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Abstract: Given a graph G = (V,E) and a vertex v ∈ V , by N(v) we represent the

open neighbourhood of v. Let f : V → {0, 1, 2} be a function on G. The weight of f is

ω(f) =
∑

v∈V f(v) and let Vi = {v ∈ V : f(v) = i}, for i = 0, 1, 2. The function f is
said to be

• a Roman {2}-dominating function, if for every vertex v ∈ V0,
∑

u∈N(v) f(u) ≥
2. The Roman {2}-domination number, denoted by γ{R2}(G), is the minimum

weight among all Roman {2}-dominating functions on G;

• a Roman dominating function, if for every vertex v ∈ V0 there exists u ∈ N(v)∩
V2. The Roman domination number, denoted by γR(G), is the minimum weight
among all Roman dominating functions on G.

It is known that for any graph G, γ{R2}(G) ≤ γR(G). In this paper, we characterize

the trees T that satisfy the equality above.

Keywords: Roman {2}-domination; 2-rainbow domination; Roman domination; tree

AMS Subject classification: 05C69

1. Introduction

Throughout this paper we consider G = (V,E) as a simple graph of order n = |V |.
That is, a graph that is finite, undirected, and without loops or multiple edges.
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Given a vertex v of G, N(v) and N [v] represent the open neighborhood and the closed

neighborhood of v, respectively.

Let f : V → {0, 1, 2} be a function on a graph G. Notice that f generates three sets

V0, V1 and V2 such that Vi = {v ∈ V : f(v) = i} for i = 0, 1, 2. In this sense, from

now on, we will write f = (V0, V1, V2) so as to refer to the function f . Given a set

S ⊆ V , f(S) =
∑

v∈S f(v). The weight of f is ω(f) = f(V ) = |V1| + 2|V2|. In this

sense, by an f(V )-function, we mean a function of weight f(V ). Also V0,2 = {v ∈
V0 : N(v) ∩ V2 6= ∅} and V0,1 = V0 \ V0,2.

Roman domination in graphs was formally defined by Cockayne, Dreyer, Hedetniemi,

and Hedetniemi [4] motivated, in part, by an article in Scientific American of Ian

Stewart entitled “Defend the Roman Empire” [11]. A Roman dominating function

(RDF) on a graph G is a function f = (V0, V1, V2) satisfying that every vertex u ∈ V0
is adjacent to at least one vertex v ∈ V2. The Roman domination number, denoted by

γR(G), is the minimum weight among all Roman dominating functions on G. Further

results on Roman domination can be found for example, in [5, 10, 12].

Another kind of functions defined on graphs are the 2-rainbow dominating func-

tions, which were introduced in [2]. Let f be a function on a graph G that assigns

a set of colors (possible empty), chosen from the set {1, 2}, to each vertex of G.

That is, f : V → P ({1, 2}). If for each vertex v ∈ V such that f(v) = ∅, we have

∪u∈N(v)f(u) = {1, 2}, then f is called a 2-rainbow dominating function (2RDF) on

G. The weight of a 2RDF f is defined as ω(f) =
∑

v∈V |f(v)|. The 2-rainbow domi-

nation number of G, denoted by γr2(G), is the minimum weight among all 2-rainbow

dominating functions.

A generalization of a Roman dominating function, called a Roman {2}-dominating

function (R2DF), was introduced by Chellali et al. in [3] as follows. For a graph G,

a Roman {2}-dominating function f = (V0, V1, V2) is a function having the property

that for each vertex v ∈ V0, it follows f(N(v)) ≥ 2. That is, either there exists a

vertex u ∈ N(v) ∩ V2, or at least two vertices x, y ∈ N(v) ∩ V1. The Roman {2}-
domination number, denoted by γ{R2}(G), is the minimum weight among all Roman

{2}-dominating functions on G. This concept was also introduced and barely studied

by Brešar et al. in [2], as a monochromatic version of the 2-rainbow domination

number, and it was called weak {2}-domination number. It was also further studied in

[8, 9], where it was called Italian domination number. In [3], Chellali et al. established

the next relationship between Roman {2}-domination number, 2-rainbow domination

number and Roman domination number.

Proposition 1. [3] For every graph G, γ{R2}(G) ≤ γr2(G) ≤ γR(G).

In concordance with such inequalities above, it is then an interesting problem to

investigate the possible equalities that could occur. That is, finding the families of

graphs G for which γ{R2}(G) = γr2(G), γr2(G) = γR(G) or γ{R2}(G) = γR(G). In

connection with the second equality, it was shown in [1], that for every fixed non-

negative integer k, the recognition of the connected K4-free graphs G with γR(G) −
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γr2(G) = k is NP-hard. Accordingly, finding a useful characterization of graphs G

for which γr2(G) = γR(G) is quite unlikely. In this sense, our goal in this work is

centered into solving the following two problems while we only consider families of

trees.

