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Abstract: Let T be a non-trivial tournament. An arc is t-pancyclic in T, if it is
contained in a cycle of length ¢ for every ¢t < ¢ < |V(T)|. Let p*(T") denote the number
of t-pancyclic arcs in T' and h!(T) the maximum number of t-pancyclic arcs contained
in the same Hamiltonian cycle of T. Moon (J. Combin. Inform. System Sci., 19
(1994), 207-214) showed that h3(T") > 3 for any non-trivial strong tournament 7" and
characterized the tournaments with h3(T) = 3. In this paper, we generalize Moon’s
theorem by showing that h!(T) > t for every 3 < t < |V(T)| and characterizing all
tournaments which satisfy h!(T) = t. We also present all tournaments which fulfill
pt(T) = t.
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1. Terminology and introduction

In this paper we consider only finite and simple digraphs. Let D be a digraph with
vertex set V(D) and arc set A(D). Denote |V (D)| the order of D. If zy is an arc of
D, then we write © — y and say x dominates y. More generally, if X and Y are two
disjoint subdigraphs of D (or subsets of V(D)) such that every vertex of X dominates
every vertex of Y, then we say that X dominates Y and denote it by X — Y. In
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124 t-Pancyclic arcs in tournaments

addition, we denote the set of arcs from X to Y by A(X,Y). Let W C V(D). Then
D[W] is a subdigraph of D induced by W and D — W = D[V (D)\W].

A strong component H of a digraph D is a maximal subdigraph of D such that for
any two distinct vertices z,y € V(H), the subdigraph H contains a path from z to y
and a path from y to z. A digraph D is strong if it has only one strong component.
A reductor of D is a smallest subdigraph X such that D — V(X)) is not strong,.

A path from x to y is called an (z,y)-path. A cycle of length ¢ is said to be an
l-cycle. A path (resp. cycle) in D is a Hamiltonian path (resp. Hamiltonian cycle)
if it contains all the vertices of D. An arc of a digraph D is t-pancyclic (t > 3) if
it is contained in an f¢-cycle for every t < ¢ < |V(D)|. Instead of 3-pancyclic we
just say pancyclic. It is immediate that each s-pancyclic arc is also ¢-pancyclic for
s <t < |V(D)|. If zy € A(D) is t-pancyclic in D, then yz is t-pancyclic in D~1,
where D=1 = (V(D),{yx | zy € A(D)}) is the converse digraph of D.

The number of pancyclic (resp. t-pancyclic) arcs in a digraph D is denoted by p(D)
(resp. p'(D)) and h(D) (resp. h'(D)) is the maximum number of pancyclic (resp.
t-pancyclic) arcs belonging to the same Hamiltonian cycle of D.

A tournament T is a digraph with exactly one arc between every pair of distinct
vertices. A tournament without any cycles is called transitive.

In 1994, Moon [4] showed that every non-trivial strong tournament contains at least
three pancyclic arcs. Actually, he proved a somewhat stronger result:

Theorem 1. (Moon [4]) Let T be a strong tournament with order n > 3. Then h(T) > 3
with equality holding if and only if T € Ps, where Ps is the set of tournaments T contain-
ing a vertex v such that T — v is a transitive tournament with a unique Hamiltonian path
tita...tno1 and {ti,...,th=1} = v = {t1,...,tic1} for some 2 <i<n—1.

Further results on pancyclicity in tournaments can be found in [1], [5]-[6]. In this
paper we consider the number of ¢-pancyclic arcs for ¢ > 3 instead of pancyclic arcs in
tournaments. According to the definitions of p'(D) and h*(D), we immediately have
p'(D) > h*(D) and h*(D) < |V(D)|. Moreover, if D contains a unique Hamiltonian
cycle, which therefore has to contain all t-pancyclic arcs, then pf(D) = h*(D). Note
that all tournaments of P3 contain exactly one Hamiltonian cycle. So p(T) = h(T) = 3
for T € Ps.

In the next section we generalize Theorem 1 by showing that ht(T) > t for every 3 <
t < |V(T)| and characterizing all tournaments which satisfy h*(T) = t. Additionally,
we present all tournaments which fulfill p*(T') = ¢.

