
CCO
Commun. Comb. Optim.

c© 2019 Azarbaijan Shahid Madani University

Communications in Combinatorics and Optimization

Vol. 4 No. 2, 2019 pp.131-139

DOI: 10.22049/CCO.2019.26333.1097

Girth, minimum degree, independence, and broadcast

independence
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Abstract: An independent broadcast on a connected graph G is a function f :
V (G) → N0 such that, for every vertex x of G, the value f(x) is at most the ec-

centricity of x in G, and f(x) > 0 implies that f(y) = 0 for every vertex y of G within

distance at most f(x) from x. The broadcast independence number αb(G) of G is the
largest weight

∑
x∈V (G) f(x) of an independent broadcast f on G.

It is known that α(G) ≤ αb(G) ≤ 4α(G) for every connected graph G, where α(G) is

the independence number of G. If G has girth g and minimum degree δ, we show that
αb(G) ≤ 2α(G) provided that g ≥ 6 and δ ≥ 3 or that g ≥ 4 and δ ≥ 5. Furthermore,

we show that, for every positive integer k, there is a connected graph G of girth at

least k and minimum degree at least k such that αb(G) ≥ 2
(
1− 1

k

)
α(G). Our results

imply that lower bounds on the girth and the minimum degree of a connected graph

G can lower the fraction
αb(G)
α(G)

from 4 below 2, but not any further.
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1. Introduction

In the present paper, we relate broadcast independence to independence and pack-

ings in graphs of large girth and minimum degree. We consider finite, simple, and

undirected graphs, and use standard terminology and notation. A set I of pairwise
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nonadjacent vertices of a graph G is an independent set in G, and the maximum car-

dinality of an independent set in G is the independence number α(G) of G. Similarly,

a set P of vertices of G is a packing if distG(x, y) ≥ 3 for every two distinct vertices x

and y in P , where distG(x, y) is the distance of x and y in G. The maximum cardin-

ality of a packing in G is the packing number ρ(G) of G. The independence number

and the packing number are among the most fundamental and well studied graph

parameters [10]. Broadcast independence was introduced by Erwin [8], cf. also [6],

and was studied in [1–4]. Let N0 be the set of nonnegative integers. For a connected

graph G, a function f : V (G)→ N0 is an independent broadcast on G if

(B1) f(x) ≤ eccG(x) for every vertex x of G, where eccG(x) is the eccent-

ricity of x in G, and

(B2) distG(x, y) > max{f(x), f(y)} for every two distinct vertices x and

y of G with f(x), f(y) > 0.

The weight of f is
∑

x∈V (G)

f(x). The broadcast independence number αb(G) of G is the

maximum weight of an independent broadcast on G, and an independent broadcast

on G of weight αb(G) is optimal. For an integer k, let [k] be the set of all positive

integers at most k.

Let G be a connected graph. A function f that assigns 1 to every vertex in some

independent set in G, and 0 to every other vertex of G, is an independent broadcast

on G, which implies αb(G) ≥ α(G). Our main result in [3] implies αb(G) ≤ 4α(G),

and, hence,

1 ≤ αb(G)

α(G)
≤ 4 for every connected graph G.

The existing results and proofs suggest that αb(G)
α(G) should be smaller than 4 for con-

nected graphs G of sufficiently large local expansion and sparsity. Natural hypotheses

ensuring these properties are lower bounds on the girth and the minimum degree. In

the present paper, we explore how much the upper bound on αb(G)
α(G) can be improved

for connected graphs G of large girth and minimum degree. Our two main results are

the following.

Theorem 1. If G is a connected graph of girth at least 6 and minimum degree at least
3, then

αb(G) < 2α(G).

Theorem 2. For every positive integer k, there is a connected graph G of girth at least
k and minimum degree at least k such that

αb(G) ≥ 2

(
1− 1

k

)
α(G).

Together, these two results imply that lower bounds on the girth and the minimum

degree of a connected graph G can lower the fraction αb(G)
α(G) from 4 below 2, but not any
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further. The proof of Theorem 2 is an adaptation of Erdős’s [7] famous probabilistic

proof of the existence of graphs of arbitrarily large girth and chromatic number, and

it actually implies the existence, for every positive integer k, of a connected graph G

of girth at least k and minimum degree at least k such that ρ(G) ≥
(
1− 1

k

)
α(G).

