

t-Pancyclic arcs in tournaments

Wei Meng^{1*}, Steffen Grüter², Yubao Guo², Manu Kapolke², Simon Meesker²

¹School of Mathematical Sciences, Shanxi University, 030006 Taiyuan, China mengwei@sxu.edu.cn

²Lehrstuhl C für Mathematik, RWTH Aachen University, 52056 Aachen, Germany grueter@mathc.rwth-aachen.de, guo@mathc.rwth-aachen.de, manu.kapolke@rwth-aachen.de, simon.meesker@rwth-aachen.de

> Received: 1 September 2018; Accepted: 8 March 2019 Published Online: 11 March 2019

Dedicated to Prof. Dr. Lutz Volkmann, on the occasion of his 75th birthday.

Abstract: Let T be a non-trivial tournament. An arc is t-pancyclic in T, if it is contained in a cycle of length ℓ for every $t \leq \ell \leq |V(T)|$. Let $p^t(T)$ denote the number of t-pancyclic arcs in T and $h^t(T)$ the maximum number of t-pancyclic arcs contained in the same Hamiltonian cycle of T. Moon (J. Combin. Inform. System Sci., 19 (1994), 207-214) showed that $h^3(T) \geq 3$ for any non-trivial strong tournament T and characterized the tournaments with $h^3(T) = 3$. In this paper, we generalize Moon's theorem by showing that $h^t(T) \geq t$ for every $3 \leq t \leq |V(T)|$ and characterizing all tournaments which satisfy $h^t(T) = t$. We also present all tournaments which fulfill $p^t(T) = t$.

Keywords: Tournament, pancyclicity, *t*-pancyclic arc

AMS Subject classification: 05C20, 05C38

1. Terminology and introduction

In this paper we consider only finite and simple digraphs. Let D be a digraph with vertex set V(D) and arc set A(D). Denote |V(D)| the order of D. If xy is an arc of D, then we write $x \to y$ and say x dominates y. More generally, if X and Y are two disjoint subdigraphs of D (or subsets of V(D)) such that every vertex of X dominates every vertex of Y, then we say that X dominates Y and denote it by $X \to Y$. In

^{*} Corresponding Author

^{© 2019} Azarbaijan Shahid Madani University

addition, we denote the set of arcs from X to Y by A(X, Y). Let $W \subseteq V(D)$. Then D[W] is a subdigraph of D induced by W and $D - W = D[V(D) \setminus W]$.

A strong component H of a digraph D is a maximal subdigraph of D such that for any two distinct vertices $x, y \in V(H)$, the subdigraph H contains a path from x to yand a path from y to x. A digraph D is strong if it has only one strong component. A reductor of D is a smallest subdigraph X such that D - V(X) is not strong.

A path from x to y is called an (x, y)-path. A cycle of length ℓ is said to be an ℓ -cycle. A path (resp. cycle) in D is a Hamiltonian path (resp. Hamiltonian cycle) if it contains all the vertices of D. An arc of a digraph D is t-pancyclic $(t \ge 3)$ if it is contained in an ℓ -cycle for every $t \le \ell \le |V(D)|$. Instead of 3-pancyclic we just say pancyclic. It is immediate that each s-pancyclic arc is also t-pancyclic for $s \le t \le |V(D)|$. If $xy \in A(D)$ is t-pancyclic in D, then yx is t-pancyclic in D^{-1} , where $D^{-1} = (V(D), \{yx \mid xy \in A(D)\})$ is the converse digraph of D.

The number of pancyclic (resp. t-pancyclic) arcs in a digraph D is denoted by p(D) (resp. $p^t(D)$) and h(D) (resp. $h^t(D)$) is the maximum number of pancyclic (resp. t-pancyclic) arcs belonging to the same Hamiltonian cycle of D.

A tournament T is a digraph with exactly one arc between every pair of distinct vertices. A tournament without any cycles is called *transitive*.