2. Main Results

The following important lemma will be used frequently in the proofs of our main
results. The parts (1)-(3) and (8)-(9) of Lemma 1 can be seen in [3], the other parts
(4)-(7) are very easy, so we omit their proofs here.
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Lemma 1. Let T be a non-trivial strong tournament and X a reductor of T. Then the
following statements hold.

(1) There is a unique sequence Th, T, ..., Tm (m > 2) of the strong components of T —
V(X) satisfying T; — T for every 1 < i < j < m. We call it a strong decomposition
of T —V(X). Similarly, there is a strong decomposition X1, X2,...,X¢ (> 1) of X.

2) Fvery vertex of X dominates a vertex of Th1 and is dominated by a vertexr of Tn,.

Every arc from T,, to X1 is pancyclic and every arc from X, to Ti is also pancyclic.

(
(3
(

)
)

4) Each arc in X that lies on a Hamiltonian path of X is 4-pancyclic.

(5) If m > 4, then every arc from T; to Ti+1 is 5-pancyclic fori=2,3,..., m — 2.
)

6) If m > 3 and |V(Th)| = 1 (resp. |V(Tw)| = 1), then every arc in A(T1,T2) (resp.
A(Tm-1,Tm)) is 4-pancyclic.

(7) If |V(T3)| > 3 for some 1 < i < m, then every arc, which lies on a Hamiltonian cycle
of T;, is 5-pancyclic in T.

(8) If [V(T3)| = 4 for some 1 < i < m, then every t-pancyclic arc in T; is also t-pancyclic
in T for 3 <t <|V(Ty)|.

(9) If [V(T3)| = 3 for some 1 < i < m, then at least two arcs of T; are pancyclic in T.

Building upon the results above, we can prove the first main result, which is a gener-
alization of the first part of Theorem 1.

Theorem 2. Let T be a strong tournament with order n > 3. Then
RY(T) >t
for every 3 <t < n.

Proof. We prove this theorem by induction on n. For n = 3, T is a 3-cycle, and
clearly, h3(T) = 3. For n = 4, it is easy to check that h3(T) = 3 and h*(T) = 4.
Suppose now n > 5 and it is true for all strong tournaments with less than n vertices.
By Theorem 1, h3(T) > 3, and clearly, h"(T) = n. So we only need to consider the
cases t =4,5,...,n— 1.

Let X1,X5,..., Xy, £ > 1, be the strong decomposition of a reductor X of 7' and
T, Ty, ..., Tm,m > 2, be the strong decomposition of T — V(X)) with n; = |V (T;)| for
1 <4 < m. Because of n > 5 we have |V(T)\V(X)| > 3. Note that every component
T, if not consisting of a single vertex, contains a Hamiltonian cycle C; = t5t5 ...t} #}
for 1 <i<m.

Let C' be a Hamiltonian cycle in T' of the form w;QuwsP, where wy € A(X,,Th),
wy € A(Tp,,X1), P is a Hamiltonian path of X and @ is a Hamiltonian path of
T — V(X). To prove this theorem we only need to find at least ¢t arcs on C' which are
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t-pancyclic in T for t = 4,5,...,n — 1. Note that the two arcs w; and wy on C are
always pancyclic in T' by Lemma 1 (3).
Below we give a claim concerning the number of ¢-pancyclic arcs in 1.

Claim 1. If ny > 3, then there is a Hamiltonian path Py of Ty on which at least
min{t — 1,n; — 1} arcs are t-pancyclic in T and Py is the first part of Q.

Proof of Claim 1. By the induction hypothesis for T3, there is a Hamiltonian cycle in
Ty, say Cy = tits...t, t1, containing h*(T1) > t arcs which are ¢-pancyclic in T;.
Let xy be an arbitrary vertex of X,. By Lemma 1 (2) we may assume without loss of
generality that t,, — x, — t1 for some t,, € V(T,).

If xp — t}”, then let P, = t}nﬂt% . 't'}nfl' The two cycles tith - ~t711171tmxgt% and
t;lt%té . ..t}“&tmxzt}“ yield that every arc on the Hamiltonian path P; of 1y is
contained in an (ny +1)-cycle. Furthermore, the (ny+2)-cycle t} t1t5.. .1, _ tmxet)h,
can be successively extended to a Hamiltonian cycle C' = w1 QwyP in T such that
P, is the first part of Q. So every arc on P is nj-pancyclic in T. In the case when
t > ni1, we immediately have that every arc on P; is t-pancyclic in T'; In the other
case when t < np, we deduce that least t — 1 arcs on P; are t-pancylic in 7.

