−→
Γ p(H(qi, r)) = qi ≤

r
(
1 + ln(qi + (r − 1)2)

)
for all 1 ≤ i ≤ t by the above discussion, we obtain

−→
Γ p(H) ≤

t∑
i=1

−→
Γ p(H(qi, r)) ≤

t∑
i=1

r
(
1 + ln(qi + (r − 1)2)

)
.

Since n =
∑t
i=1 qi, it follows, by Jensen’s inequality applied on the concave function

lnx, that

−→
Γ p(H) ≤

t∑
i=1

r
(
1 + ln(qi + (r − 1)2)

)
= rt+ r

t∑
i=1

ln(qi + (r − 1)2)

≤ rt+ rt ln

(
n+ t(r − 1)2

t

)
= rt

(
1 + ln

(n
t

+ (r − 1)2
))

.

Hence, we have proved that

−→
Γ p(H) ≤ r χ(H)

(
1 + ln

(
n

χ(H)
+ (r − 1)2

))
.
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Using GPL has the advantage of getting at once a general upper bound for every

choice of n and r for the directed domination number of H(n, r). The disadvantage

of using GPL is that it is known not to give the best possible leading constant. Still,

for our main purpose, which is to get the logarithmic upper bound in Theorem 4 (i)

for every choice of r and n, GPL suffices. The method also leads to slightly weaker

results in Theorem 5 for the case r = 2 in comparison with the bound in [4] derived

directly from Erdős’ upper bound for the case r = 2. However, getting better leading

constants already for r ≥ 3 seems less important as long as the order of magnitude

of even
−→
Γ r−1(H(n, r)) is not known.

4. Open problems

We close this paper with a few problems.

Problem 1. Certainly the most challenging problem is to try to determine the correct

order of
−→
Γ p(H(n, r)) for r ≥ 3 and 1 ≤ p ≤ r − 1.

Problem 2. Is it true that
−→
Γ 2(H(n, 3)) = Θ(

√
logn)?

Problem 3. Is it true that, for some positive constants c and α,
−→
Γ 1(H(n, 3)) ≥ c(logn)α?

Problem 4. Let r, p be positive integers such that 1 ≤ p ≤ r − 1. Is it true that, for
an arbitrary r-uniform hypergaph H of order n, there is a constant c(r, p) > 0 such that
−→
Γ p(H) ≤ c(r, p)α(H) lnn?
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This paper is dedicated to Lutz Volkmann on the occasion of his 75th birthday. He
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directed graphs, specially tournaments, we chose this particular topic for him.
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