In 1994, Moon [4] showed that every non-trivial strong tournament contains at least three pancyclic arcs. Actually, he proved a somewhat stronger result:

Theorem 1. (Moon [4]) Let T be a strong tournament with order $n \ge 3$. Then $h(T) \ge 3$ with equality holding if and only if $T \in \mathcal{P}_3$, where \mathcal{P}_3 is the set of tournaments T containing a vertex v such that T - v is a transitive tournament with a unique Hamiltonian path $t_1t_2...t_{n-1}$ and $\{t_i,...,t_{n-1}\} \rightarrow v \rightarrow \{t_1,...,t_{i-1}\}$ for some $2 \le i \le n-1$.

Further results on pancyclicity in tournaments can be found in [1], [5]-[6]. In this paper we consider the number of t-pancyclic arcs for $t \ge 3$ instead of pancyclic arcs in tournaments. According to the definitions of $p^t(D)$ and $h^t(D)$, we immediately have $p^t(D) \ge h^t(D)$ and $h^t(D) \le |V(D)|$. Moreover, if D contains a unique Hamiltonian cycle, which therefore has to contain all t-pancyclic arcs, then $p^t(D) = h^t(D)$. Note that all tournaments of \mathcal{P}_3 contain exactly one Hamiltonian cycle. So p(T) = h(T) = 3 for $T \in \mathcal{P}_3$.

In the next section we generalize Theorem 1 by showing that $h^t(T) \ge t$ for every $3 \le t \le |V(T)|$ and characterizing all tournaments which satisfy $h^t(T) = t$. Additionally, we present all tournaments which fulfill $p^t(T) = t$.

2. Main Results

The following important lemma will be used frequently in the proofs of our main results. The parts (1)-(3) and (8)-(9) of Lemma 1 can be seen in [3], the other parts (4)-(7) are very easy, so we omit their proofs here.

Lemma 1. Let T be a non-trivial strong tournament and X a reductor of T. Then the following statements hold.

- (1) There is a unique sequence T_1, T_2, \ldots, T_m $(m \ge 2)$ of the strong components of T V(X) satisfying $T_i \to T_j$ for every $1 \le i < j \le m$. We call it a strong decomposition of T V(X). Similarly, there is a strong decomposition X_1, X_2, \ldots, X_ℓ $(\ell \ge 1)$ of X.
- (2) Every vertex of X dominates a vertex of T_1 and is dominated by a vertex of T_m .
- (3) Every arc from T_m to X_1 is pancyclic and every arc from X_ℓ to T_1 is also pancyclic.
- (4) Each arc in X that lies on a Hamiltonian path of X is 4-pancyclic.
- (5) If $m \ge 4$, then every arc from T_i to T_{i+1} is 5-pancyclic for $i = 2, 3, \ldots, m-2$.
- (6) If $m \ge 3$ and $|V(T_1)| = 1$ (resp. $|V(T_m)| = 1$), then every arc in $A(T_1, T_2)$ (resp. $A(T_{m-1}, T_m)$) is 4-pancyclic.
- (7) If $|V(T_i)| \ge 3$ for some 1 < i < m, then every arc, which lies on a Hamiltonian cycle of T_i , is 5-pancyclic in T.
- (8) If $|V(T_i)| \ge 4$ for some 1 < i < m, then every t-pancyclic arc in T_i is also t-pancyclic in T for $3 \le t \le |V(T_i)|$.
- (9) If $|V(T_i)| = 3$ for some 1 < i < m, then at least two arcs of T_i are pancyclic in T.

Building upon the results above, we can prove the first main result, which is a generalization of the first part of Theorem 1.

Theorem 2. Let T be a strong tournament with order $n \ge 3$. Then

$$h^t(T) \ge t$$

for every $3 \leq t \leq n$.

Proof. We prove this theorem by induction on n. For n = 3, T is a 3-cycle, and clearly, $h^3(T) = 3$. For n = 4, it is easy to check that $h^3(T) = 3$ and $h^4(T) = 4$. Suppose now $n \ge 5$ and it is true for all strong tournaments with less than n vertices. By Theorem 1, $h^3(T) \ge 3$, and clearly, $h^n(T) = n$. So we only need to consider the cases $t = 4, 5, \ldots, n-1$.

