t-Pancyclic arcs in tournaments

Wei Meng ${ }^{1 *}$, Steffen Grüter ${ }^{2}$, Yubao Guo ${ }^{2}$, Manu Kapolke ${ }^{2}$, Simon Meesker ${ }^{2}$
${ }^{1}$ School of Mathematical Sciences, Shanxi University, 030006 Taiyuan, China
mengwei@sxu.edu.cn
${ }^{2}$ Lehrstuhl C für Mathematik, RWTH Aachen University, 52056 Aachen, Germany grueter@mathc.rwth-aachen.de, guo@mathc.rwth-aachen.de, manu.kapolke@rwth-aachen.de, simon.meesker@rwth-aachen.de

Received: 1 September 2018; Accepted: 8 March 2019
Published Online: 11 March 2019

Dedicated to Prof. Dr. Lutz Volkmann, on the occasion of his 75th birthday.

Abstract

Let T be a non-trivial tournament. An arc is t-pancyclic in T, if it is contained in a cycle of length ℓ for every $t \leq \ell \leq|V(T)|$. Let $p^{t}(T)$ denote the number of t-pancyclic arcs in T and $h^{t}(T)$ the maximum number of t-pancyclic arcs contained in the same Hamiltonian cycle of T. Moon (J. Combin. Inform. System Sci., 19 (1994), 207-214) showed that $h^{3}(T) \geq 3$ for any non-trivial strong tournament T and characterized the tournaments with $h^{3}(T)=3$. In this paper, we generalize Moon's theorem by showing that $h^{t}(T) \geq t$ for every $3 \leq t \leq|V(T)|$ and characterizing all tournaments which satisfy $h^{t}(T)=t$. We also present all tournaments which fulfill $p^{t}(T)=t$.

Keywords: Tournament, pancyclicity, t-pancyclic arc
AMS Subject classification: 05C20, 05C38

1. Terminology and introduction

In this paper we consider only finite and simple digraphs. Let D be a digraph with vertex set $V(D)$ and arc set $A(D)$. Denote $|V(D)|$ the order of D. If $x y$ is an arc of D, then we write $x \rightarrow y$ and say x dominates y. More generally, if X and Y are two disjoint subdigraphs of D (or subsets of $V(D)$) such that every vertex of X dominates every vertex of Y, then we say that X dominates Y and denote it by $X \rightarrow Y$. In

[^0]addition, we denote the set of arcs from X to Y by $A(X, Y)$. Let $W \subseteq V(D)$. Then $D[W]$ is a subdigraph of D induced by W and $D-W=D[V(D) \backslash W]$.
A strong component H of a digraph D is a maximal subdigraph of D such that for any two distinct vertices $x, y \in V(H)$, the subdigraph H contains a path from x to y and a path from y to x. A digraph D is strong if it has only one strong component. A reductor of D is a smallest subdigraph X such that $D-V(X)$ is not strong.
A path from x to y is called an (x, y)-path. A cycle of length ℓ is said to be an ℓ-cycle. A path (resp. cycle) in D is a Hamiltonian path (resp. Hamiltonian cycle) if it contains all the vertices of D. An arc of a digraph D is t-pancyclic $(t \geq 3)$ if it is contained in an ℓ-cycle for every $t \leq \ell \leq|V(D)|$. Instead of 3-pancyclic we just say pancyclic. It is immediate that each s-pancyclic arc is also t-pancyclic for $s \leq t \leq|V(D)|$. If $x y \in A(D)$ is t-pancyclic in D, then $y x$ is t-pancyclic in D^{-1}, where $D^{-1}=(V(D),\{y x \mid x y \in A(D)\})$ is the converse digraph of D.
The number of pancyclic (resp. t-pancyclic) arcs in a digraph D is denoted by $p(D)$ (resp. $p^{t}(D)$) and $h(D)$ (resp. $h^{t}(D)$) is the maximum number of pancyclic (resp. t-pancyclic) arcs belonging to the same Hamiltonian cycle of D.
A tournament T is a digraph with exactly one arc between every pair of distinct vertices. A tournament without any cycles is called transitive.