• Characterize the graphs G such that γ{R2}(G) = γR(G).

• Characterize the graphs G that satisfy γr2(G) = γR(G).

As mentioned above, we next settle these two problems for the case of trees, by making

some constructive characterizations of the trees achieving such stated equalities.

1.1. Terminology and Notation

We first present some necessary terminology and notation. Given a graph G = (V,E)

and a set of vertices S, the open neighborhood and closed neighborhood of S areN(S) =

∪v∈SN(v) and N [S] = N(S) ∪ S, respectively. The private neighborhood pn(v, S) of

v ∈ S ⊆ V is defined by pn(v, S) = {u ∈ V : N(u)∩S = {v}}. Each vertex in pn(v, S)

is called a private neighbor of v. The external private neighborhood epn(v, S) of v

consists of the private neighbors of v in V \ S. Thus, epn(v, S) = pn(v, S) ∩ (V \ S).

Also, by G− S we denote the graph obtained from G when removing all the vertices

in S, and all the edges incident with a vertex in S (if S = {v}, for some vertex v,

then we simply write G− v).

Moreover, we denote the degree of a vertex v by δG(v), or simply by δ(v), if the graph

G is clear from the context. The minimum and maximum degrees of G are denoted

by δ(G) and ∆(G), respectively. For any two vertices u and v, the distance d(u, v)

between u and v is the minimum length of a u−v path. The diameter of G, diam(G),

is the maximum distance among pairs of vertices in G. A diametral path in G is a

shortest path whose length equals the diameter of the graph. Thus, a diametral path

in G is a shortest path joining two vertices that are at distance diam(G) from each

other (such vertices are called diametral vertices).

A tree T is an acyclic connected graph. A leaf vertex of T is a vertex of degree one. A

support vertex of T is a vertex adjacent to a leaf that is no leaf; a weak support vertex

is a support vertex adjacent to exactly one leaf; a strong support vertex is a support

vertex that is not a weak support; and a semi-support vertex is a vertex adjacent to

a support vertex that is neither a leaf nor a support. The set of leaves is denoted by

L(T ); the set of support vertices is denoted by S(T ); the set of weak support vertices

is denoted by Sw(T ); the set of strong support vertices is denoted by Ss(T ); and the

set of semi-support vertices is denoted by SS(T ).

We will use the following notation for two special families of trees. The star K1,k

with k ≥ 2, is a tree with a central vertex of degree k and the remaining vertices are

leaves. A double star Sx,y with x, y ≥ 1, is a tree with exactly two adjacent vertices

of degree x+ 1 and y + 1 respectively, and the remaining vertices are leaves.

A rooted tree T is a tree with a distinguished special vertex r, called the root. For

each vertex v 6= r of T , the parent of v is the neighbor of v on the unique r− v path,
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while a child of v is any other neighbor of v. A descendant of v is a vertex u 6= v

such that the unique r− u path contains v. Thus, every child of v is a descendant of

v. The set of descendants of v is denoted by D(v), and we define D[v] = D(v) ∪ {v}.
The maximal subtree at v is the subtree of T induced by D[v], and is denoted by Tv.

For the remainder of the paper, any necessary definition will be introduced whenever

the concept is needed. Moreover, for any other very basic terminology and notation

on graph theory, we follow the book [6].

2. The characterizations

We begin this section with a theoretical characterization of the graphs G satisfying

the equality γ{R2}(G) = γR(G). However, such characterization lacks of usefulness,

since it is precisely based on finding a γ{R2}(G)-function which satisfies a specific

condition.

Theorem 1. Let G be a graph. Then γ{R2}(G) = γR(G) if and only if there exists a
γ{R2}(G)-function f = (V0, V1, V2) such that V0,1 = ∅.

Proof. Suppose that γ{R2}(G) = γR(G). Let f = (V0, V1, V2) be a γR(G)-function.

Since every RDF is a R2DF on G, f is a γ{R2}(G)-function as well, and satisfies that

V0,1 = ∅. Conversely, suppose there exists a γ{R2}(G)-function f ′ = (V ′0 , V
′
1 , V

′
2) such

that V ′0,1 = ∅. So, V ′0 = V ′0,2, which implies that f ′ is a RDF on G. Thus, γR(G) ≤
ω(f ′) = γ{R2}(G). Since γ{R2}(G) ≤ γR(G), by Proposition 1, we consequently

deduce γ{R2}(G) = γR(G).

We now continue with some results (some of them are already known) which are useful

for our purposes.

Proposition 2. [4] Let f = (V0, V1, V2) be any γR(G)-function. Then

(i) The subgraph induced by the vertices of V1 has maximum degree at most one.