Let X_1, X_2, \ldots, X_ℓ , $\ell \ge 1$, be the strong decomposition of a reductor X of T and $T_1, T_2, \ldots, T_m, m \ge 2$, be the strong decomposition of T - V(X) with $n_i = |V(T_i)|$ for $1 \le i \le m$. Because of $n \ge 5$ we have $|V(T) \setminus V(X)| \ge 3$. Note that every component T_i , if not consisting of a single vertex, contains a Hamiltonian cycle $C_i = t_1^i t_2^i \ldots t_{n_i}^i t_1^i$ for $1 \le i \le m$.

Let C be a Hamiltonian cycle in T of the form w_1Qw_2P , where $w_1 \in A(X_\ell, T_1)$, $w_2 \in A(T_m, X_1)$, P is a Hamiltonian path of X and Q is a Hamiltonian path of T - V(X). To prove this theorem we only need to find at least t arcs on C which are t-pancyclic in T for t = 4, 5, ..., n - 1. Note that the two arcs w_1 and w_2 on C are always pancyclic in T by Lemma 1 (3).

Below we give a claim concerning the number of t-pancyclic arcs in T_1 .

Claim 1. If $n_1 \ge 3$, then there is a Hamiltonian path P_1 of T_1 on which at least $\min\{t-1, n_1-1\}$ arcs are t-pancyclic in T and P_1 is the first part of Q.

Proof of Claim 1. By the induction hypothesis for T_1 , there is a Hamiltonian cycle in T_1 , say $C_1 = t_1^1 t_2^1 \dots t_{n_1}^1 t_1^1$, containing $h^t(T_1) \ge t$ arcs which are t-pancyclic in T_1 .

Let x_{ℓ} be an arbitrary vertex of X_{ℓ} . By Lemma 1 (2) we may assume without loss of generality that $t_m \to x_{\ell} \to t_1^1$ for some $t_m \in V(T_m)$.

If $x_{\ell} \to t_{n_1}^1$, then let $P_1 = t_{n_1}^1 t_1^1 t_2^1 \dots t_{n_1-1}^1$. The two cycles $t_1^1 t_1^1 \dots t_{n_1-1}^1 t_m x_{\ell} t_1^1$ and $t_{n_1}^1 t_1^1 t_2^1 \dots t_{n_1-2}^1 t_m x_{\ell} t_{n_1}^1$ yield that every arc on the Hamiltonian path P_1 of T_1 is contained in an (n_1+1) -cycle. Furthermore, the (n_1+2) -cycle $t_{n_1}^1 t_1^1 t_2^1 \dots t_{n_1-1}^1 t_m x_{\ell} t_{n_1}^1$ can be successively extended to a Hamiltonian cycle $C = w_1 Q w_2 P$ in T such that P_1 is the first part of Q. So every arc on P_1 is n_1 -pancyclic in T. In the case when $t \geq n_1$, we immediately have that every arc on P_1 is t-pancyclic in T; In the other case when $t < n_1$, we deduce that least t - 1 arcs on P_1 are t-pancylic in T.

If $t_{n_1}^1 \to x_\ell$, then let $P_1 = t_1^1 t_2^1 \dots t_{n_1}^1$ and from the cycles $t_1^1 t_2^1 \dots t_{n_1}^1 x_\ell t_1^1$ and $t_1^1 t_2^1 \dots t_{n_1}^1 t_m x_\ell t_1^1$ we can deduce the same conclusion as above. So we are done. \Box

Analogously, Claim 1 also holds for T_m . We distinguish the following two cases according to the value of t.

Case 1. t = 4.

If $|V(T_1)| = |V(T_m)| = 1$, then $m \ge 3$ and the two arcs of $A(T_1, T_2)$ and $A(T_{m-1}, T_m)$ on Q are 4-pancyclic by Lemma 1 (6). So $h^4(T) \ge 4$.