In 1994, Moon [4] showed that every non-trivial strong tournament contains at least three pancyclic arcs. Actually, he proved a somewhat stronger result:

Theorem 1. (Moon [4]) Let T be a strong tournament with order $n \geq 3$. Then $h(T) \geq 3$ with equality holding if and only if $T \in \mathcal{P}_{3}$, where \mathcal{P}_{3} is the set of tournaments T containing a vertex v such that $T-v$ is a transitive tournament with a unique Hamiltonian path $t_{1} t_{2} \ldots t_{n-1}$ and $\left\{t_{i}, \ldots, t_{n-1}\right\} \rightarrow v \rightarrow\left\{t_{1}, \ldots, t_{i-1}\right\}$ for some $2 \leq i \leq n-1$.

Further results on pancyclicity in tournaments can be found in [1], [5]-[6]. In this paper we consider the number of t-pancyclic arcs for $t \geq 3$ instead of pancyclic arcs in tournaments. According to the definitions of $p^{t}(D)$ and $h^{t}(D)$, we immediately have $p^{t}(D) \geq h^{t}(D)$ and $h^{t}(D) \leq|V(D)|$. Moreover, if D contains a unique Hamiltonian cycle, which therefore has to contain all t-pancyclic arcs, then $p^{t}(D)=h^{t}(D)$. Note that all tournaments of \mathcal{P}_{3} contain exactly one Hamiltonian cycle. So $p(T)=h(T)=3$ for $T \in \mathcal{P}_{3}$.
In the next section we generalize Theorem 1 by showing that $h^{t}(T) \geq t$ for every $3 \leq$ $t \leq|V(T)|$ and characterizing all tournaments which satisfy $h^{t}(T)=t$. Additionally, we present all tournaments which fulfill $p^{t}(T)=t$.

2. Main Results

The following important lemma will be used frequently in the proofs of our main results. The parts (1)-(3) and (8)-(9) of Lemma 1 can be seen in [3], the other parts (4)-(7) are very easy, so we omit their proofs here.

Lemma 1. Let T be a non-trivial strong tournament and X a reductor of T. Then the following statements hold.
(1) There is a unique sequence $T_{1}, T_{2}, \ldots, T_{m}(m \geq 2)$ of the strong components of T $V(X)$ satisfying $T_{i} \rightarrow T_{j}$ for every $1 \leq i<j \leq m$. We call it a strong decomposition of $T-V(X)$. Similarly, there is a strong decomposition $X_{1}, X_{2}, \ldots, X_{\ell}(\ell \geq 1)$ of X.
(2) Every vertex of X dominates a vertex of T_{1} and is dominated by a vertex of T_{m}.
(3) Every arc from T_{m} to X_{1} is pancyclic and every arc from X_{ℓ} to T_{1} is also pancyclic.
(4) Each arc in X that lies on a Hamiltonian path of X is 4-pancyclic.
(5) If $m \geq 4$, then every arc from T_{i} to T_{i+1} is 5 -pancyclic for $i=2,3, \ldots, m-2$.
(6) If $m \geq 3$ and $\left|V\left(T_{1}\right)\right|=1$ (resp. $\left|V\left(T_{m}\right)\right|=1$), then every arc in $A\left(T_{1}, T_{2}\right)$ (resp. $A\left(T_{m-1}, T_{m}\right)$) is 4-pancyclic.
(7) If $\left|V\left(T_{i}\right)\right| \geq 3$ for some $1<i<m$, then every arc, which lies on a Hamiltonian cycle of T_{i}, is 5 -pancyclic in T.
(8) If $\left|V\left(T_{i}\right)\right| \geq 4$ for some $1<i<m$, then every t-pancyclic arc in T_{i} is also t-pancyclic in T for $3 \leq t \leq\left|V\left(T_{i}\right)\right|$.
(9) If $\left|V\left(T_{i}\right)\right|=3$ for some $1<i<m$, then at least two arcs of T_{i} are pancyclic in T.

Building upon the results above, we can prove the first main result, which is a generalization of the first part of Theorem 1.

Theorem 2. Let T be a strong tournament with order $n \geq 3$. Then

$$
h^{t}(T) \geq t
$$

for every $3 \leq t \leq n$.

