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Abstract: A subset S of vertex set V (D) is an independent dominating set of a

digraph D if S is both an independent and a dominating set of D. The independent
domination number i(D) is the minimum cardinality of an independent dominating set

of D. In this paper we calculate the independent domination number of the Cartesian

product of two directed paths Pm and Pn for arbitraries m and n. Also, we determine
the independent domination number of the Cartesian product of two directed cycles

Cm and Cn for m,n ≡ 0 (mod 3) and n ≡ 0 (mod m). We note that, there are many

values of m and n such that Cm2Cn does not have an independent dominating set.
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1. Introduction

All digraphs are assumed to be loopless and without duplicate arcs. Let D = (V,A)

be a digraph with vertex set V = V (D) and arc set A = A(D). For every vertex

u ∈ V (D), the sets O(u) = {v : (u, v) ∈ A(D)} and I(u) = {v : (v, u) ∈ A(D)} are

called the outset and inset of u, respectively. The outdegree of u is od(u) = |O(u)| and

the indegree of u is id(u) = |I(u)|. The maximum outdegree and maximum indegree

of all vertices in D are denoted by ∆+(D) and ∆−(D), respectively. The minimum

outdegree and minimum indegree of all vertices in D are denoted by δ+(D) and δ−(D),

respectively.

A set S of vertices is an independent set if for every two vertices u, v in S, (u, v) /∈ A(D)
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and (v, u) /∈ A(D). The independence number β(D) is the maximum cardinality of

an independent set of D. A set S of vertices is a dominating set of D if for each

vertex v ∈ D − S there exists a vertex u ∈ S such that (u, v) is an arc of D. The

domination number of D γ(D) is the minimum cardinality of a dominating set of D.

A set S of vertices is called an independent dominating set of a digraph D if S is both

an independent and a dominating set of D. The independent domination number

i(D) is the minimum cardinality of an independent dominating set. An i(D)-set is an

independent dominating set of D of size i(D).

The Cartesian product D12D2 of two digraphs D1 and D2 is the digraph with vertex

set V (D12D2) = V (D1) × V (D2) and ((u1, u2), (v1, v2)) ∈ A(D12D2) if and only if

either u1 = v1 and (u2, v2) ∈ A(D2) or u2 = v2 and (u1, v1) ∈ A(D1).

Let Pn denote a directed path on n vertices with vertex set V (Pn) = {1, 2, . . . , n}
and arc set A(Pn) = {(i, i + 1) : 1 ≤ i ≤ n − 1} . Then for two paths Pm and Pn,

V (Pm2Pn) = {(i, j) : 1 ≤ i ≤ m and 1 ≤ j ≤ n} and there is an arc from (i, j) to

(p, q) if and only if i = p and q = j+ 1 or j = q and p = i+ 1. The vertices of the jth

column for 2 ≤ j ≤ n, can only be dominated by themselves and vertices in (j − 1)th

column.

Let Cn denote a directed cycle on n vertices with vertex set V (Cn) = {1, 2, ..., n} and

arc set A(Cn) = {(i, i+ 1) : 1 ≤ i ≤ n− 1} ∪ {(n, 1)} . Then we have V (Cm2Cn) =

{(i, j) : 1 ≤ i ≤ m and 1 ≤ j ≤ n} and there is an arc from (i, j) to (p, q) if and only if

either (i = p and q = j+ 1 or q = j+ 1−n) or (j = q and p = i+ 1 or p = i+ 1−m).

Hence, the vertices of the jth column for 2 ≤ j ≤ n, can only be dominated by

themselves and vertices of (j − 1)th column and the vertices in the first column can

be dominated by themselves and vertices of nth column.

The ith row of V (Pm2Pn) or V (Cm2Cn) is Ri = {(i, j) : j = 1, 2, . . . , n} and its

jth column is Kj = {(i, j) : i = 1, 2, . . . ,m}. If S is an independent dominating

set for Pm2Pn or Cm2Cn, then we denote WS
j = S ∩ Kj and sj = |WS

j |. For any

independent dominating set S, the independent dominating sequence corresponding

to S is (s1, s2, . . . , sn). For the vertex (i, j), i is always modulo m, and j is always

modulo n.

The theory of independent domination was formalized by Berge [2] and Ore [13] in

1962. The independent domination number and the notation i(G) were introduced

by Cockayne and Hedetniemi in [3, 4]. Independent dominating sets and variations

of independent dominating sets are now extensively studied in the literature (see

[1, 7, 17]). Independent dominating sets in regular graphs, in particular in cubic

graphs, are also well studied (see [5, 6, 9, 18]). Also, independent dominating sets

were introduced into the theory of games by Morgenstern [12]. In [8], Klobucar,

established the independent domination number of the strong product of undirected

paths, undirected cycles and undirected path with cycle. In [10, 11], Lee established

an upper bound on the domination number of a digraph D and gave an upper bound

for the domination number of a tournament. In [14, 15], the author established the

domination number of grid, torodidal grid digraphs. Also in [16], the total domination

number of products of two directed cycles has determined. Anyway, there are very

few papers that studied the subject of independent domination in directed graphs.
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In this paper we continue the study of study independent domination in directed

graphs and we determine the independent domination number of Pm2Pn for arbi-

traries m and n, and Cm2Cn when m,n ≡ 0 (mod 3) and n ≡ 0 (mod m).