Assume without loss of generality that $|V(T_1)| \ge 3$. According to Claim 1, at least two arcs of T_1 are 4-pancyclic in T which are contained in the Hamiltonian cycle C. So $h^4(T) \ge 4$.

Case 2. $5 \le t \le n - 1$.

If $|V(T_1)| = |V(T_m)| = 1$, then $m \ge 3$ and every arc on the Hamiltonian cycle $C = w_1 Q w_2 P$ is t-pancyclic in T by Lemma 1 (3)-(7). So $h^t(T) = n > t$. Assume without loss of generality that $|V(T_1)| \ge 3$.

If $|V(T_1)| \ge t$ or $|V(T_m)| \ge t$, then by Claim 1 we have $h^t(T) \ge t - 1 + |\{w_1, w_2\}| = t + 1$. So assume in the following that $3 \le |V(T_1)| \le t - 1$ and $1 \le |V(T_m)| \le t - 1$. If $|V(T_m)| = 1$, then by Claim 1 and Lemma 1 (3)-(7) only the arc of $A(T_1, T_2)$ on $C = w_1 Q w_2 P$ is possibly not t-pancyclic. So $h^t(T) \ge n - 1 \ge t$.

If $3 \leq |V(T_m)| \leq t-1$, then by Claim 1 and Lemma 1 (3)-(7) only the arcs $e_C \in A(T_1, T_2)$ and $e'_C \in A(T_{m-1}, T_m)$ on $C = w_1 Q w_2 P$ are possibly not t-pancyclic. So $h^t(T) \geq n-2$. For $t \leq n-2$ we are done obviously. For m=2, we are also done

with $e_C = e'_C$ and $h^t(T) \ge n-1 \ge t$. For the remaining case t = n-1 and $m \ge 3$, it is easy to see that the arc e_C (resp. e'_C) is on an (n-1)-cycle just by skipping one vertex of T_m (resp. T_1). Therefore, $h^t(T) = n > t$.

To characterize all tournaments with $h^t(T) = t$, we need the following definition.

Definition 1. Let H^n be the strong tournament on n vertices with a Hamiltonian path $P = x_1 x_2 \dots x_n$ such that $x_j \to x_i$ for all $3 \le i + 2 \le j \le n$. Instead of H^n we often write H_P^n or $H_{x_1}^n$ to mark the path P or its initial vertex x_1 .

Lemma 2. Let T be a strong tournament of order $n \ge 3$ and $x \in V(T)$. Then $T = H_x^n$ if and only if for every Hamiltonian path of T with initial vertex x there is no path of length n-2 from x to the end vertex of such Hamiltonian path.

Proof. The necessity is clear and we prove the sufficiency by using induction on n. If n = 3, then T is a 3-cycle and therefore $T = H^3$. If n = 4, then let $P = x_1x_2x_3x_4$ be a Hamiltonian path of T with $x_1 = x$. Since there is no (x_1, x_4) -path of length 2, we have $x_3 \to x_1$ and $x_4 \to x_2$. If $x_1 \to x_4$, then $P' = x_1x_4x_2x_3$ is another Hamiltonian path starting at x_1 , but $x_1x_2x_3$ is an (x_1, x_3) -path of length 2, a contradiction. So $x_4 \to x_1$ and $T = H_x^4$. Assume $n \ge 5$ and the claim holds for all strong tournaments with less than n vertices.

Let $P = x_1 x_2 \dots x_n$ be a Hamiltonian path in T with $x_1 = x$. As there is no (x_1, x_n) path of length n-2, we have $x_{i+2} \to x_i$ for all $1 \le i \le n-2$. Consider the strong subdigraph $T-x_1$ of T. For any Hamiltonian path Q of $T-x_1$ starting at x_2 , there is no path S of length n-3 from x_2 to the end vertex of Q. As otherwise we can extend S and Q to $S' = x_1 S$ and $P' = x_1 Q$, a contradiction. Therefore, $T - x_1 = H_{x_2}^{n-1}$. If there exists an index $i \in \{4, \dots, n\}$ such that $x \to x_i$, then $xx_i \dots x_n x_2 \dots x_{i-1}$ is a Hamiltonian path of T and $xx_i \dots x_n x_3 \dots x_{i-1}$ is an (x, x_{i-1}) -path of length n-2, a contradiction. So $T = H_x^n$.