Proof. We prove this theorem by induction on n. For $n=3, T$ is a 3 -cycle, and clearly, $h^{3}(T)=3$. For $n=4$, it is easy to check that $h^{3}(T)=3$ and $h^{4}(T)=4$. Suppose now $n \geq 5$ and it is true for all strong tournaments with less than n vertices. By Theorem $1, h^{3}(T) \geq 3$, and clearly, $h^{n}(T)=n$. So we only need to consider the cases $t=4,5, \ldots, n-1$.
Let $X_{1}, X_{2}, \ldots, X_{\ell}, \ell \geq 1$, be the strong decomposition of a reductor X of T and $T_{1}, T_{2}, \ldots, T_{m}, m \geq 2$, be the strong decomposition of $T-V(X)$ with $n_{i}=\left|V\left(T_{i}\right)\right|$ for $1 \leq i \leq m$. Because of $n \geq 5$ we have $|V(T) \backslash V(X)| \geq 3$. Note that every component T_{i}, if not consisting of a single vertex, contains a Hamiltonian cycle $C_{i}=t_{1}^{i} t_{2}^{i} \ldots t_{n_{i}}^{i} t_{1}^{i}$ for $1 \leq i \leq m$.
Let C be a Hamiltonian cycle in T of the form $w_{1} Q w_{2} P$, where $w_{1} \in A\left(X_{\ell}, T_{1}\right)$, $w_{2} \in A\left(T_{m}, X_{1}\right), P$ is a Hamiltonian path of X and Q is a Hamiltonian path of $T-V(X)$. To prove this theorem we only need to find at least t arcs on C which are
t-pancyclic in T for $t=4,5, \ldots, n-1$. Note that the two $\operatorname{arcs} w_{1}$ and w_{2} on C are always pancyclic in T by Lemma 1 (3).
Below we give a claim concerning the number of t-pancyclic arcs in T_{1}.
Claim 1. If $n_{1} \geq 3$, then there is a Hamiltonian path P_{1} of T_{1} on which at least $\min \left\{t-1, n_{1}-1\right\}$ arcs are t-pancyclic in T and P_{1} is the first part of Q.

Proof of Claim 1. By the induction hypothesis for T_{1}, there is a Hamiltonian cycle in T_{1}, say $C_{1}=t_{1}^{1} t_{2}^{1} \ldots t_{n_{1}}^{1} t_{1}^{1}$, containing $h^{t}\left(T_{1}\right) \geq t$ arcs which are t-pancyclic in T_{1}.
Let x_{ℓ} be an arbitrary vertex of X_{ℓ}. By Lemma 1 (2) we may assume without loss of generality that $t_{m} \rightarrow x_{\ell} \rightarrow t_{1}^{1}$ for some $t_{m} \in V\left(T_{m}\right)$.
If $x_{\ell} \rightarrow t_{n_{1}}^{1}$, then let $P_{1}=t_{n_{1}}^{1} t_{1}^{1} t_{2}^{1} \ldots t_{n_{1}-1}^{1}$. The two cycles $t_{1}^{1} t_{2}^{1} \cdots t_{n_{1}-1}^{1} t_{m} x_{\ell} t_{1}^{1}$ and $t_{n_{1}}^{1} t_{1}^{1} t_{2}^{1} \ldots t_{n_{1}-2}^{1} t_{m} x_{\ell} t_{n_{1}}^{1}$ yield that every arc on the Hamiltonian path P_{1} of T_{1} is contained in an $\left(n_{1}+1\right)$-cycle. Furthermore, the ($n_{1}+2$)-cycle $t_{n_{1}}^{1} t_{1}^{1} t_{2}^{1} \ldots t_{n_{1}-1}^{1} t_{m} x_{\ell} t_{n_{1}}^{1}$ can be successively extended to a Hamiltonian cycle $C=w_{1} Q w_{2} P$ in T such that P_{1} is the first part of Q. So every arc on P_{1} is n_{1}-pancyclic in T. In the case when $t \geq n_{1}$, we immediately have that every arc on P_{1} is t-pancyclic in T; In the other case when $t<n_{1}$, we deduce that least $t-1$ arcs on P_{1} are t-pancylic in T.
If $t_{n_{1}}^{1} \rightarrow x_{\ell}$, then let $P_{1}=t_{1}^{1} t_{2}^{1} \ldots t_{n_{1}}^{1}$ and from the cycles $t_{1}^{1} t_{2}^{1} \ldots t_{n_{1}}^{1} x_{\ell} t_{1}^{1}$ and $t_{1}^{1} t_{2}^{1} \ldots t_{n_{1}}^{1} t_{m} x_{\ell} t_{1}^{1}$ we can deduce the same conclusion as above. So we are done.