(ii) No edge of G joins V1 to V2.

Observation 2. Let G be a graph. If v ∈ Ss(G), then there exists a γR(G)-function f
such that f(v) = 2 and f(h) = 0 for every h ∈ N(v) ∩ L(G).

Observation 3. Let G be a graph. If v ∈ Ss(G), then there exists a γ{R2}(G)-function
f such that f(v) = 2 and f(h) = 0 for every h ∈ N(v) ∩ L(G).

Observation 4. If T ′ is a subtree of a tree T , then γ{R2}(T
′) ≤ γ{R2}(T ) and γR(T

′) ≤
γR(T ).



A.C. Mart́ınez, I.G. Yero 99

In [8], the trees T for which γ{R2}(T ) = 2γ(T ) were characterized. On the other hand,

the trees T for which γR(T ) = 2γ(T ) (known as Roman trees) were characterized in

[7]. Since γ{R2}(G) ≤ γR(G) and γR(G) ≤ 2γ(G) are satisfied for any graph G, we can

deduce that γ{R2}(T ) = 2γ(T ) if and only if γ{R2}(T ) = γR(T ) and γR(T ) = 2γ(T ).

Consequently, we observe that the trees belonging to the family given in [8] form

a subfamily of the family of trees which we construct in our work. In this sense,

we need to introduce some terminology previously used in [8]. A near Roman {2}-
dominating function relative to a vertex v, abbreviated near-R2DF relative to v, on

a graph G = (V,E), is a function f = (V0, V1, V2) satisfying the following. For each

vertex u in V such that f(u) = 0, if u = v, then
∑

u∈N(v) f(u) ≥ 1, while if u 6= v,

then
∑

u∈N(v) f(u) ≥ 2. The weight of a near-R2DF relative to v on G is the value

f(V ) =
∑

u∈V f(u). The minimum weight of a near-R2DF relative to v on G is

called the near Roman {2}-domination number relative to v of G, which we denote as

γn{R2}(G; v). Since every R2DF is a near-R2DF, we note that γn{R2}(G; v) ≤ γ{R2}(G)

for any vertex v of G. The authors of [8] defined a vertex v ∈ V (G) to be a stable

vertex in G, if γ{R2}(G − v) ≥ γ{R2}(G); while v is a near stable vertex in G if

γn{R2}(G; v) = γ{R2}(G). Moreover, we denote by S2,R(G) the set of support vertices

labelled with two by some γR(G)-function.

Now on, in order to provide a constructive characterization of the trees having equal

Roman {2}-domination and Roman domination numbers, we need to introduce the

next family of trees. Before, we assume that every tree T has order n ≥ 3, since the

case n ∈ {1, 2} means that T is either a path P1 or a path P2 and it is straightforward

to see that in both cases γ{R2}(T ) = γR(T ). Let F be the family of trees T that can

be obtained from a sequence of trees T0, . . . , Tk, where k ≥ 0, T0 ∼= P3 and T ∼= Tk.

Furthermore, if k ≥ 1, then for each i ∈ {1, . . . , k}, the tree Ti can be obtained from

the tree T ′ ∼= Ti−1 by one of the following operations F1, F2, F3, F4, F5 or F6. In

such operations, by a join of two vertices we mean adding an edge between these two

vertices.

Operation F1: Add a star K1,3, and join a leaf u of the star to an arbitrary vertex

v of T ′.

Operation F2: Add a double star S1,2, and join the weak support u of the double

star to an arbitrary vertex v of T ′.

Operation F3: Add a path P3 with support vertex u, and join u to a stable vertex

v of T ′.

Operation F4: Add a path P3, and join a leaf to a near stable vertex v of T ′.

Operation F5: Add a new vertex u to T ′ and join u to a vertex v ∈ S2,R(T ′).

Operation F6: Add a new vertex u to T ′ and join u to a near stable vertex v ∈ L(T ′).

We next show that every tree T in the family F satisfies that γ{R2}(T ) = γR(T ).

Lemma 1. If T ∈ F , then γ{R2}(T ) = γR(T ).
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Proof. We proceed by induction on the number r(T ) of operations required to

construct the tree T . If r(T ) = 0, then T ∼= P3 that satisfies γ{R2}(T ) = 2 = γR(T ).

This establishes the base case. Hence, we now assume that k ≥ 1 is an integer

and that each tree T ′ ∈ F with r(T ′) < k satisfies that γ{R2}(T
′) = γR(T ′). Let

T ∈ F be a tree with r(T ) = k. Then, T can be obtained from a tree T ′ ∈ F with

r(T ′) = k− 1 by one of the six operations above. We shall prove that T satisfies that

γ{R2}(T ) = γR(T ). We consider six cases, depending on which operation is used to

construct the tree T from T ′.