Now we are ready to generalize the second part of Theorem 1 by Moon.

Theorem 3. Let T be a strong tournament with order n and $t \ge 4$. Then $h^t(T) = t$ if and only if n = t or $T = H^{t+1}$.

Proof. First we assume n = t or $T = H^{t+1}$. If n = t, then the desired result is obvious. If $T = H^{t+1} = H_Q^{t+1}$ with $Q = x_1 \dots x_{t+1}$, then this tournament has exactly one Hamiltonian cycle and every arc of Q is contained in the cycles $x_1 \dots x_t x_1$ or $x_2 \dots x_{t+1} x_2$ and therefore t-pancyclic. By Lemma 2, there is no (x_1, x_{t+1}) -path of length t - 1, and therefore, the arc $x_{t+1} x_1$ cannot be contained in any t-cycle. So $h^t(T) = t$.

To prove the other direction, let X_1, X_2, \ldots, X_ℓ , $\ell \ge 1$, be the strong decomposition of a reductor X of T and T_1, T_2, \ldots, T_m , $m \ge 2$, be the strong decomposition of T - V(X) with $n_i = |V(T_i)|$ for $1 \le i \le m$. Like in the proof of Theorem 2 we distinguish two cases t = 4 and t > 4. In both cases we assume $h^t(T) = t$ and n > t. Therefore we always have $n \ge 5$ and $|V(T)\setminus V(X)| \ge 3$. Again we consider a Hamiltonian cycle $C = w_1 Q w_2 P$ of T, where $w_1 \in A(X_\ell, T_1), w_2 \in A(T_m, X_1), P$ is a Hamiltonian path of X and Q is a Hamiltonian path of T - V(X). Note that w_1, w_2 are always pancyclic in T, and Claim 1 in the proof of Theorem 2 also holds here.

Case 1. t = 4.

If $|V(T_1)| = |V(T_m)| = 1$, then $m \ge 3$ and by Lemma 1 (3) and (6), there are already four 4-pancyclic arcs w_1 , w_2 , $e_C \in A(T_1, A_2)$ and $e'_C \in A(T_{m-1}, T_m)$ on C. Since $h^4(T) = 4$, by Lemma 1 (4), (8), (9) and $n \ge 5$ we have |V(X)| = 1, $|V(T_i)| = 1$ for $i = 2, 3, \ldots, m - 1$, and $m \ge 4$. Let $V(X) = \{x\}$ and $V(T_i) = \{t_i\}$ for $i = 1, 2, \ldots, m$. If $m \ge 5$, then either t_2t_3 is 4-pancyclic in T when $t_3 \to x$ or t_3t_4 is 4-pancyclic when $x \to t_3$. It is a contradiction. So m = 4 and $\{t_2, t_4\} \to x \to \{t_1, t_3\}$. This means $T = H_{P^*}^5$ with $P^* = t_3t_4xt_1t_2$.

Assume without loss of generality that $|V(T_1)| \ge 3$. Since $h^4(T) = 4$, by Claim 1 and Lemma 1 it is not difficult to deduce that $|V(T_1)| = 3$, $|V(T_m)| = 1$, |V(X)| = 1 and m = 2. Let $t_1t_2t_3t_1$ be the Hamiltonian cycle of T_1 , $V(X) = \{x\}$, $V(T_2) = \{y\}$ and assume without loss of generality that $x \to t_1$. Then $\{t_2, t_3\} \to x$ and $T = H_{P^*}^5$ with $P^* = yxt_1t_2t_3$.

Case 2. $5 \le t \le n - 1$.