Analogously, Claim 1 also holds for T_{m}. We distinguish the following two cases according to the value of t.

Case 1. $t=4$.
If $\left|V\left(T_{1}\right)\right|=\left|V\left(T_{m}\right)\right|=1$, then $m \geq 3$ and the two arcs of $A\left(T_{1}, T_{2}\right)$ and $A\left(T_{m-1}, T_{m}\right)$ on Q are 4 -pancyclic by Lemma 1 (6). So $h^{4}(T) \geq 4$.
Assume without loss of generality that $\left|V\left(T_{1}\right)\right| \geq 3$. According to Claim 1, at least two arcs of T_{1} are 4-pancyclic in T which are contained in the Hamiltonian cycle C. So $h^{4}(T) \geq 4$.

Case 2. $5 \leq t \leq n-1$.
If $\left|V\left(T_{1}\right)\right|=\left|V\left(T_{m}\right)\right|=1$, then $m \geq 3$ and every arc on the Hamiltonian cycle $C=w_{1} Q w_{2} P$ is t-pancyclic in T by Lemma 1 (3)-(7). So $h^{t}(T)=n>t$. Assume without loss of generality that $\left|V\left(T_{1}\right)\right| \geq 3$.
If $\left|V\left(T_{1}\right)\right| \geq t$ or $\left|V\left(T_{m}\right)\right| \geq t$, then by Claim 1 we have $h^{t}(T) \geq t-1+\left|\left\{w_{1}, w_{2}\right\}\right|=$ $t+1$. So assume in the following that $3 \leq\left|V\left(T_{1}\right)\right| \leq t-1$ and $1 \leq\left|V\left(T_{m}\right)\right| \leq t-1$. If $\left|V\left(T_{m}\right)\right|=1$, then by Claim 1 and Lemma 1 (3)-(7) only the arc of $A\left(T_{1}, T_{2}\right)$ on $C=w_{1} Q w_{2} P$ is possibly not t-pancyclic. So $h^{t}(T) \geq n-1 \geq t$.
If $3 \leq\left|V\left(T_{m}\right)\right| \leq t-1$, then by Claim 1 and Lemma 1 (3)-(7) only the arcs $e_{C} \in$ $A\left(T_{1}, T_{2}\right)$ and $e_{C}^{\prime} \in A\left(T_{m-1}, T_{m}\right)$ on $C=w_{1} Q w_{2} P$ are possibly not t-pancyclic. So $h^{t}(T) \geq n-2$. For $t \leq n-2$ we are done obviously. For $m=2$, we are also done
with $e_{C}=e_{C}^{\prime}$ and $h^{t}(T) \geq n-1 \geq t$. For the remaining case $t=n-1$ and $m \geq 3$, it is easy to see that the $\operatorname{arc} e_{C}$ (resp. e_{C}^{\prime}) is on an ($n-1$)-cycle just by skipping one vertex of $T_{m}\left(\right.$ resp. $\left.T_{1}\right)$. Therefore, $h^{t}(T)=n>t$.

To characterize all tournaments with $h^{t}(T)=t$, we need the following definition.

Definition 1. Let H^{n} be the strong tournament on n vertices with a Hamiltonian path $P=x_{1} x_{2} \ldots x_{n}$ such that $x_{j} \rightarrow x_{i}$ for all $3 \leq i+2 \leq j \leq n$. Instead of H^{n} we often write H_{P}^{n} or $H_{x_{1}}^{n}$ to mark the path P or its initial vertex x_{1}.