If t)  — x4, then let Py = t{tj...t, and from the cycles t1t5...t} xst; and
t1t5 .. .ty tmxet] we can deduce the same conclusion as above. So we are done. [

Analogously, Claim 1 also holds for T,,. We distinguish the following two cases
according to the value of ¢.

Case 1. t = 4.

If [V(Ty)| = |V(Ty)| = 1, then m > 3 and the two arcs of A(Ty,T) and A(Th—1, Tin)
on @ are 4-pancyclic by Lemma 1 (6). So h*(T) > 4.

Assume without loss of generality that |V(T1)| > 3. According to Claim 1, at least
two arcs of T are 4-pancyclic in T which are contained in the Hamiltonian cycle C.
So h*(T) > 4.

Case 2. 5<t<n-—1.

If |V(Ty)| = |[V(Ti)| = 1, then m > 3 and every arc on the Hamiltonian cycle
C = w1 Quwo P is t-pancyclic in T by Lemma 1 (3)-(7). So h'(T) = n > t. Assume
without loss of generality that |V (77)| > 3.

If |V(Ty)| > t or |[V(T},,)| > t, then by Claim 1 we have h'(T) >t — 1 + [{wy, w2 }| =
t + 1. So assume in the following that 3 < |V(T1)| <¢t—1and 1 < |V(T},)| <t —1.
If |V(T,,)| = 1, then by Claim 1 and Lemma 1 (3)-(7) only the arc of A(T1,T5%) on
C = w1 Qw3 P is possibly not t-pancyclic. So h'(T) >n—1>t.

If 3 < |V(T))| <t—1, then by Claim 1 and Lemma 1 (3)-(7) only the arcs ec €
A(Th,T,) and ey, € A(T—1,T0) on C = w1 Quwa P are possibly not ¢-pancyclic. So
ht(T) >n—2. Fort < n — 2 we are done obviously. For m = 2, we are also done
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with ec = eg; and hY(T) > n —1 > t. For the remaining case t = n — 1 and m > 3,
it is easy to see that the arc ec (resp. er) is on an (n — 1)-cycle just by skipping one
vertex of T, (resp. Ti). Therefore, h!(T) =n > t. O

To characterize all tournaments with h!(T) = ¢, we need the following definition.

Definition 1. Let H™ be the strong tournament on n vertices with a Hamiltonian path
P = zi122... 2, such that x; — z; for all 3 < i+ 2 < j < n. Instead of H" we often write
Hp or Hy, to mark the path P or its initial vertex x;.

Lemma 2. Let T be a strong tournament of order n > 3 and x € V(T). Then T = H}
if and only if for every Hamiltonian path of T with initial vertex x there is no path of length
n — 2 from x to the end vertex of such Hamiltonian path.

Proof. The necessity is clear and we prove the sufficiency by using induction on n. If
n = 3, then T is a 3-cycle and therefore T = H3. If n = 4, then let P = z1252324 be
a Hamiltonian path of T' with x; = x. Since there is no (x1,x4)-path of length 2, we
have x3 — x1 and 24 — xo. If 1 — x4, then P’ = z1242523 is another Hamiltonian
path starting at x1, but x1z9x3 is an (21, z3)-path of length 2, a contradiction. So
rg —x and T = Hﬁ. Assume n > 5 and the claim holds for all strong tournaments
with less than n vertices.

Let P = zqx2 ...z, be a Hamiltonian path in 7" with ;7 = . As there is no (1, x,)-
path of length n — 2, we have ;15 — x; for all 1 < i < n — 2. Consider the strong
subdigraph T'— 1 of T'. For any Hamiltonian path @ of T'—xz; starting at xo, there is
no path S of length n — 3 from x5 to the end vertex of Q. As otherwise we can extend
S and Q to 8" = 1S and P’ = 21Q, a contradiction. Therefore, T' — z; = H;‘Q_l. If

there exists an index ¢ € {4,...,n} such that x — x;, then zz; ... 2,29...2;_1 is a
Hamiltonian path of T and xx;...znz3...2;—1 is an (x,2;_1)-path of length n — 2,
a contradiction. So 7' = H'. O

Now we are ready to generalize the second part of Theorem 1 by Moon.