If $|V(T_1)| = |V(T_m)| = 1$, then $m \ge 3$ and every arc on the Hamiltonian cycle $C = w_1 Q w_2 P$ is t-pancyclic by Lemma 1 (3)-(7). That is to say $h^t(T) = n \ne t$, a contradiction. So assume without loss of generality that $|V(T_1)| \ge 3$.

In addition, we have $|V(T_1)|, |V(T_m)| \le t-1$, as otherwise $h^t(T) \ge t-1+|\{w_1, w_2\}| \ge t+1$ by Claim 1 in the proof of Theorem 2, a contradiction.

Now by Claim 1 and Lemma 1 only the arcs $e_C \in A(T_1, T_2)$ and $e'_C \in A(T_{m-1}, T_m)$ on $C = w_1 Q w_2 P$ are possibly not t-pancyclic. So $n - 1 \ge t = h^t(T) \ge n - 2$.

Subcase 2.1. $3 \leq |V(T_1)|, |V(T_m)| \leq t - 1.$

If $m \geq 3$, then the arc e_C (resp. e'_C) is on cycles of length n-1 and n-2 just by skipping one or two vertices in T_m (resp. T_1). So whenever t = n-1 or t = n-2, e_C and e'_C are t-pancyclic. Therefore $h^t(T) = n \neq t$, a contradiction.

Assume in the following that m = 2. Then $e_C = e'_C$ is the unique arc which is not t-pancyclic in T. So $t = h^t(T) = n - 1$ and e_C is not on any (n - 1)-cycle. Hence, |V(X)| = 1, as otherwise, e_C is on an (n - 1)-cycle by skipping one vertex of V(X)on C.

Let $V(X) = \{x\}$ and $C_i = t_1^i t_2^i \dots t_{n_i}^i t_1^i$ be a Hamiltonian cycle of T_i for i = 1, 2. By Lemma 1 (2) we may assume without loss of generality that $t_{n_2}^2 \to x \to t_1^1$.

In T_1 , for any Hamiltonian path with the initial vertex t_1^1 , there is no $(n_1 - 2)$ -path from t_1^1 to the end vertex of such Hamiltonian path, as otherwise e_C lies on an (n-1)-

cycle, a contradiction. By Lemma 2, $T_1 = H_{P_1}^{n_1}$ for $P_1 = t_1^1 t_2^1 \dots t_{n_1}^1$. Using T^{-1} , we can similarly deduce that $T_2 = H_{P_2}^{n_2}$ for $P_2 = t_1^2 t_2^2 \dots t_{n_2}^2$. Now our aim is to show $\{t_2^1, \dots, t_{n_1}^1\} \to x \to \{t_1^2, \dots, t_{n_{2-1}}^2\}$, and then, $T = H_{P^*}^{t+1}$ for $P^* = P_2 x P_1$. If $t_1^2 \to x$, then from this cycle $t_1^1 t_2^1 \dots t_{n_1}^1 t_2^2 t_3^2 \dots t_{n_2}^2 (t_1^2) x t_1^1$ we can see that $e_C = t_{n_1}^1 t_2^2$

is on an (n-1)-cycle, a contradiction. So $x \to t_1^2$.

If $t_2^2 \to x$ and $n_2 \ge 4$, then from this cycle $t_1^1 t_2^1 \dots t_{n_1}^1 t_3^2 \dots (t_{n_2}^2) t_1^2 t_2^2 x t_1^1$ we can see that $e_C = t_{n_1}^1 t_3^2$ is on an (n-1)-cycle, a contradiction. If $t_2^2 \to x$ and $n_2 = 3$, then from this cycle $t_1^1 \dots t_{n_1}^1 t_1^2 t_2^2 (t_3^2) x t_1^1$ we can see that $e_C = t_{n_1}^1 t_1^2$ is on an (n-1)-cycle, a contradiction. So $x \to t_2^2$.

Successively, we can show that $x \to \{t_3^2, \ldots, t_{n_2-1}^2\}$. Considering T^{-1} , we can further deduce that $\{t_2^1, \ldots, t_{n_1}^1\} \to x$. Altogether, $T = H_{P^*}^{t+1}$.