Lemma 2. Let T be a strong tournament of order $n \geq 3$ and $x \in V(T)$. Then $T=H_{x}^{n}$ if and only if for every Hamiltonian path of T with initial vertex x there is no path of length $n-2$ from x to the end vertex of such Hamiltonian path.

Proof. The necessity is clear and we prove the sufficiency by using induction on n. If $n=3$, then T is a 3 -cycle and therefore $T=H^{3}$. If $n=4$, then let $P=x_{1} x_{2} x_{3} x_{4}$ be a Hamiltonian path of T with $x_{1}=x$. Since there is no $\left(x_{1}, x_{4}\right)$-path of length 2 , we have $x_{3} \rightarrow x_{1}$ and $x_{4} \rightarrow x_{2}$. If $x_{1} \rightarrow x_{4}$, then $P^{\prime}=x_{1} x_{4} x_{2} x_{3}$ is another Hamiltonian path starting at x_{1}, but $x_{1} x_{2} x_{3}$ is an $\left(x_{1}, x_{3}\right)$-path of length 2 , a contradiction. So $x_{4} \rightarrow x_{1}$ and $T=H_{x}^{4}$. Assume $n \geq 5$ and the claim holds for all strong tournaments with less than n vertices.
Let $P=x_{1} x_{2} \ldots x_{n}$ be a Hamiltonian path in T with $x_{1}=x$. As there is no $\left(x_{1}, x_{n}\right)$ path of length $n-2$, we have $x_{i+2} \rightarrow x_{i}$ for all $1 \leq i \leq n-2$. Consider the strong subdigraph $T-x_{1}$ of T. For any Hamiltonian path Q of $T-x_{1}$ starting at x_{2}, there is no path S of length $n-3$ from x_{2} to the end vertex of Q. As otherwise we can extend S and Q to $S^{\prime}=x_{1} S$ and $P^{\prime}=x_{1} Q$, a contradiction. Therefore, $T-x_{1}=H_{x_{2}}^{n-1}$. If there exists an index $i \in\{4, \ldots, n\}$ such that $x \rightarrow x_{i}$, then $x x_{i} \ldots x_{n} x_{2} \ldots x_{i-1}$ is a Hamiltonian path of T and $x x_{i} \ldots x_{n} x_{3} \ldots x_{i-1}$ is an $\left(x, x_{i-1}\right)$-path of length $n-2$, a contradiction. So $T=H_{x}^{n}$.

Now we are ready to generalize the second part of Theorem 1 by Moon.
Theorem 3. Let T be a strong tournament with order n and $t \geq 4$. Then $h^{t}(T)=t$ if and only if $n=t$ or $T=H^{t+1}$.

Proof. First we assume $n=t$ or $T=H^{t+1}$. If $n=t$, then the desired result is obvious. If $T=H^{t+1}=H_{Q}^{t+1}$ with $Q=x_{1} \ldots x_{t+1}$, then this tournament has exactly one Hamiltonian cycle and every arc of Q is contained in the cycles $x_{1} \ldots x_{t} x_{1}$ or $x_{2} \ldots x_{t+1} x_{2}$ and therefore t-pancyclic. By Lemma 2, there is no $\left(x_{1}, x_{t+1}\right)$-path of length $t-1$, and therefore, the arc $x_{t+1} x_{1}$ cannot be contained in any t-cycle. So $h^{t}(T)=t$.
To prove the other direction, let $X_{1}, X_{2}, \ldots, X_{\ell}, \ell \geq 1$, be the strong decomposition of a reductor X of T and $T_{1}, T_{2}, \ldots, T_{m}, m \geq 2$, be the strong decomposition of $T-V(X)$ with $n_{i}=\left|V\left(T_{i}\right)\right|$ for $1 \leq i \leq m$. Like in the proof of Theorem 2 we
distinguish two cases $t=4$ and $t>4$. In both cases we assume $h^{t}(T)=t$ and $n>t$. Therefore we always have $n \geq 5$ and $|V(T) \backslash V(X)| \geq 3$. Again we consider a Hamiltonian cycle $C=w_{1} Q w_{2} P$ of T, where $w_{1} \in A\left(X_{\ell}, T_{1}\right), w_{2} \in A\left(T_{m}, X_{1}\right), P$ is a Hamiltonian path of X and Q is a Hamiltonian path of $T-V(X)$. Note that w_{1}, w_{2} are always pancyclic in T, and Claim 1 in the proof of Theorem 2 also holds here.