The method used in the proof of Theorem 1 also yields the following.

Theorem 3. Let G be a connected graph of girth at least g and minimum degree at least
δ.

(i) If g = 6 and δ = 5, then αb(G) ≤ α(G) + ρ(G).

(ii) If ξ is a real number with 2 ≤ ξ < 4, g = 4, and δ ≥ 10
ξ
, then αb(G) ≤ ξα(G).

All proofs are given in the next section.

2. Proofs

Proof of Theorem 1. Let G be as in the statement. Let f : V (G)→ N0 be an optimal

independent broadcast on G. Let X = {x ∈ V (G) : f(x) > 0}. To every vertex x in

X, we assign a set I(x) as follows:

• If 1 ≤ f(x) ≤ 2, then let I(x) = {x}.

• If 3 ≤ f(x) ≤ 5, then let I(x) = NG(x).

• If 6 ≤ f(x) ≤ 13, then let I(x) =
{
y ∈ V (G) : distG(x, y) ∈ {0, 2}

}
.

• If f(x) ≥ 14, then, by (B1), there is a shortest path P (x) : xx1 . . . x2`+4 in G

with ` =
⌊
f(x)−9

4

⌋
. Let

I(x) =
{
y ∈ V (G) : distG(x, y) ∈ {0, 2}

}
∪
⋃̀
i=1

(
NG(x2i+3) \ {x2i+2}

)
.

See Figure 1 for an illustration.
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Figure 1. The set I(x) for a vertex x with f(x) ∈ {21, 22, 23, 24}, where we assume that certain vertices
have degree exactly 3.
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By the girth condition and the choice of P (x) as a shortest path, the set I(x) is an

independent set for every x in X.

Suppose, for a contradiction, that there are distinct vertices x and x′ in X such that

the sets I(x) and I(x′) intersect or are joined by an edge. Let f(x) ≥ f(x′). If

1 ≤ f(x) ≤ 2, then distG(x, x′) = 1, if 3 ≤ f(x) ≤ 5, then distG(x, x′) ≤ 3, and if

6 ≤ f(x) ≤ 13, then distG(x, x′) ≤ 5, which contradicts (B2) in each case. Now, let

f(x) ≥ 14. If f(x′) ≤ 13, then

distG(x, x′) ≤
(

2

⌊
f(x)− 9

4

⌋
+ 4

)
+ 3 ≤ f(x)− 9

2
+ 7 ≤ f(x),

and, if f(x′) ≥ 14, then

distG(x, x′) ≤
(

2

⌊
f(x)− 9

4

⌋
+ 4

)
+ 1 +

(
2

⌊
f(x′)− 9

4

⌋
+ 4

)
≤ f(x)

2
+
f(x′)

2
≤ max{f(x), f(x′)},

again contradicting (B2) in each case. Therefore, I =
⋃
x∈X

I(x) is an independent set

in G.

Let x be a vertex in X. If either f(x) = 1 or 3 ≤ f(x) ≤ 13, then the girth and degree

conditions imply |I(x)| > f(x)
2 . Similarly, if f(x) ≥ 14, then, by the girth and degree

conditions, and the choice of P (x) as a shortest path, we obtain

|I(x)| ≥ 7 + 2

⌊
f(x)− 9

4

⌋
≥ 7 +

f(x)− 12

2
>
f(x)

2
.

Finally, if f(x) = 2, then |I(x)| = f(x)
2 , that is, only in this final case, equality holds.

Altogether, we obtain

α(G) ≥ |I| ≥
∑
x∈X
|I(x)| ≥

∑
x∈X

f(x)

2
≥ αb(G)

2
.

Suppose, for a contradiction, that α(G) = αb(G)
2 , that is, the above inequality chain

holds with equality throughout. This implies that f(x) = 2 for every x in X. By

(B2), the set X is a packing in G, which implies

α(G) ≥ ρ(G) ≥ |X| = αb(G)

2
= α(G),

that is, α(G) = ρ(G), and X is a maximum packing in G. Now, replacing x within X

by two nonadjacent neighbors yields an independent set of order |X|+1, contradicting

α(G) = ρ(G); cf. [9] for a structural characterization of the graphs that satisfy

α(G) = ρ(G). This completes the proof.



