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Abstract: Let T be a non-trivial tournament. An arc is t-pancyclic in T , if it is

contained in a cycle of length ` for every t ≤ ` ≤ |V (T )|. Let pt(T ) denote the number
of t-pancyclic arcs in T and ht(T ) the maximum number of t-pancyclic arcs contained

in the same Hamiltonian cycle of T . Moon (J. Combin. Inform. System Sci., 19

(1994), 207-214) showed that h3(T ) ≥ 3 for any non-trivial strong tournament T and
characterized the tournaments with h3(T ) = 3. In this paper, we generalize Moon’s

theorem by showing that ht(T ) ≥ t for every 3 ≤ t ≤ |V (T )| and characterizing all

tournaments which satisfy ht(T ) = t. We also present all tournaments which fulfill
pt(T ) = t.
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1. Terminology and introduction

In this paper we consider only finite and simple digraphs. Let D be a digraph with

vertex set V (D) and arc set A(D). Denote |V (D)| the order of D. If xy is an arc of

D, then we write x→ y and say x dominates y. More generally, if X and Y are two

disjoint subdigraphs of D (or subsets of V (D)) such that every vertex of X dominates

every vertex of Y , then we say that X dominates Y and denote it by X → Y . In
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addition, we denote the set of arcs from X to Y by A(X,Y ). Let W ⊆ V (D). Then

D[W ] is a subdigraph of D induced by W and D −W = D[V (D)\W ].

A strong component H of a digraph D is a maximal subdigraph of D such that for

any two distinct vertices x, y ∈ V (H), the subdigraph H contains a path from x to y

and a path from y to x. A digraph D is strong if it has only one strong component.

A reductor of D is a smallest subdigraph X such that D − V (X) is not strong.

A path from x to y is called an (x, y)-path. A cycle of length ` is said to be an

`-cycle. A path (resp. cycle) in D is a Hamiltonian path (resp. Hamiltonian cycle)

if it contains all the vertices of D. An arc of a digraph D is t-pancyclic (t ≥ 3) if

it is contained in an `-cycle for every t ≤ ` ≤ |V (D)|. Instead of 3-pancyclic we

just say pancyclic. It is immediate that each s-pancyclic arc is also t-pancyclic for

s ≤ t ≤ |V (D)|. If xy ∈ A(D) is t-pancyclic in D, then yx is t-pancyclic in D−1,

where D−1 = (V (D), {yx | xy ∈ A(D)}) is the converse digraph of D.

The number of pancyclic (resp. t-pancyclic) arcs in a digraph D is denoted by p(D)

(resp. pt(D)) and h(D) (resp. ht(D)) is the maximum number of pancyclic (resp.

t-pancyclic) arcs belonging to the same Hamiltonian cycle of D.

A tournament T is a digraph with exactly one arc between every pair of distinct

vertices. A tournament without any cycles is called transitive.

In 1994, Moon [4] showed that every non-trivial strong tournament contains at least

three pancyclic arcs. Actually, he proved a somewhat stronger result:

Theorem 1. (Moon [4]) Let T be a strong tournament with order n ≥ 3. Then h(T ) ≥ 3
with equality holding if and only if T ∈ P3, where P3 is the set of tournaments T contain-
ing a vertex v such that T − v is a transitive tournament with a unique Hamiltonian path
t1t2 . . . tn−1 and {ti, . . . , tn−1} → v → {t1, . . . , ti−1} for some 2 ≤ i ≤ n− 1.

Further results on pancyclicity in tournaments can be found in [1], [5]-[6]. In this

paper we consider the number of t-pancyclic arcs for t ≥ 3 instead of pancyclic arcs in

tournaments. According to the definitions of pt(D) and ht(D), we immediately have

pt(D) ≥ ht(D) and ht(D) ≤ |V (D)|. Moreover, if D contains a unique Hamiltonian

cycle, which therefore has to contain all t-pancyclic arcs, then pt(D) = ht(D). Note

that all tournaments of P3 contain exactly one Hamiltonian cycle. So p(T ) = h(T ) = 3

for T ∈ P3.

In the next section we generalize Theorem 1 by showing that ht(T ) ≥ t for every 3 ≤
t ≤ |V (T )| and characterizing all tournaments which satisfy ht(T ) = t. Additionally,

we present all tournaments which fulfill pt(T ) = t.

2. Main Results

The following important lemma will be used frequently in the proofs of our main

results. The parts (1)-(3) and (8)-(9) of Lemma 1 can be seen in [3], the other parts

(4)-(7) are very easy, so we omit their proofs here.
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Lemma 1. Let T be a non-trivial strong tournament and X a reductor of T . Then the
following statements hold.