Case 1. $t=4$.
If $\left|V\left(T_{1}\right)\right|=\left|V\left(T_{m}\right)\right|=1$, then $m \geq 3$ and by Lemma 1 (3) and (6), there are already four 4-pancyclic arcs $w_{1}, w_{2}, e_{C} \in A\left(T_{1}, A_{2}\right)$ and $e_{C}^{\prime} \in A\left(T_{m-1}, T_{m}\right)$ on C. Since $h^{4}(T)=4$, by Lemma 1 (4), (8), (9) and $n \geq 5$ we have $|V(X)|=1,\left|V\left(T_{i}\right)\right|=1$ for $i=2,3, \ldots, m-1$, and $m \geq 4$. Let $V(X)=\{x\}$ and $V\left(T_{i}\right)=\left\{t_{i}\right\}$ for $i=1,2, \ldots, m$. If $m \geq 5$, then either $t_{2} t_{3}$ is 4 -pancyclic in T when $t_{3} \rightarrow x$ or $t_{3} t_{4}$ is 4 -pancyclic when $x \rightarrow t_{3}$. It is a contradiction. So $m=4$ and $\left\{t_{2}, t_{4}\right\} \rightarrow x \rightarrow\left\{t_{1}, t_{3}\right\}$. This means $T=H_{P^{*}}^{5}$ with $P^{*}=t_{3} t_{4} x t_{1} t_{2}$.
Assume without loss of generality that $\left|V\left(T_{1}\right)\right| \geq 3$. Since $h^{4}(T)=4$, by Claim 1 and Lemma 1 it is not difficult to deduce that $\left|V\left(T_{1}\right)\right|=3,\left|V\left(T_{m}\right)\right|=1,|V(X)|=1$ and $m=2$. Let $t_{1} t_{2} t_{3} t_{1}$ be the Hamiltonian cycle of $T_{1}, V(X)=\{x\}, V\left(T_{2}\right)=\{y\}$ and assume without loss of generality that $x \rightarrow t_{1}$. Then $\left\{t_{2}, t_{3}\right\} \rightarrow x$ and $T=H_{P^{*}}^{5}$ with $P^{*}=y x t_{1} t_{2} t_{3}$.

Case 2. $5 \leq t \leq n-1$.
If $\left|V\left(T_{1}\right)\right|=\left|V\left(T_{m}\right)\right|=1$, then $m \geq 3$ and every arc on the Hamiltonian cycle $C=w_{1} Q w_{2} P$ is t-pancyclic by Lemma 1 (3)-(7). That is to say $h^{t}(T)=n \neq t$, a contradiction. So assume without loss of generality that $\left|V\left(T_{1}\right)\right| \geq 3$.
In addition, we have $\left|V\left(T_{1}\right)\right|,\left|V\left(T_{m}\right)\right| \leq t-1$, as otherwise $h^{t}(T) \geq t-1+\left|\left\{w_{1}, w_{2}\right\}\right| \geq$ $t+1$ by Claim 1 in the proof of Theorem 2, a contradiction.
Now by Claim 1 and Lemma 1 only the $\operatorname{arcs} e_{C} \in A\left(T_{1}, T_{2}\right)$ and $e_{C}^{\prime} \in A\left(T_{m-1}, T_{m}\right)$ on $C=w_{1} Q w_{2} P$ are possibly not t-pancyclic. So $n-1 \geq t=h^{t}(T) \geq n-2$.