Case 1. T is obtained from T ′ by operation F1. Assume T is obtained from T ′

by adding a star K1,3, with central vertex u and leaves h1, h2, h3, and adding the

edge h1v, where v is an arbitrary vertex of T ′. Notice that every RDF on T ′ can

be extended to a RDF on T by assigning the weight 2 to u and the weight 0 to the

three neighbors of u. Hence, by the statement above, Proposition 1 and inductive

hypothesis, we obtain

γ{R2}(T ) ≤ γR(T ) ≤ γR(T ′) + 2 = γ{R2}(T
′) + 2. (1)

Conversely, the vertex u is a strong support of T and so, by Observation 3, there

exists a γ{R2}(T )-function f satisfying that f(u) = 2 and f(h2) = f(h3) = 0.

Also, we may assume that f(h1) = 0. Otherwise, if f(h1) ≥ 1, then the func-

tion g defined by g(v) = max{f(v), f(h1)}, g(h1) = 0, and g(x) = f(x) if

x ∈ V (T ) \ {v, h1}, is a R2DF on T and ω(g) ≤ ω(f) = γ{R2}(T ), which implies

that either f(h1) = 0, or that g is a γ{R2}(T )-function with g(h1) = 0. Thus,

f(h1) = 0 implies f restricted to V (T ′) is a R2DF on T ′, from which we deduce that

γ{R2}(T
′) ≤ f(V (T ′)) = ω(f) − f(N [u]) = γ{R2}(T ) − 2. In consequence, we must

have equalities throughout the inequality chain (1). In particular, γ{R2}(T ) = γR(T ).

Case 2. T is obtained from T ′ by operation F2. Assume T is obtained from T ′ by

adding a double star S1,2, where u is the weak support, h1 is the leaf-neighbour of u,

w is the strong support; and we add the edge uv, such that v is an arbitrary vertex

of T ′. Notice that every RDF on T ′ can be extended to a RDF on T by assigning

the weight 2 to w, the weight 0 to the three neighbors of w, and the weight 1 to h1.

Hence, by the statement above, Proposition 1 and inductive hypothesis, we obtain

γ{R2}(T ) ≤ γR(T ) ≤ γR(T ′) + 3 = γ{R2}(T
′) + 3. (2)

Conversely, since the vertex w is a strong support of T , by Observation 3, there

exists a γ{R2}(T )-function f satisfying that f(w) = 2 and f(h) = 0 for every

h ∈ N(w) ∩ L(T ). If f(u) = 0, then f(h1) = 1 and also f restricted to V (T ′) is a

R2DF on T ′, implying that γ{R2}(T
′) ≤ f(V (T ′)) = ω(f)− f(N [u]) = γ{R2}(T )− 3,

and by the inequality chain (2) it follows that γ{R2}(T ) = γR(T ). Conversely, if

f(u) > 0, then the function g, defined by g(v) = g(h1) = 1, g(u) = 0 and g(x) = f(x)
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if x ∈ V (T ) \ {v, h1, u}, is a R2DF on T with weight ω(g) ≤ ω(f) = γ{R2}(T ). So,

g is a γ{R2}(T )-function as well, and consequently, g restricted to V (T ′) is a R2DF

on T ′. Thus, γ{R2}(T
′) ≤ g(V (T ′)) = ω(g) − (g(N [w]) + g(h1)) = γ{R2}(T ) − 3.

Therefore, we must have equality throughout the inequality chain (2). In particular

γ{R2}(T ) = γR(T ).

Case 3. T is obtained from T ′ by operation F3. Assume T is obtained from T ′ by

adding a path u1uu2 and the edge uv, where v is a stable vertex of T ′. Again, notice

that every RDF on T ′ can be extended to a RDF on T by assigning the weight 2 to

u and the weight 0 to u1 and u2. Hence, by the statement above, Proposition 1 and

inductive hypothesis, we obtain the inequality chain (1).

We now show that γ{R2}(T
′) ≤ γ{R2}(T ) − 2. As u is a strong support of T ,

by Observation 3, there exists a γ{R2}(T )-function f satisfying that f(u) = 2

and f(u1) = f(u2) = 0. If f restricted to V (T ′) is a R2DF on T ′, then

γ{R2}(T
′) ≤ f(V (T ′)) = γ{R2}(T ) − 2. Conversely, if f restricted to V (T ′) is not a

R2DF on T ′, then, among other facts, f(v) = 0. This implies that f restricted to

V (T ′ − v) is a R2DF on T ′ − v. Also, as v is a stable vertex of T ′, it follows that

γ{R2}(T
′) ≤ γ{R2}(T

′ − v) ≤ f(V (T ′ − v)) = γ{R2}(T )− 2. In consequence, we must

have equality throughout the inequality chain (1). In particular, γ{R2}(T ) = γR(T ).