(1) There is a unique sequence T1, T2, . . . , Tm (m ≥ 2) of the strong components of T −
V (X) satisfying Ti → Tj for every 1 ≤ i < j ≤ m. We call it a strong decomposition
of T − V (X). Similarly, there is a strong decomposition X1, X2, . . . , X` (` ≥ 1) of X.

(2) Every vertex of X dominates a vertex of T1 and is dominated by a vertex of Tm.

(3) Every arc from Tm to X1 is pancyclic and every arc from X` to T1 is also pancyclic.

(4) Each arc in X that lies on a Hamiltonian path of X is 4-pancyclic.

(5) If m ≥ 4, then every arc from Ti to Ti+1 is 5-pancyclic for i = 2, 3, . . . , m− 2.

(6) If m ≥ 3 and |V (T1)| = 1 (resp. |V (Tm)| = 1), then every arc in A(T1, T2) (resp.
A(Tm−1, Tm)) is 4-pancyclic.

(7) If |V (Ti)| ≥ 3 for some 1 < i < m, then every arc, which lies on a Hamiltonian cycle
of Ti, is 5-pancyclic in T .

(8) If |V (Ti)| ≥ 4 for some 1 < i < m, then every t-pancyclic arc in Ti is also t-pancyclic
in T for 3 ≤ t ≤ |V (Ti)|.

(9) If |V (Ti)| = 3 for some 1 < i < m, then at least two arcs of Ti are pancyclic in T .

Building upon the results above, we can prove the first main result, which is a gener-

alization of the first part of Theorem 1.

Theorem 2. Let T be a strong tournament with order n ≥ 3. Then

ht(T ) ≥ t

for every 3 ≤ t ≤ n.

Proof. We prove this theorem by induction on n. For n = 3, T is a 3-cycle, and

clearly, h3(T ) = 3. For n = 4, it is easy to check that h3(T ) = 3 and h4(T ) = 4.

Suppose now n ≥ 5 and it is true for all strong tournaments with less than n vertices.

By Theorem 1, h3(T ) ≥ 3, and clearly, hn(T ) = n. So we only need to consider the

cases t = 4, 5, . . . , n− 1.

Let X1, X2, . . . , X`, ` ≥ 1, be the strong decomposition of a reductor X of T and

T1, T2, . . . , Tm,m ≥ 2, be the strong decomposition of T −V (X) with ni = |V (Ti)| for

1 ≤ i ≤ m. Because of n ≥ 5 we have |V (T )\V (X)| ≥ 3. Note that every component

Ti, if not consisting of a single vertex, contains a Hamiltonian cycle Ci = ti1t
i
2 . . . t

i
ni
ti1

for 1 ≤ i ≤ m.

Let C be a Hamiltonian cycle in T of the form w1Qw2P , where w1 ∈ A(X`, T1),

w2 ∈ A(Tm, X1), P is a Hamiltonian path of X and Q is a Hamiltonian path of

T − V (X). To prove this theorem we only need to find at least t arcs on C which are
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t-pancyclic in T for t = 4, 5, . . . , n − 1. Note that the two arcs w1 and w2 on C are

always pancyclic in T by Lemma 1 (3).

Below we give a claim concerning the number of t-pancyclic arcs in T1.

Claim 1. If n1 ≥ 3, then there is a Hamiltonian path P1 of T1 on which at least

min{t− 1, n1 − 1} arcs are t-pancyclic in T and P1 is the first part of Q.

Proof of Claim 1. By the induction hypothesis for T1, there is a Hamiltonian cycle in

T1, say C1 = t11t
1
2 . . . t

1
n1
t11, containing ht(T1) ≥ t arcs which are t-pancyclic in T1.

Let x` be an arbitrary vertex of X`. By Lemma 1 (2) we may assume without loss of

generality that tm → x` → t11 for some tm ∈ V (Tm).

If x` → t1n1
, then let P1 = t1n1

t11t
1
2 . . . t

1
n1−1. The two cycles t11t

1
2 · · · t1n1−1tmx`t

1
1 and

t1n1
t11t

1
2 . . . t

1
n1−2tmx`t

1
n1

yield that every arc on the Hamiltonian path P1 of T1 is

contained in an (n1+1)-cycle. Furthermore, the (n1+2)-cycle t1n1
t11t

1
2 . . . t

1
n1−1tmx`t

1
n1

can be successively extended to a Hamiltonian cycle C = w1Qw2P in T such that

P1 is the first part of Q. So every arc on P1 is n1-pancyclic in T . In the case when

t ≥ n1, we immediately have that every arc on P1 is t-pancyclic in T ; In the other

case when t < n1, we deduce that least t− 1 arcs on P1 are t-pancylic in T .