Subcase 2.1. $3 \leq\left|V\left(T_{1}\right)\right|,\left|V\left(T_{m}\right)\right| \leq t-1$.
If $m \geq 3$, then the arc e_{C} (resp. e_{C}^{\prime}) is on cycles of length $n-1$ and $n-2$ just by skipping one or two vertices in T_{m} (resp. T_{1}). So whenever $t=n-1$ or $t=n-2, e_{C}$ and e_{C}^{\prime} are t-pancyclic. Therefore $h^{t}(T)=n \neq t$, a contradiction.
Assume in the following that $m=2$. Then $e_{C}=e_{C}^{\prime}$ is the unique arc which is not t-pancyclic in T. So $t=h^{t}(T)=n-1$ and e_{C} is not on any $(n-1)$-cycle. Hence, $|V(X)|=1$, as otherwise, e_{C} is on an $(n-1)$-cycle by skipping one vertex of $V(X)$ on C.
Let $V(X)=\{x\}$ and $C_{i}=t_{1}^{i} t_{2}^{i} \ldots t_{n_{i}}^{i} t_{1}^{i}$ be a Hamiltonian cycle of T_{i} for $i=1,2$. By Lemma 1 (2) we may assume without loss of generality that $t_{n_{2}}^{2} \rightarrow x \rightarrow t_{1}^{1}$.
In T_{1}, for any Hamiltonian path with the initial vertex t_{1}^{1}, there is no $\left(n_{1}-2\right)$-path from t_{1}^{1} to the end vertex of such Hamiltonian path, as otherwise e_{C} lies on an ($n-1$)-
cycle, a contradiction. By Lemma 2, $T_{1}=H_{P_{1}}^{n_{1}}$ for $P_{1}=t_{1}^{1} t_{2}^{1} \ldots t_{n_{1}}^{1}$. Using T^{-1}, we can similarly deduce that $T_{2}=H_{P_{2}}^{n_{2}}$ for $P_{2}=t_{1}^{2} t_{2}^{2} \ldots t_{n_{2}}^{2}$. Now our aim is to show $\left\{t_{2}^{1}, \ldots, t_{n_{1}}^{1}\right\} \rightarrow x \rightarrow\left\{t_{1}^{2}, \ldots, t_{n_{2}-1}^{2}\right\}$, and then, $T=H_{P^{*}}^{t+1}$ for $P^{*}=P_{2} x P_{1}$.
If $t_{1}^{2} \rightarrow x$, then from this cycle $t_{1}^{1} t_{2}^{1} \ldots t_{n_{1}}^{1} t_{2}^{2} t_{3}^{2} \ldots t_{n_{2}}^{2}\left(t_{1}^{2}\right) x t_{1}^{1}$ we can see that $e_{C}=t_{n_{1}}^{1} t_{2}^{2}$ is on an ($n-1$)-cycle, a contradiction. So $x \rightarrow t_{1}^{2}$.
If $t_{2}^{2} \rightarrow x$ and $n_{2} \geq 4$, then from this cycle $t_{1}^{1} t_{2}^{1} \ldots t_{n_{1}}^{1} t_{3}^{2} \ldots\left(t_{n_{2}}^{2}\right) t_{1}^{2} t_{2}^{2} x t_{1}^{1}$ we can see that $e_{C}=t_{n_{1}}^{1} t_{3}^{2}$ is on an $(n-1)$-cycle, a contradiction. If $t_{2}^{2} \rightarrow x$ and $n_{2}=3$, then from this cycle $t_{1}^{1} \ldots t_{n_{1}}^{1} t_{1}^{2} t_{2}^{2}\left(t_{3}^{2}\right) x t_{1}^{1}$ we can see that $e_{C}=t_{n_{1}}^{1} t_{1}^{2}$ is on an $(n-1)$-cycle, a contradiction. So $x \rightarrow t_{2}^{2}$.
Successively, we can show that $x \rightarrow\left\{t_{3}^{2}, \ldots, t_{n_{2}-1}^{2}\right\}$. Considering T^{-1}, we can further deduce that $\left\{t_{2}^{1}, \ldots, t_{n_{1}}^{1}\right\} \rightarrow x$. Altogether, $T=H_{P^{*}}^{t+1}$.