The proof of the following Observations are easy to check and so omitted.

Observation 1. For any path Pn, i(Pn) = dn2 e.

Observation 2. For any cycle Cn with n ≡ 0(mod 2), i(Cn) =
n
2
.

2. Independent domination number of Cartesian product of
paths

We use a (0, 1)-matrix pattern A with m rows and n columns to represent an IDS S

of Pm2Pn (resp. Cm2Cn), where the value at the entry (i, j) of A is 0 if (i, j) 6∈ S
and 1 if (i, j) ∈ S.

Lemma 1. For any i(Pm2Pn)-set S with independent dominating sequence
(s1, s2, . . . , sn), dm−1

3
e ≤ sj ≤ dm2 e for each j ∈ {1, 2, . . . , n}.

Proof. Let S be an i(Pm2Pn)-set . Since S is independent we have (i, j) 6∈ S or

(i+ 1, j) 6∈ S and so sj ≤ dm2 e for each j.

To prove the lower bound, suppose that (i, j), (q, j) ∈ Kj ∩ S and (i + 1, j), (i +

2, j), . . . , (q − 1, j) 6∈ Kj ∩ S. If |q − i| ≥ 4, then to dominate the vertices (i + 2, j)

and (i + 3, j), we must have {(i + 2, j − 1), (i + 3, j − 1)} ⊆ Kj−1 ∩ S which is a

contradiction. Thus, {(i + 1, j), (i + 2, j), (i + 2, j)} ∩ S 6= ∅ for each i ≥ 2. Since

either (1, j) ∈ S or (2, j) ∈ S, we can start from the 2nd row. This implies that

sj ≥ dm−1
3 e and the proof is complete.

Theorem 3. For two paths Pn and Pm, i(Pm2Pn) ≤ dmn
2
e.

Proof. Let D = {(2i − 1, 2j − 1) | 1 ≤ j ≤ dn2 e and 1 ≤ i ≤ dm2 e} ∪ {(2i, 2j) | 1 ≤
j ≤ bn2 c and 1 ≤ i ≤ bm2 c} (see pattern of D for P52P8). Clearly |D| = dmn

2 e and

we can check that D is an independent dominating set for Pm2Pn. This implies that

i(Pm2Pn) ≤ dmn
2 e and the proof is complete.

Fig 1 : An IDS of P52P8 =


1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0


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Proposition 1. For any independent dominating set D of Pm2Pn,

{(2i− 1, 1) : 1 ≤ i ≤ dm
2
e} ∪ {(1, 2j − 1) : 1 ≤ j ≤ dn

2
e} ⊆ D.

Proof. First we note that the vertices in K1 can be dominated only by the vertices

of K1 and so for R1. Since id((1, 1)) = 0, we have (1, 1) ∈ D and this implies that

(1, 2), (2, 1) 6∈ D because D is an independent set. Now to dominate the vertices

(1, 3) and (3, 1), we must have (1, 3), (3, 1) ∈ D implying that (1, 4), (4, 1) 6∈ D. By

repeating the process we obtain the result.

Proposition 2. Let D be an independent dominating set of Pm2Pn. If there is a vertex
(i, j) ∈ Kj ∩D where i 6= m and j 6= n, then (i+ 1, j + 1) ∈ Kj+1 ∩D.

Proof. Since D is an independent dominating set and since (i, j) ∈ Kj

⋂
D, we have

(i, j + 1), (i + 1, j) 6∈ D. Now to dominate the vertex (i + 1, j + 1), we must have

(i+ 1, j + 1) ∈ Kj+1 ∩D.

Proposition 3. Let D be an independent dominating set of Pm2Pn. If there is a vertex
(i, j) ∈ Kj ∩D where 1 6∈ {i, j}, then (i− 1, j − 1) ∈ Kj−1 ∩D.

Proof. Suppose, to the contrary, (i−1, j−1) 6∈ Kj−1∩D. Since D is an independent

dominating set and since (i, j) ∈ Kj ∩D, we have (i− 1, j), (i, j − 1) 6∈ D. Hence to

dominate (i−1, j), we must have (i−2, j) ∈ D. It follows that (i−2, j−1) 6∈ D because

D is independent. Now to dominate (i − 1, j − 1), we must have (i − 1, j − 2) ∈ D
implying that (i, j − 2) ∈ D. But then (i, j − 1) is not dominated by D which is a

contradiction. Thus (i− 1, j − 1) ∈ Kj−1 ∩D and the proof is complete.

Proposition 4. Let D be an independent dominating set of Pm2Pn. If there is a vertex
(i, j) ∈ Kj ∩D such that i ≤ m− 2 and i, j > 1, then (i+ 2, j) ∈ Kj ∩D.