If t1n1
→ x`, then let P1 = t11t

1
2 . . . t

1
n1

and from the cycles t11t
1
2 . . . t

1
n1
x`t

1
1 and

t11t
1
2 . . . t

1
n1
tmx`t

1
1 we can deduce the same conclusion as above. So we are done.

Analogously, Claim 1 also holds for Tm. We distinguish the following two cases

according to the value of t.

Case 1. t = 4.

If |V (T1)| = |V (Tm)| = 1, then m ≥ 3 and the two arcs of A(T1, T2) and A(Tm−1, Tm)

on Q are 4-pancyclic by Lemma 1 (6). So h4(T ) ≥ 4.

Assume without loss of generality that |V (T1)| ≥ 3. According to Claim 1, at least

two arcs of T1 are 4-pancyclic in T which are contained in the Hamiltonian cycle C.

So h4(T ) ≥ 4.

Case 2. 5 ≤ t ≤ n− 1.

If |V (T1)| = |V (Tm)| = 1, then m ≥ 3 and every arc on the Hamiltonian cycle

C = w1Qw2P is t-pancyclic in T by Lemma 1 (3)-(7). So ht(T ) = n > t. Assume

without loss of generality that |V (T1)| ≥ 3.

If |V (T1)| ≥ t or |V (Tm)| ≥ t, then by Claim 1 we have ht(T ) ≥ t− 1 + |{w1, w2}| =
t + 1. So assume in the following that 3 ≤ |V (T1)| ≤ t− 1 and 1 ≤ |V (Tm)| ≤ t− 1.

If |V (Tm)| = 1, then by Claim 1 and Lemma 1 (3)-(7) only the arc of A(T1, T2) on

C = w1Qw2P is possibly not t-pancyclic. So ht(T ) ≥ n− 1 ≥ t.

If 3 ≤ |V (Tm)| ≤ t − 1, then by Claim 1 and Lemma 1 (3)-(7) only the arcs eC ∈
A(T1, T2) and e′C ∈ A(Tm−1, Tm) on C = w1Qw2P are possibly not t-pancyclic. So

ht(T ) ≥ n − 2. For t ≤ n − 2 we are done obviously. For m = 2, we are also done
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with eC = e′C and ht(T ) ≥ n − 1 ≥ t. For the remaining case t = n − 1 and m ≥ 3,

it is easy to see that the arc eC (resp. e′C) is on an (n− 1)-cycle just by skipping one

vertex of Tm (resp. T1). Therefore, ht(T ) = n > t.

To characterize all tournaments with ht(T ) = t, we need the following definition.

Definition 1. Let Hn be the strong tournament on n vertices with a Hamiltonian path
P = x1x2 . . . xn such that xj → xi for all 3 ≤ i + 2 ≤ j ≤ n. Instead of Hn we often write
Hn

P or Hn
x1

to mark the path P or its initial vertex x1.

Lemma 2. Let T be a strong tournament of order n ≥ 3 and x ∈ V (T ). Then T = Hn
x

if and only if for every Hamiltonian path of T with initial vertex x there is no path of length
n− 2 from x to the end vertex of such Hamiltonian path.

Proof. The necessity is clear and we prove the sufficiency by using induction on n. If

n = 3, then T is a 3-cycle and therefore T = H3. If n = 4, then let P = x1x2x3x4 be

a Hamiltonian path of T with x1 = x. Since there is no (x1, x4)-path of length 2, we

have x3 → x1 and x4 → x2. If x1 → x4, then P ′ = x1x4x2x3 is another Hamiltonian

path starting at x1, but x1x2x3 is an (x1, x3)-path of length 2, a contradiction. So

x4 → x1 and T = H4
x. Assume n ≥ 5 and the claim holds for all strong tournaments

with less than n vertices.

Let P = x1x2 . . . xn be a Hamiltonian path in T with x1 = x. As there is no (x1, xn)-

path of length n − 2, we have xi+2 → xi for all 1 ≤ i ≤ n − 2. Consider the strong

subdigraph T −x1 of T . For any Hamiltonian path Q of T −x1 starting at x2, there is

no path S of length n−3 from x2 to the end vertex of Q. As otherwise we can extend

S and Q to S′ = x1S and P ′ = x1Q, a contradiction. Therefore, T − x1 = Hn−1
x2

. If

there exists an index i ∈ {4, . . . , n} such that x → xi, then xxi . . . xnx2 . . . xi−1 is a

Hamiltonian path of T and xxi . . . xnx3 . . . xi−1 is an (x, xi−1)-path of length n − 2,

a contradiction. So T = Hn
x .