Case 4. T is obtained from T ′ by operation F4. Assume T is obtained from T ′ by

adding a path uu1u2 and the edge uv, where v is a near stable vertex of T ′. Again,

notice that every RDF on T ′ can be extended to a RDF on T by assigning the weight

2 to u1 and the weight 0 to u and u2. Hence, by the statement above, Proposition 1

and the inductive hypothesis, we again obtain the inequality chain (1).

On the other hand, let f be a γ{R2}(T )-function. If f restricted to V (T ′) is a R2DF

on T ′, then γ{R2}(T
′) ≤ f(V (T ′)) ≤ γ{R2}(T ) − 2. Conversely, if f restricted to

V (T ′) is not a R2DF on T ′, then f(v) = 0 and f(u) = 1. These imply that f

restricted to V (T ′) is a near-R2DF relative to v on T ′. Also, as v is a near stable

vertex of T ′, it follows that γ{R2}(T
′) = γn{R2}(T

′, v) ≤ f(V (T ′)) = γ{R2}(T ) − 2.

Therefore, γ{R2}(T
′) + 2 ≤ γ{R2}(T ) and so, we must have equality throughout the

inequality chain (1). Particularly, γ{R2}(T ) = γR(T ).

Case 5. T is obtained from T ′ by operation F5. Assume T is obtained from

T ′ by adding a new vertex u and the edge uv, where v ∈ S2,R(T ′). Thus, there

exists a γR(T ′)-function f satisfying that f(v) = 2. Also, f can be extended

to a RDF on T by assigning the weight 0 to u. Hence, γR(T ) ≤ γR(T ′). By

Proposition 1, previous inequality, inductive hypothesis and Observation 4 we deduce

γ{R2}(T ) ≤ γR(T ) ≤ γR(T ′) = γ{R2}(T
′) ≤ γ{R2}(T ). Therefore, we must have

equality throughout the inequality chain above. In particular, γ{R2}(T ) = γR(T ).

Case 6. T is obtained from T ′ by operation F6. Assume T is obtained from T ′ by

adding a new vertex u and the edge uv, where v is both a near stable vertex and a

leaf of T ′. Notice that every RDF on T ′ can be extended to a RDF on T by assigning
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the weight 1 to u. Hence, by the statement above, Proposition 1 and the inductive

hypothesis, we obtain

γ{R2}(T ) ≤ γR(T ) ≤ γR(T ′) + 1 = γ{R2}(T
′) + 1. (3)

On the other hand, as v is a leaf of T ′, we consider the vertex s ∈ N(v) ∩ S(T ′) and

notice that there exists a γ{R2}(T )-function f satisfying that f(v) = 0, f(u) = 1 and

f(s) > 0. Thus, f restricted to V (T ′) is a near-R2DF relative to v on T ′, and as v

is a near stable vertex of T ′, it follows that γ{R2}(T
′) = γn{R2}(T

′, v) ≤ f(V (T ′)) =

f(V (T )) − f(u) = γ{R2}(T ) − 1. Hence, γ{R2}(T
′) + 1 ≤ γ{R2}(T ). Therefore, we

must have equality throughout the inequality chain above. In particular, γ{R2}(T ) =

γR(T ).

We now turn our attention to the opposite direction concerning the lemma above.

That is, we show that if a tree T satisfies γ{R2}(T ) = γR(T ), then it belongs to the

family F .

Lemma 2. Let T be a tree. If γ{R2}(T ) = γR(T ), then T ∈ F .

Proof. In order to easily proceed with the proof, from now on we say that a tree

T belongs to the family T{R2},R if γ{R2}(T ) = γR(T ). We proceed by induction on

the order n ≥ 3 of the trees T ∈ T{R2},R. If T is a star, then γ{R2}(T ) = 2 = γR(T )

by assigning two to the central vertex and zero to the other vertices. Thus, T can

be obtained from P3 by repeatedly applying operation F5. Therefore, T ∈ F . This

establishes the base case. We assume now that k > 3 is an integer and that each tree

T ′ ∈ T{R2},R with |V (T ′)| < k satisfies that T ′ ∈ F . Let T be a tree with |V (T )| = k

such that T ∈ T{R2},R and we may assume that diam(T ) ≥ 3.

First, suppose that diam(T ) = 3. Therefore, T is a double star Sx,y for some integers

x ≥ y ≥ 1. If T ∼= P4 then T can be obtained from a path P3 by applying operation

F6. If T ∼= Sx,1 with x ≥ 2, then T can be obtained from a path P3 by first apply-

ing operation F6, thereby producing a path P4, and then repeating operation F5 as

required. Now, if T ∼= Sx,y with x ≥ y ≥ 2, then T can be obtained from a path P3

by first applying operation F3, thereby producing a double star S2,2 and then doing

repeated applications of operation F5 in both strong support vertices of the double

star. Therefore, T ∈ F .