Proof. Since D is an independent dominating set and since (i, j) ∈ Kj ∩D, we have

(i−1, j), (i, j−1) 6∈ D. Suppose, to the contrary, that (i+2, j) /∈ Kj∩D. To dominate

(i+ 2, j), we must have (i+ 2, j− 1) ∈ Kj−1 ∩D. We deduce from Proposition 3 that

(i− 1, j − 1) ∈ Kj−1 ∩D and (i+ 1, j − 2) ∈ Kj−2 ∩D. By repeating this argument,

we have (i − 1 − q1, j − 1 − q1) ∈ Kj−1−q1 ∩ D for 0 ≤ q1 ≤ min{i − 2, j − 2} and

(i + 1 − q2, j − 2 − q2) ∈ Kj−2−q2 ∩ D for 0 ≤ q2 ≤ min{i, j − 3}. If i ≥ j, then

Proposition 3 yields to (i − j + 1, 1) ∈ K1 ∩D and (i − j + 4, 1) ∈ K1 ∩D and this

leads to |(i − j + 1) − (i − j + 4)| = 3, a contradiction with Proposition 1. Assume

that i < j. If j = i + 1 (resp. j = i + 2), then we have (1, 2) ∈ K2 ∩ D (resp.

(2, 1) ∈ K1 ∩D), a contradiction with (1, 1) ∈ D (see Proposition 1). Let i + 3 ≤ j.

Using above argumentation, we have (1, j− i+1) ∈ R1∩D and (1, j− i−2) ∈ R1∩D.

But then (1, j− i−1), (1, j− i) 6∈ D and so (1, j− i) is not dominated, a contradiction.

Thus (i+ 2, j) ∈ Kj ∩D and the proof is complete.
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The proof of next result is similar to the proof of Proposition 4 and therefore omitted.

Proposition 5. Let D be an independent dominating set of Pm2Pn. If there is a vertex
(i, j) ∈ Kj ∩ S′ such that j ≤ n− 2, then (i, j + 2) ∈ Kj+2 ∩D.

Theorem 4. For two paths Pn and Pm, i(Pm2Pn) = dmn
2
e.

Proof. By Propositions 1,2,3,4 and 5, Pm2Pn has exactly one independent domi-

nating set which presented in Theorem 3 and this implies that i(Pm2Pn) ≥ dmn
2 e.

Now by Theorem 3 we have i(Pm2Pn) = dmn
2 e and the proof is complete.

3. Independent domination number of Cm2Cn

In this section we determine the independent domination number of Cm2Cn for some

values of m and n. We start with a definition. Suppose that D is an independent

dominating set of Cm2Cn and assume that 1 ≤ j, h ≤ n. We say that the hth

column is an t-shift of the jth column with respect to D, if (i, j) ∈ D implies that

(i+ t, h) ∈ D and vice versa, where the indices i, i+ t are taken modulo m and j, h

are taken modulo n.

We observe that Propositions 2 and 3 are true for Cm2Cn, but here for any i, j. The

proof of the next lemma is similar to that of Lemma 1 and therefore omitted.

Lemma 2. For any i(Cm2Cn)-set S with independent dominating sequence
(s1, s2, . . . , sn), dm−1

3
e ≤ sj ≤ dm2 e for each j ∈ {1, 2, . . . , n}.

We note that Cn has no independent dominating set when n ≡ 1 (mod 2).

Theorem 5. Let m,n be positive integers. If m ≡ 0 (mod 3) and n ≡ 0 (mod 3), then
i(Cm2Cn) =

mn
3
.

Proof. Let S = {(i, j) | 1 ≤ i ≤ n and j ≡ i (mod 3)} (see Figure 2). Obviously,

and it is easy to see that S is an independent dominating set of Cm2Cn. This implies

that

i(Cm2Cn) ≤ mn

3
(1)

Fig 2 : An IDS of C62C9 =



1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1

1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1


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To prove the inverse inequality, let D be an i(Cm2Cn)-set. Since Cm2Cn is a 2-

regular digraph, any vertex of S dominates exactly two vertices in V (Cm2Cn) − S
and so

i(Cm2Cn) ≥ mn

3
(2)

By (1) and (2), we have i(Cm2Cn) = mn
3 as desired.

Next we consider the case n ≡ 0 (mod m).

Theorem 6. Let m,n be positive integers. If n ≡ 0 (mod m), then i(Cm2Cn) = dm3 en.

Proof. Let S = {(i, j) | 1 ≤ j ≤ n and i ≡ j (mod m)} ∪ {(i, j) | 1 ≤ j ≤ n and i ≡
j + 2 + 3q (mod m) for 0 ≤ q ≤ dm3 e − 2}. Clearly |S| = dm3 en and it is easy to see

that S is an independent dominating set of Cm2Cn. Hence i(Cm2Cn) ≤ dm3 en.

Now let D be an independent dominating set of Cm2Cn with independent dominating

sequence (s1, s2, . . . , sn). By Lemma 2, we have sj ≥ dm3 e for each j ∈ {1, 2, . . . , n}.
Thus i(Cm2Cn) ≥ dm3 en, and hence i(Cm2Cn) = dm3 en.
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