Now we are ready to generalize the second part of Theorem 1 by Moon.

Theorem 3. Let T be a strong tournament with order n and t ≥ 4. Then ht(T ) = t if
and only if n = t or T = Ht+1.

Proof. First we assume n = t or T = Ht+1. If n = t, then the desired result is

obvious. If T = Ht+1 = Ht+1
Q with Q = x1 . . . xt+1, then this tournament has exactly

one Hamiltonian cycle and every arc of Q is contained in the cycles x1 . . . xtx1 or

x2 . . . xt+1x2 and therefore t-pancyclic. By Lemma 2, there is no (x1, xt+1)-path of

length t − 1, and therefore, the arc xt+1x1 cannot be contained in any t-cycle. So

ht(T ) = t.

To prove the other direction, let X1, X2, . . . , X`, ` ≥ 1, be the strong decomposition

of a reductor X of T and T1, T2, . . . , Tm, m ≥ 2, be the strong decomposition of

T − V (X) with ni = |V (Ti)| for 1 ≤ i ≤ m. Like in the proof of Theorem 2 we
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distinguish two cases t = 4 and t > 4. In both cases we assume ht(T ) = t and

n > t. Therefore we always have n ≥ 5 and |V (T )\V (X)| ≥ 3. Again we consider a

Hamiltonian cycle C = w1Qw2P of T , where w1 ∈ A(X`, T1), w2 ∈ A(Tm, X1), P is a

Hamiltonian path of X and Q is a Hamiltonian path of T − V (X). Note that w1, w2

are always pancyclic in T , and Claim 1 in the proof of Theorem 2 also holds here.

Case 1. t = 4.

If |V (T1)| = |V (Tm)| = 1, then m ≥ 3 and by Lemma 1 (3) and (6), there are already

four 4-pancyclic arcs w1, w2, eC ∈ A(T1, A2) and e′C ∈ A(Tm−1, Tm) on C. Since

h4(T ) = 4, by Lemma 1 (4), (8), (9) and n ≥ 5 we have |V (X)| = 1, |V (Ti)| = 1 for

i = 2, 3, . . . ,m− 1, and m ≥ 4. Let V (X) = {x} and V (Ti) = {ti} for i = 1, 2, . . . ,m.

If m ≥ 5, then either t2t3 is 4-pancyclic in T when t3 → x or t3t4 is 4-pancyclic when

x → t3. It is a contradiction. So m = 4 and {t2, t4} → x → {t1, t3}. This means

T = H5
P∗ with P ∗ = t3t4xt1t2.

Assume without loss of generality that |V (T1)| ≥ 3. Since h4(T ) = 4, by Claim 1 and

Lemma 1 it is not difficult to deduce that |V (T1)| = 3, |V (Tm)| = 1, |V (X)| = 1 and

m = 2. Let t1t2t3t1 be the Hamiltonian cycle of T1, V (X) = {x}, V (T2) = {y} and

assume without loss of generality that x→ t1. Then {t2, t3} → x and T = H5
P∗ with

P ∗ = yxt1t2t3.

Case 2. 5 ≤ t ≤ n− 1.

If |V (T1)| = |V (Tm)| = 1, then m ≥ 3 and every arc on the Hamiltonian cycle

C = w1Qw2P is t-pancyclic by Lemma 1 (3)-(7). That is to say ht(T ) = n 6= t, a

contradiction. So assume without loss of generality that |V (T1)| ≥ 3.

In addition, we have |V (T1)|, |V (Tm)| ≤ t−1, as otherwise ht(T ) ≥ t−1+|{w1, w2}| ≥
t + 1 by Claim 1 in the proof of Theorem 2, a contradiction.

Now by Claim 1 and Lemma 1 only the arcs eC ∈ A(T1, T2) and e′C ∈ A(Tm−1, Tm)

on C = w1Qw2P are possibly not t-pancyclic. So n− 1 ≥ t = ht(T ) ≥ n− 2.

Subcase 2.1. 3 ≤ |V (T1)|, |V (Tm)| ≤ t− 1.

If m ≥ 3, then the arc eC (resp. e′C) is on cycles of length n − 1 and n − 2 just by

skipping one or two vertices in Tm (resp. T1). So whenever t = n− 1 or t = n− 2, eC
and e′C are t-pancyclic. Therefore ht(T ) = n 6= t, a contradiction.

Assume in the following that m = 2. Then eC = e′C is the unique arc which is not

t-pancyclic in T . So t = ht(T ) = n − 1 and eC is not on any (n − 1)-cycle. Hence,

|V (X)| = 1, as otherwise, eC is on an (n − 1)-cycle by skipping one vertex of V (X)

on C.