We may now assume that diam(T ) ≥ 4, and we root the tree T at a vertex r located

at the end of a longest path in T . Let h be a vertex at maximum distance from r.

Notice that, necessarily, r and h are leaves (and diametral vertices). Let s be the

parent of h; let v be the parent of s; let w be the parent of v; and let z be the parent

of w. Notice that all these vertices exist since diam(T ) ≥ 4, and it could happen

z = r. Since h is a vertex at maximum distance from the root r, every child of s is a

leaf. We proceed further with the following claims.
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Claim I. If δT (s) ≥ 4, then T ∈ F .

Proof. Suppose that δT (s) ≥ 4 and let T ′ = T − h. Thus, δT ′(s) ≥ 3 and conse-

quently, since every child of s is a leaf, s is a strong support vertex of T ′. Therefore,

by Observation 3, there exists a γ{R2}(T
′)-function, that assigns the weight 2 to

s and the weight 0 to every leaf-neighbor of s in T ′. The function above can be

extended to a R2DF on T by assigning the weight 0 to the leaf h, implying that

γ{R2}(T ) ≤ γ{R2}(T
′). Thus, by Proposition 1, Observation 4, hypothesis and the

previous inequality, we obtain γ{R2}(T
′) ≤ γR(T ′) ≤ γR(T ) = γ{R2}(T ) ≤ γ{R2}(T

′).

Hence, we must have equality throughout this inequality chain. In particular

γ{R2}(T
′) = γR(T ′). Applying the inductive hypothesis to T ′, it follows that T ′ ∈ F .

Since s ∈ Ss(T
′), and by Observation 2, s ∈ S2,R(T ′). Therefore, T can be obtained

from T ′ by Operation F5, and consequently, T ∈ F .(�)

By the proof of Claim I, we may henceforth assume that |N(x)∩L(T )| = 2 for every

strong support vertex x of T .

Claim II. If δT (s) = 3 and δT (v) ≥ 3, then T ∈ F .

Proof. Suppose that δT (s) = 3 and δT (v) ≥ 3. Thus, s is a strong support vertex

and has two leaf neighbours, say h, h1. Also, observe that v has at least one child,

say s′, different from s, and moreover, s′ is either a support vertex or a leaf vertex of

T , according to the choice of r and h.

By using Theorem 1, there exists a γ{R2}(T )-function f = (V0, V1, V2) with V0,1 = ∅,
and without loss of generality, we assume that |V2| is maximum. So, f is a γR(T )-

function as well. Let T ′ = T − V (Ts) = T − {h, h1, s}.
Suppose first that f restricted to V (T ′) is a RDF on T ′, which means γR(T ′) ≤
γR(T ) − 2. Now, notice that every R2DF on T ′ can be extended to a R2DF of T

by assigning the weight 2 to s and the weight 0 to every leaf-neighbor of s. Hence

γ{R2}(T ) ≤ γ{R2}(T
′) + 2. Consequently, by these previous inequalities, and Propo-

sition 1, we obtain γ{R2}(T ) ≤ γ{R2}(T
′) + 2 ≤ γR(T ′) + 2 ≤ γR(T ) = γ{R2}(T ).

Therefore, we must have equality throughout this inequality chain. In particular,

γ{R2}(T
′) = γR(T ′). Also, note that γ{R2}(T ) = γ{R2}(T

′) + 2. Applying the induc-

tive hypothesis to T ′, it follows that T ′ ∈ F . Moreover, every R2DF on T ′− v can be

extended to T by assigning the weight 2 to s and the weight 0 to each neighbour of s,

and so γ{R2}(T ) ≤ γ{R2}(T
′−v)+2. In addition, if v is not a stable vertex of T ′, then

γ{R2}(T
′−v) < γ{R2}(T

′), implying that γ{R2}(T ) ≤ γ{R2}(T
′−v)+2 < γ{R2}(T

′)+2,

which is a contradiction with the related equality noticed above. Therefore, s is a sta-

ble vertex of T ′, and hence, T can be obtained from the tree T ′ by applying operation

F3. Thus, T ∈ F .