Subcase 2.2. $3 \le |V(T_1)| \le t - 1$ and $|V(T_m)| = 1$.

If $m \geq 3$, then e'_C is t-pancyclic by Lemma 1 (6), and if m = 2, then $e_C = e'_C$. All of these yield t = n - 1 and e_C is not on any (n - 1)-cycle. So |V(X)| = 1, as otherwise, e_C is on an (n-1)-cycle by skipping one vertex of V(X) on C. Similarly, we get $m \leq 3$, $|V(T_2)| = 1$ and $X \not\rightarrow T_1$. We also have $X \rightarrow T_2$ when m = 3.

If m = 3, then it can be transferred to the case m = 2 by choosing another reductor $X' = T_3$, where $T'_1 = T[T_1 \cup V(X)], T'_2 = T_2$ is the strong decomposition of T - V(X'). So we only need to consider the case m = 2.

Let $V(X) = \{x\}, T_2 = \{y\}$ and $C_1 = t_1^1 t_2^1 \dots t_n^1 t_1^1$ be a Hamiltonian cycle of T_1 . Assume without loss of generality that $x \to t_1^1$. Then by a similar argument as in Subcase 2.1 we can deduce that $T_1 = H_{P_1}^{n_1}$ with $P_1 = t_1^1 t_2^1 \dots t_{n_1}^1$ and $T = H_{P^*}^{t+1}$ with $P^* = yxt_1^1t_2^1\dots t_{n_1}^1$

All the previous results deal with the maximum number of t-pancyclic arcs on the same Hamiltonian cycle. As we have a characterisation of all tournaments with $h^t(T) = t$, we naturally look for all tournaments with $p^t(T) = t$. We have seen that tournaments which achieve h(T) = 3 have been characterised by Moon [4] and these are the same tournaments with p(T) = 3. The important fact is that these tournaments contain exactly one Hamiltonian cycle. As this is also the key in the following theorem, we refer to an earlier work by Douglas [2] which gives valuable information about the structure of tournaments containing exactly one Hamiltonian cycle.

Theorem 4. Let T be a strong tournament with order n.

- (1) If $4 \le t \le n 1$, then $p^t(T) = t$ if and only if $T = H^{t+1}$;
- (2) If t = n, then $p^t(T) = t$ if and only if there is exactly one Hamiltonian cycle in T.

Proof. From the definitions of $p^t(T)$ and $h^t(T)$ and Theorem 2, we have $p^t(T) \geq p^t(T)$ $h^t(T) \ge t.$

- (1) If $p^t(T) = t$, then from the inequality above we have $h^t(T) = t$. By Theorem 3 and $n \neq t$ we deduce that $T = H^{t+1}$. To prove the other direction, let $T = H^{t+1}$. Then there is exactly one Hamiltonian cycle in T, which implies $p^t(T) = h^t(T) = t$.
- (2) Note that every arc on a Hamiltonian cycle of T is n-pancyclic. So this statement obviously holds.

Acknowledgements

This work was partially supported by the National Natural Science Foundation for Young Scientists of China under Grant 11701349 and 11501341.

References

- B. Alspach, Cycles of each length in regular tournaments, Canad. Math. Bull. 10 (1967), no. 2, 283–286.
- [2] R.J. Douglas, Tournaments that admit exactly one hamiltonian circuit, Proc. London Math. Soc. 21 (1970), no. 4, 716–730.
- [3] F. Havet, Pancyclic arcs and connectivity in tournaments, J. Graph Theory 47 (2004), no. 2, 87–110.
- [4] J.W. Moon, On k-cyclic and pancyclic arcs in strong tournaments, J. Combin. Inform. System Sci. 19 (1994), 207–214.
- [5] C. Thomassen, Hamiltonian-connected tournaments, J. Combin. Theory Ser. B 28 (1980), no. 2, 142–163.
- [6] A. Yeo, The number of pancyclic arcs in ak-strong tournament, J. Graph Theory 50 (2005), no. 3, 212–219.