Let V (X) = {x} and Ci = ti1t
i
2 . . . t

i
ni
ti1 be a Hamiltonian cycle of Ti for i = 1, 2. By

Lemma 1 (2) we may assume without loss of generality that t2n2
→ x→ t11.

In T1, for any Hamiltonian path with the initial vertex t11, there is no (n1 − 2)-path

from t11 to the end vertex of such Hamiltonian path, as otherwise eC lies on an (n−1)-
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cycle, a contradiction. By Lemma 2, T1 = Hn1

P1
for P1 = t11t

1
2 . . . t

1
n1

. Using T−1, we

can similarly deduce that T2 = Hn2

P2
for P2 = t21t

2
2 . . . t

2
n2

. Now our aim is to show

{t12, . . . , t1n1
} → x→ {t21, . . . , t2n2−1}, and then, T = Ht+1

P∗ for P ∗ = P2xP1.

If t21 → x, then from this cycle t11t
1
2 . . . t

1
n1
t22t

2
3 . . . t

2
n2

(t21)xt11 we can see that eC = t1n1
t22

is on an (n− 1)-cycle, a contradiction. So x→ t21.

If t22 → x and n2 ≥ 4, then from this cycle t11t
1
2 . . . t

1
n1
t23 . . . (t

2
n2

)t21t
2
2xt

1
1 we can see

that eC = t1n1
t23 is on an (n − 1)-cycle, a contradiction. If t22 → x and n2 = 3, then

from this cycle t11 . . . t
1
n1
t21t

2
2(t23)xt11 we can see that eC = t1n1

t21 is on an (n− 1)-cycle,

a contradiction. So x→ t22.

Successively, we can show that x→ {t23, . . . , t2n2−1}. Considering T−1, we can further

deduce that {t12, . . . , t1n1
} → x. Altogether, T = Ht+1

P∗ .

Subcase 2.2. 3 ≤ |V (T1)| ≤ t− 1 and |V (Tm)| = 1.

If m ≥ 3, then e′C is t-pancyclic by Lemma 1 (6), and if m = 2, then eC = e′C . All of

these yield t = n− 1 and eC is not on any (n− 1)-cycle. So |V (X)| = 1, as otherwise,

eC is on an (n − 1)-cycle by skipping one vertex of V (X) on C. Similarly, we get

m ≤ 3, |V (T2)| = 1 and X 9 T1. We also have X → T2 when m = 3.

If m = 3, then it can be transferred to the case m = 2 by choosing another reductor

X ′ = T3, where T ′1 = T [T1∪V (X)], T ′2 = T2 is the strong decomposition of T−V (X ′).

So we only need to consider the case m = 2.

Let V (X) = {x}, T2 = {y} and C1 = t11t
1
2 . . . t

1
n1
t11 be a Hamiltonian cycle of T1.

Assume without loss of generality that x → t11. Then by a similar argument as in

Subcase 2.1 we can deduce that T1 = Hn1

P1
with P1 = t11t

1
2 . . . t

1
n1

and T = Ht+1
P∗ with

P ∗ = yxt11t
1
2 . . . t

1
n1

.

All the previous results deal with the maximum number of t-pancyclic arcs on the same

Hamiltonian cycle. As we have a characterisation of all tournaments with ht(T ) = t,

we naturally look for all tournaments with pt(T ) = t. We have seen that tournaments

which achieve h(T ) = 3 have been characterised by Moon [4] and these are the same

tournaments with p(T ) = 3. The important fact is that these tournaments contain

exactly one Hamiltonian cycle. As this is also the key in the following theorem, we

refer to an earlier work by Douglas [2] which gives valuable information about the

structure of tournaments containing exactly one Hamiltonian cycle.

Theorem 4. Let T be a strong tournament with order n.

(1) If 4 ≤ t ≤ n− 1, then pt(T ) = t if and only if T = Ht+1;

(2) If t = n, then pt(T ) = t if and only if there is exactly one Hamiltonian cycle in T .

Proof. From the definitions of pt(T ) and ht(T ) and Theorem 2, we have pt(T ) ≥
ht(T ) ≥ t.
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(1) If pt(T ) = t, then from the inequality above we have ht(T ) = t. By Theorem

3 and n 6= t we deduce that T = Ht+1. To prove the other direction, let

T = Ht+1. Then there is exactly one Hamiltonian cycle in T , which implies

pt(T ) = ht(T ) = t.

(2) Note that every arc on a Hamiltonian cycle of T is n-pancyclic. So this statement

obviously holds.
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