Conversely, suppose that f restricted to V (T ′) is not a RDF on T ′. In this

case, f(v) = 0. If there exists a vertex not leaf x 6= w adjacent to v, then x

is a support (by the choice of r and h), and it must happen f(x) = 2, which

contradicts the fact that f restricted to V (T ′) is not a RDF on T ′. Thus, each
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vertex adjacent to v, different to w, must be a leaf, and all of them must have

weight 1. If |(N(v) \ {w}) ∩ L(T )| ≥ 2, then reassigning the weight 2 to v and

the weight 0 to each vertex in (N(v) \ {w}) ∩ L(T ), we produce a RDF on T of

weight at most that of f , either contradicting our choice of f , or the fact that

f is a γ{R2}(T )-function. Therefore N(v) = {w, s, s′} and f(s′) = 1. Now, let

T ′′ = T − V (Tv) = T − {v, s′, s, h, h1}. Notice that every R2DF on T ′′ can be

extended to a R2DF on T by assigning the weight 1 to s′; the weight 2 to s; and the

weight 0 to each neighbor vertex of s. Hence, γ{R2}(T ) ≤ γ{R2}(T
′′) + 3. Moreover,

since f(v) = 0, the labelling of vertices in V (T ′′) under f is not influenced by the

labels in V (Tv). Thus, we deduce that f restricted to V (T ′′) is a RDF on T ′′, and so

γR(T ′′) ≤ γR(T )−3. By using Proposition 1, hypothesis and the previous inequalities,

we get γ{R2}(T
′′) ≤ γR(T ′′) ≤ γR(T ) − 3 = γ{R2}(T ) − 3 ≤ γ{R2}(T

′′). So, we must

have equality throughout this inequality chain. In particular, γ{R2}(T
′′) = γR(T ′′).

Applying the inductive hypothesis to T ′′, it follows that T ′′ ∈ F . Since T can be

obtained from the tree T ′′ by applying operation F2, we have T ∈ F . (�)

Claim III. If δT (s) = 3 and δT (v) = 2, then T ∈ F .

Proof. Clearly, s is a strong support vertex and has two leaf neighbors, say h, h1.

We now consider the tree T ′ = T −V (Tv) = T −{h, h1, s, v}. Notice that a R2DF on

T ′ can be extended to a R2DF of T by assigning the weight 2 to s and the weight 0

to every neighbor of s, implying that γ{R2}(T ) ≤ γ{R2}(T
′) + 2.

By Observation 2, there exists a γR(T )-function f = (V0, V1, V2) that assigns the

weight 2 to s and the weight 0 to h and h1. Suppose f(v) ≥ 1. First notice that by

Proposition 2 (ii), f(v) 6= 1. So f(v) = 2. In consequence, it must be f(w) = 0 and

as epn(v, V1 ∪ V2) 6= ∅, we get w ∈ epn(v, V1 ∪ V2) (in fact epn(v, V1 ∪ V2) = {w}
in such case). Now, by reassigning to v the weight 0 and to w the weight 1, and

leaving all other weights unchanged, we produce a R2DF function of weight less

than that of f , which is not possible. Hence f(v) = 0. Consequently, f restricted to

V (T ′) is a RDF on T ′, and so γR(T ′) ≤ f(V (T ′)) = ω(f) − f(N [s]) = γR(T ) − 2.

By the previous inequalities, Proposition 1 and hypothesis, we obtain that

γ{R2}(T ) ≤ γ{R2}(T
′) + 2 ≤ γR(T ′) + 2 ≤ γR(T ) = γ{R2}(T ). Therefore, we must

have equality throughout this inequality chain. In particular, γ{R2}(T
′) = γR(T ′).

Moreover, observe that the vertices w, z ∈ V (T ′) and V (T ′) 6= {w, z} (for otherwise,

this implies that T /∈ T{R2},R, which is a contradiction). Hence, we may assume

that T ′ has order at least 3. Applying the inductive hypothesis to T ′, it follows that

T ′ ∈ F . Since the tree T can be obtained from the tree T ′ by applying operation F1,

we obtain T ∈ F .(�)

Claim IV. If δT (s) = 2 and δT (v) ≥ 3, then T ∈ F .

Proof. Clearly, v has at least one child, say s′, different from s, implying that s′ is

either a support vertex or a leaf vertex of T . We now consider the tree T ′ = T − h.

Notice that a R2DF on T ′ can be extended to a R2DF of T by assigning the weight
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1 to h, implying that γ{R2}(T ) ≤ γ{R2}(T
′) + 1.

By using Theorem 1, there exists a γ{R2}(T )-function f = (V0, V1, V2) with V0,1 = ∅,
and without loss of generality, we assume that |V2| is maximum. Observe that f is

a γR(T )-function as well. If f(v) = 1, then f(s) = 0 and f(h) = 1, implying that

s ∈ V0,1, which is a contradiction. Thus f(v) ∈ {0, 2}. If f(v) = 2, then f(s) = 0 and

f(h) = 1. Hence, f restricted to V (T ′) is a RDF on T ′ and so, γR(T ′) ≤ γR(T )− 1.