Theorem 3. Let T be a strong tournament with order n and t > 4. Then h'(T) =t if
and only if n=1t or T = H''L.

Proof. First we assume n = t or T = H*t!. If n = t, then the desired result is
obvious. If T = H*t! = HtQle with Q = x1 ... x;1, then this tournament has exactly
one Hamiltonian cycle and every arc of () is contained in the cycles xy ...x;x1 or
Zg...Tpp122 and therefore t-pancyclic. By Lemma 2, there is no (z1, z441)-path of
length ¢t — 1, and therefore, the arc z;1127 cannot be contained in any t-cycle. So
Y (T) = t.

To prove the other direction, let X1, Xs5,..., Xy, £ > 1, be the strong decomposition
of a reductor X of T and Ty,T5,...,T,,, m > 2, be the strong decomposition of
T — V(X) with n; = |V(T;)] for 1 < ¢ < m. Like in the proof of Theorem 2 we
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distinguish two cases t = 4 and ¢t > 4. In both cases we assume h'(T) = ¢ and
n > t. Therefore we always have n > 5 and |[V/(T)\V(X)| > 3. Again we consider a
Hamiltonian cycle C' = w1 Qws P of T, where wy € A(X,,T1), wa € A(T),, X1), Pis a
Hamiltonian path of X and @ is a Hamiltonian path of ' — V(X). Note that w1, we
are always pancyclic in 7', and Claim 1 in the proof of Theorem 2 also holds here.

Case 1. t = 4.

If |V(Th)| = |V(Tm)| = 1, then m > 3 and by Lemma 1 (3) and (6), there are already
four 4-pancyclic arcs wy, wa, ec € A(T1,As) and e, € A(Ty,—1,T;,) on C. Since
h*(T) = 4, by Lemma 1 (4), (8), (9) and n > 5 we have |V(X)| =1, |[V(T;)| = 1 for
i=2,3,...,m—1,and m > 4. Let V(X) = {z} and V(T;) = {t;} fori = 1,2,...,m.
If m > 5, then either tot3 is 4-pancyclic in T when t3 — x or t3t4 is 4-pancyclic when
x — t3. It is a contradiction. So m = 4 and {t2,t4} — = — {t1,¢3}. This means
T = Hlsg* with P* = t3t4$t1t2.

Assume without loss of generality that |V (T})| > 3. Since h*(T) = 4, by Claim 1 and
Lemma 1 it is not difficult to deduce that |V (T31)| =3, |[V(T,)| =1, [V(X)| =1 and
m = 2. Let tytatst; be the Hamiltonian cycle of 77, V(X) = {z}, V(T:) = {y} and
assume without loss of generality that © — t;. Then {ts,¢3} —  and T'= Hp. with
P* = yll?tthtg.

Case 2. 5<t<n-—1.

If |V(Ty)| = |[V(Ti)| = 1, then m > 3 and every arc on the Hamiltonian cycle
C = w1Quws P is t-pancyclic by Lemma 1 (3)-(7). That is to say h'(T) = n # t, a
contradiction. So assume without loss of generality that |V (T1)] > 3.

In addition, we have |V (T1)|, |V (T},)| < t—1, as otherwise h*(T') > t—1+|{w, wa}| >
t+ 1 by Claim 1 in the proof of Theorem 2, a contradiction.

Now by Claim 1 and Lemma 1 only the arcs ec € A(T1,T5) and e, € A(Tp—1,Tm)
on C' = w1 Qwy P are possibly not t-pancyclic. Son — 1>t = h{(T) >n — 2.

Subcase 2.1. 3 < |V(T1)|,|V(Tm)| <t —1.

If m > 3, then the arc ec (resp. er) is on cycles of length n — 1 and n — 2 just by
skipping one or two vertices in T, (resp. T1). So whenevert =n—1ort=n—2, ec
and e, are t-pancyclic. Therefore h*(T) =n # t, a contradiction.