Subcase 2.2. $3 \leq\left|V\left(T_{1}\right)\right| \leq t-1$ and $\left|V\left(T_{m}\right)\right|=1$.
If $m \geq 3$, then e_{C}^{\prime} is t-pancyclic by Lemma 1 (6), and if $m=2$, then $e_{C}=e_{C}^{\prime}$. All of these yield $t=n-1$ and e_{C} is not on any ($n-1$)-cycle. So $|V(X)|=1$, as otherwise, e_{C} is on an $(n-1)$-cycle by skipping one vertex of $V(X)$ on C. Similarly, we get $m \leq 3,\left|V\left(T_{2}\right)\right|=1$ and $X \nrightarrow T_{1}$. We also have $X \rightarrow T_{2}$ when $m=3$.
If $m=3$, then it can be transferred to the case $m=2$ by choosing another reductor $X^{\prime}=T_{3}$, where $T_{1}^{\prime}=T\left[T_{1} \cup V(X)\right], T_{2}^{\prime}=T_{2}$ is the strong decomposition of $T-V\left(X^{\prime}\right)$. So we only need to consider the case $m=2$.
Let $V(X)=\{x\}, T_{2}=\{y\}$ and $C_{1}=t_{1}^{1} t_{2}^{1} \ldots t_{n_{1}}^{1} t_{1}^{1}$ be a Hamiltonian cycle of T_{1}. Assume without loss of generality that $x \rightarrow t_{1}^{1}$. Then by a similar argument as in Subcase 2.1 we can deduce that $T_{1}=H_{P_{1}}^{n_{1}}$ with $P_{1}=t_{1}^{1} t_{2}^{1} \ldots t_{n_{1}}^{1}$ and $T=H_{P^{*}}^{t+1}$ with $P^{*}=y x t_{1}^{1} t_{2}^{1} \ldots t_{n_{1}}^{1}$.

All the previous results deal with the maximum number of t-pancyclic arcs on the same Hamiltonian cycle. As we have a characterisation of all tournaments with $h^{t}(T)=t$, we naturally look for all tournaments with $p^{t}(T)=t$. We have seen that tournaments which achieve $h(T)=3$ have been characterised by Moon [4] and these are the same tournaments with $p(T)=3$. The important fact is that these tournaments contain exactly one Hamiltonian cycle. As this is also the key in the following theorem, we refer to an earlier work by Douglas [2] which gives valuable information about the structure of tournaments containing exactly one Hamiltonian cycle.

Theorem 4. Let T be a strong tournament with order n.
(1) If $4 \leq t \leq n-1$, then $p^{t}(T)=t$ if and only if $T=H^{t+1}$;
(2) If $t=n$, then $p^{t}(T)=t$ if and only if there is exactly one Hamiltonian cycle in T.

Proof. From the definitions of $p^{t}(T)$ and $h^{t}(T)$ and Theorem 2, we have $p^{t}(T) \geq$ $h^{t}(T) \geq t$.
(1) If $p^{t}(T)=t$, then from the inequality above we have $h^{t}(T)=t$. By Theorem 3 and $n \neq t$ we deduce that $T=H^{t+1}$. To prove the other direction, let $T=H^{t+1}$. Then there is exactly one Hamiltonian cycle in T, which implies $p^{t}(T)=h^{t}(T)=t$.
(2) Note that every arc on a Hamiltonian cycle of T is n-pancyclic. So this statement obviously holds.

Acknowledgements

This work was partially supported by the National Natural Science Foundation for Young Scientists of China under Grant 11701349 and 11501341.

References

[1] B. Alspach, Cycles of each length in regular tournaments, Canad. Math. Bull. 10 (1967), no. 2, 283-286.
[2] R.J. Douglas, Tournaments that admit exactly one hamiltonian circuit, Proc. London Math. Soc. 21 (1970), no. 4, 716-730.
[3] F. Havet, Pancyclic arcs and connectivity in tournaments, J. Graph Theory 47 (2004), no. 2, 87-110.
[4] J.W. Moon, On k-cyclic and pancyclic arcs in strong tournaments, J. Combin. Inform. System Sci. 19 (1994), 207-214.
[5] C. Thomassen, Hamiltonian-connected tournaments, J. Combin. Theory Ser. B 28 (1980), no. 2, 142-163.
[6] A. Yeo, The number of pancyclic arcs in ak-strong tournament, J. Graph Theory 50 (2005), no. 3, 212-219.

[^0]: * Corresponding Author