Now suppose that f(v) = 0. Thus, f(s) = 2 and f(h) = 0, according to the choice of

f with maximality in |V2|. If s′ is a leaf, then f(s′) = 1 and reassigning the weight 2 to

v; the weight 0 to s and s′; and the weight 1 to h; we construct a RDF of weight equal

to that of f . In consequence, by proceeding analogously to the case above (f(v) = 2)

it follows that γR(T ′) ≤ γR(T )− 1. Conversely, if s′ is a support, then f(s′) = 2 and

reassigning the weight 1 to s and h, we produce again a RDF of weight equal to that

of f . Observe that again, this new function restricted to V (T ′) is a RDF on T ′ and

so, γR(T ′) ≤ γR(T )− 1.

Consequently, by the previous inequalities, and Proposition 1, we obtain that

γ{R2}(T ) ≤ γ{R2}(T
′) + 1 ≤ γR(T ′) + 1 ≤ γR(T ) = γ{R2}(T ). Therefore, we must

have equality throughout this inequality chain. In particular, γ{R2}(T
′) = γR(T ′).

Also note that γ{R2}(T ) = γ{R2}(T
′) + 1. Applying the inductive hypothesis to T ′, it

follows that T ′ ∈ F .

Moreover, a minimum weight near-R2DF relative to s on T ′ can be extended to

a R2DF on T by assigning to h the weight 1. So γ{R2}(T ) ≤ γn{R2}(T
′, s) + 1. If

s is not a near stable vertex of T ′, then γn{R2}(T
′, s) < γ{R2}(T

′), implying that

γ{R2}(T ) ≤ γn{R2}(T
′, s)+1 < γ{R2}(T

′)+1, which is a contradiction with the related

equality obtained before. Therefore, s is a near stable vertex, and also, a leaf vertex of

T ′. Since T can be obtained from the tree T ′ by applying operation F6, we get T ∈ F .

Claim V. If δT (s) = 2 and δT (v) = 2, then T ∈ F .

Proof. We consider the tree T ′ = T − V (Tv) = T − {h, s, v}. Notice that a R2DF

on T ′ can be extended to a R2DF of T by assigning the weight 2 to s and the weight

0 to v and h, implying that γ{R2}(T ) ≤ γ{R2}(T
′) + 2.

By using Theorem 1, there exists a γ{R2}(T )-function f with V0,1 = ∅, and without

loss of generality, we assume that |V2| is maximum. Notice that f is a γR(T )-function

as well. On the other hand, it is easy to check that f(s) = 2 and f(h) = f(v) = 0,

implying that f restricted to V (T ′) is a RDF on T ′. Hence γR(T ′) ≤ f(V (T ′)) =

ω(f)− f(N [s]) = γR(T )− 2. Consequently, by the previous inequalities and Proposi-

tion 1, we obtain that γ{R2}(T ) ≤ γ{R2}(T
′) + 2 ≤ γR(T ′) + 2 ≤ γR(T ) = γ{R2}(T ).

Therefore, we must have equality throughout this inequality chain. In particular,

γ{R2}(T
′) = γR(T ′). Also note that γ{R2}(T ) = γ{R2}(T

′) + 2. By using a similar

reasoning as in the previous case, T ′ has order at least 3 and applying the inductive

hypothesis to T ′, it follows that T ′ ∈ F .

Moreover, a minimum weight near-R2DF on T ′ relative to w can be extended to a

R2DF on T by assigning to v and h the weight 1 and to s the weight 0. So γ{R2}(T ) ≤
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γn{R2}(T
′, w)+2. If w is not a near stable vertex of T ′, then γn{R2}(T

′, w) < γ{R2}(T
′),

implying that γ{R2}(T ) ≤ γn{R2}(T
′, w) + 2 < γ{R2}(T

′) + 2, which is a contradiction

with the related equality noted before. Therefore, w is a near stable vertex of T ′, and

since T can be obtained from the tree T ′ by applying operation F4, we finally deduce

T ∈ F , which complete the proof.

As an immediate consequence of Lemmas 1 and 2, we have the following characteri-

zation concerning one of the main goals of this article.

Theorem 5. A tree T of order n ≥ 3 satisfies that γ{R2}(T ) = γR(T ) if and only if
T ∈ F .

To conclude this work, we next give solution to the second problem which is studied

in this work. To this end, we need the following known result.

Theorem 6. [2, 3] For every tree T , γ{R2}(T ) = γr2(T ).

Hence, as a consequence of Proposition 1, Theorem 5 and Theorem 6, the next char-

acterization follows.

Theorem 7. A tree T of order n ≥ 3 satisfies that γr2(T ) = γR(T ) if and only if T ∈ F .
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