S. Bessy, D. Rautenbach 135

q qq
u1 u2

H

u3

r rr
c1 c2 c3

�� ��� ��� �r r rr r rr r rr r r· · · · · · · · ·
@
@@

@
@@

@
@@A

AA

A
AA

A
AA

�
��

�
��

�
��

L1 L2

G

L3

Figure 2. Some H and G.

Proof of Theorem 2. Let k be a fixed integer at least 3. Let the real ε be such that 0 <

ε < 1
k2 . Let H be a random graph in G(n, p) for p = nε−1. Let V (H) = {u1, . . . , un}.

Let G arise from the disjoint union of n copies S1, . . . , Sn of the star K1,k of order

k + 1, where Si has center vertex ci and set of endvertices Li for i in [n], as follows:

For every edge uiuj of H, select one vertex xi in Li uniformly at random and one

vertex xj in Lj uniformly at random, and add the edge xixj to G. See Figure 2 for

an illustration.

If X denotes the number of cycles of length less than k in H, then it is known (cf.

Theorem 11.2.2. in [5]) that

lim
n→∞

P
[
X ≥ n

2

]
= 0.

A set I of vertices of G is an independent transversal if

(i) I is an independent set in G,

(ii) I ∩ {c1, . . . , cn} = ∅, and

(iii) |I ∩ Li| ≤ 1 for every i in [n].

Note that if i and j are distinct indices in [n], then a vertex in Li is adjacent to a

vertex in Lj with probability p
k2 . Note furthermore, that there are

(
n
r

)
kr sets I of

order r that satisfy the conditions (ii) and (iii) above. Therefore, if β denotes the

maximum order of an independent transversal, then, by the union bound, we obtain,

for r = n
2k2 ,

P [β ≥ r] ≤
(
n

r

)
kr
(

1− p

k2

)(r
2)

≤ nrkr
(

1− p

k2

)r(r−1)/2
=

(
nk
(

1− p

k2

)(r−1)/2)r
≤
(
nke−

p(r−1)

2k2

)r
(using 1− x ≤ e−x).
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For n sufficiently large, we have p ≥ 6k4 lnn
n , which implies (cf. Lemma 11.2.1. in [5])

nke−
p(r−1)

2k2 = nke(−
pn

4k4 + p

2k2 ) ≤ nke(−
3
2 ln(n)+ 1

2 ) =
k
√
e√
n
→ 0 for n→∞,

and, hence,

lim
n→∞

P
[
β ≥ n

2k2

]
= 0.

Therefore, if n is sufficiently large, then

P
[
X ≥ n

2

]
+ P

[
β ≥ n

2k2

]
< 1,

which implies the existence of a graph H in G(n, p), and a graph G as above such

that X < n
2 and β < n

2k2 .

For an induced subgraph H ′ of H, let G(H ′) = G

[ ⋃
ui∈V (H′)

V (Si)

]
.

Let F be a set of at most n
2 vertices of H such that H0 = H − F has no cycle of

length less than k. By construction, the graph G(H0) has no cycle of length less than

k. Note that H0 has order at least n
2 .

We construct a finite sequence H0, . . . ,H` as follows: Let i be a nonnegative integer

such that Hi is defined. If G(Hi) has minimum degree at least k, then let ` = i, and

terminate the sequence. Otherwise, G(Hi) has a vertex xi of degree less than k. By

construction, there is a vertex us of Hi with xi ∈ Ls. Let N be the set of indices j

in [n] such that xi has a neighbor in Lj , and let Hi+1 = Hi − ({us} ∪ {uj : j ∈ N}).
Note that |N | < k.

Since {x1, . . . , x`} is an independent transversal, we have ` ≤ n
2k2 , which implies that

H` has order n` at least n
2 −

nk
2k2 = n

2

(
1− 1

k

)
. The graph G(H`) has girth at least

k, minimum degree at least k, and no independent transversal of order n
2k2 . If G(H`)

is disconnected, then adding some bridges to G(H`) between different sets Li yields

a connected graph G∗ that has girth at least k, minimum degree at least k, and no

independent transversal of order n
2k2 .