Assume in the following that m = 2. Then ec = e[, is the unique arc which is not
t-pancyclic in T. So t = h*(T) = n — 1 and ec¢ is not on any (n — 1)-cycle. Hence,
|[V(X)| = 1, as otherwise, ec is on an (n — 1)-cycle by skipping one vertex of V(X)
on C.

Let V(X) = {z} and C; = tit5 ...t} ¢} be a Hamiltonian cycle of T; for i = 1,2. By
Lemma 1 (2) we may assume without loss of generality that t%z —x — t].

In T, for any Hamiltonian path with the initial vertex ¢, there is no (n; — 2)-path
from t1 to the end vertex of such Hamiltonian path, as otherwise ec lies on an (n—1)-
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cycle, a contradiction. By Lemma 2, T} = H]'ﬁll for Py = titd ... t}“. Using T71, we
can similarly deduce that T, = Hp? for P, = 133 ... tfm. Now our aim is to show
{th,....th Y=o —{t],..., 13,1}, and then, T = Hpt" for P* = PyaP.

If t3 — x, then from this cycle ¢1t3 ... ¢ t3t3...t2 (t1)at] we can see that ec =t} ¢3
is on an (n — 1)-cycle, a contradiction. So z — t3.

If 3 — 2 and ny > 4, then from this cycle tit3... ¢ 13 ... (¢, )tt32t] we can see
that ec = t}lltg is on an (n — 1)-cycle, a contradiction. If t3 — x and ny = 3, then
from this cycle ¢1 ...t} t1t3(t3)at] we can see that ec =t} ¢7 is on an (n — 1)-cycle,
a contradiction. So x — t3.

Successively, we can show that = — {t3, ... ,t%rl}. Considering T~1, we can further
deduce that {t},...,t, } — 2. Altogether, T' = Hpu".

Subcase 2.2. 3 <|V(T1)| <t—1and |[V(T,)| =1.

If m > 3, then ef, is t-pancyclic by Lemma 1 (6), and if m = 2, then ec = e;,. All of
these yield t = n — 1 and e¢ is not on any (n — 1)-cycle. So |V(X)| = 1, as otherwise,
ec is on an (n — 1)-cycle by skipping one vertex of V(X) on C. Similarly, we get
m <3, |V(Tz)| =1 and X - T;. We also have X — T, when m = 3.

If m = 3, then it can be transferred to the case m = 2 by choosing another reductor
X' = T3, where T] = T[T1UV(X)], T4 = T is the strong decomposition of T—V (X").
So we only need to consider the case m = 2.

Let V(X) = {z}, T» = {y} and C; = t{tj...t, t; be a Hamiltonian cycle of Tj.
Assume without loss of generality that  — ti. Then by a similar argument as in
Subcase 2.1 we can deduce that Ty = Hp! with Py = t}t}...t, and T = Hpl' with
P* = yatit) . .t O

ni*

All the previous results deal with the maximum number of ¢-pancyclic arcs on the same
Hamiltonian cycle. As we have a characterisation of all tournaments with h*(T) = t,
we naturally look for all tournaments with p'(T") = ¢. We have seen that tournaments
which achieve h(T') = 3 have been characterised by Moon [4] and these are the same
tournaments with p(7') = 3. The important fact is that these tournaments contain
exactly one Hamiltonian cycle. As this is also the key in the following theorem, we
refer to an earlier work by Douglas [2] which gives valuable information about the
structure of tournaments containing exactly one Hamiltonian cycle.

Theorem 4. Let T be a strong tournament with order n.
(1) If4 <t <n—1, then p'(T) =t if and only if T = H'™';
(2) Ift = n, then p'(T) =t if and only if there is exactly one Hamiltonian cycle in T.

Proof. From the definitions of p!(T) and h*(T) and Theorem 2, we have p*(T) >
h(T) > t.
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(1) If p'(T) = t, then from the inequality above we have h!(T) = t. By Theorem
3 and n # t we deduce that T = H'T!'. To prove the other direction, let

T = H'!. Then there is exactly one Hamiltonian cycle in T, which implies
pI(T) =h(T) =t.

(2) Note that every arc on a Hamiltonian cycle of T" is n-pancyclic. So this statement
obviously holds. O
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