The function f : V (G∗)→ N0 that assigns 2 to every vertex in {ci : ui ∈ V (H`)}, and 0

to every other vertex, is an independent broadcast on G∗, which implies αb(G
∗) ≥ 2n`.

Now, let J be a maximum independent set in G∗. Since G∗ has no independent

transversal of order n
2k2 , there are less than n

2k2 indices i in [n] such that J intersects

Li, which implies α(G∗) = |J | ≤ n` + nk
2k2 = n` + n

2k . Now,

αb(G
∗)

α(G∗)
≥ 2n`
n` + n

2k

≥
2n2
(
1− 1

k

)
n
2

(
1− 1

k

)
+ n

2k

= 2

(
1− 1

k

)
,

which completes the proof.
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Proof of Theorem 3. Let G be a connected graph of girth at least g and minimum

degree at least δ. Let f : V (G) → N0 be an optimal independent broadcast on G.

Let X = {x ∈ V (G) : f(x) > 0}.

(i) First, we assume that g = 6 and δ = 5.

To every vertex x in X, we assign a set I(x) as follows:

• If 1 ≤ f(x) ≤ 2, then let I(x) = {x}.

• If f(x) ≥ 3, then, by (B1), there is a shortest path P (x) : xx1 . . . x2`−1 in G

with ` =
⌊
f(x)+1

4

⌋
. Let

I(x) = NG(x) ∪
⋃̀
i=2

(
NG(x2i−2) \ {x2i−3}

)
.

See Figure 3 for an illustration.
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Figure 3. The set I(x) for a vertex x with f(x) ∈ {19, 20, 21, 22}.

It follows similarly to the proof of Theorem 1 that the I(x) are disjoint independent

sets in G that are not joined by edges within G.

Let x be a vertex in X. If f(x) = 1, then |I(x)| = f(x), if f(x) = 2, then |I(x)| =

f(x)− 1, and, if f(x) ≥ 3, then, by the girth and degree conditions and the choice of

P (x) as a shortest path,

|I(x)| ≥ 5 + 4

(⌊
f(x) + 1

4

⌋
− 1

)
≥ 5 + 4

(
f(x)− 2

4
− 1

)
= f(x)− 1.

Let X1 = {x ∈ V (G) : f(x) = 1}. It follows that I =
⋃
x∈X

I(x) is an independent

set in G of order at least αb(G) − |X \ X1| =
∑
x∈X1

f(x) +
∑

x∈X\X1

(f(x) − 1). Since

X \X1 is a packing in G, we obtain α(G) ≥ αb(G)− |X \X1| ≥ αb(G)− ρ(G), which

completes the proof of (i).

(ii) Next, we assume that ξ is a real number with 2 ≤ ξ < 4, g = 4, and δ ≥ 10
ξ .

To every vertex x in X, we assign a set I(x) as follows:
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• If 1 ≤ f(x) ≤ 2, then let I(x) = {x}.

• If f(x) ≥ 3, then, by (B1), there is a shortest path P (x) : xx1 . . . x4`−3 in G

with ` =
⌊
f(x)+5

8

⌋
. Let x0 = x, and let

I(x) =
⋃̀
i=1

NG(x4(i−1)).

See Figure 4 for an illustration.
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Figure 4. The set I(x) for a vertex x with f(x) ∈ {19, . . . , 26}.

Again, the I(x) are disjoint independent sets in G that are not joined by edges within

G.

Let x be a vertex in X. If 1 ≤ f(x) ≤ 2, then |I(x)| ≥ f(x)
2 ≥ f(x)

ξ , if 3 ≤ f(x) ≤ bξδc,
then |I(x)| ≥ δ ≥ f(x)

ξ , and, if f(x) ≥ bξδc+1 then, by the girth and degree conditions

and the choice of P (x) as a shortest path,

|I(x)| ≥ δ
⌊
f(x) + 5

8

⌋
≥ δ f(x)− 2

8
≥ f(x)

ξ
,

where we use f(x) ≥ ξδ and δ ≥ 10
ξ . It follows that α(G) ≥ αb(G)

ξ , which completes

the proof of (ii).
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