On independent domination numbers of grid and toroidal grid directed graphs

Ramy Shaheen
Department of Mathematics, Tishreen University, Lattakia, Syria
shaheenramy2010@hotmail.com
Received: 22 June 2018; Accepted: 27 January 2019
Published Online: 30 January 2019
Communicated by Ismael González Yero

Abstract

A subset S of vertex set $V(D)$ is an independent dominating set of a digraph D if S is both an independent and a dominating set of D. The independent domination number $i(D)$ is the minimum cardinality of an independent dominating set of D. In this paper we calculate the independent domination number of the Cartesian product of two directed paths P_{m} and P_{n} for arbitraries m and n. Also, we determine the independent domination number of the Cartesian product of two directed cycles C_{m} and C_{n} for $m, n \equiv 0(\bmod 3)$ and $n \equiv 0(\bmod m)$. We note that, there are many values of m and n such that $C_{m} \square C_{n}$ does not have an independent dominating set.

Keywords: directed path, directed cycle, cartesian product, independent domination number

AMS Subject classification: 05C69, 05C20

1. Introduction

All digraphs are assumed to be loopless and without duplicate arcs. Let $D=(V, A)$ be a digraph with vertex set $V=V(D)$ and arc set $A=A(D)$. For every vertex $u \in V(D)$, the sets $O(u)=\{v:(u, v) \in A(D)\}$ and $I(u)=\{v:(v, u) \in A(D)\}$ are called the outset and inset of u, respectively. The outdegree of u is $\operatorname{od}(u)=|O(u)|$ and the indegree of u is $\operatorname{id}(u)=|I(u)|$. The maximum outdegree and maximum indegree of all vertices in D are denoted by $\Delta^{+}(D)$ and $\Delta^{-}(D)$, respectively. The minimum outdegree and minimum indegree of all vertices in D are denoted by $\delta^{+}(D)$ and $\delta^{-}(D)$, respectively.
A set S of vertices is an independent set if for every two vertices u, v in $S,(u, v) \notin A(D)$
and $(v, u) \notin A(D)$. The independence number $\beta(D)$ is the maximum cardinality of an independent set of D. A set S of vertices is a dominating set of D if for each vertex $v \in D-S$ there exists a vertex $u \in S$ such that (u, v) is an arc of D. The domination number of $D \gamma(D)$ is the minimum cardinality of a dominating set of D. A set S of vertices is called an independent dominating set of a digraph D if S is both an independent and a dominating set of D. The independent domination number $i(D)$ is the minimum cardinality of an independent dominating set. An $i(D)$-set is an independent dominating set of D of size $i(D)$.
The Cartesian product $D_{1} \square D_{2}$ of two digraphs D_{1} and D_{2} is the digraph with vertex set $V\left(D_{1} \square D_{2}\right)=V\left(D_{1}\right) \times V\left(D_{2}\right)$ and $\left(\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)\right) \in A\left(D_{1} \square D_{2}\right)$ if and only if either $u_{1}=v_{1}$ and $\left(u_{2}, v_{2}\right) \in A\left(D_{2}\right)$ or $u_{2}=v_{2}$ and $\left(u_{1}, v_{1}\right) \in A\left(D_{1}\right)$.
Let P_{n} denote a directed path on n vertices with vertex set $V\left(P_{n}\right)=\{1,2, \ldots, n\}$ and arc set $A\left(P_{n}\right)=\{(i, i+1): 1 \leq i \leq n-1\}$. Then for two paths P_{m} and P_{n}, $V\left(P_{m} \square P_{n}\right)=\{(i, j): 1 \leq i \leq m$ and $1 \leq j \leq n\}$ and there is an arc from (i, j) to (p, q) if and only if $i=p$ and $q=j+1$ or $j=q$ and $p=i+1$. The vertices of the j th column for $2 \leq j \leq n$, can only be dominated by themselves and vertices in $(j-1)$ th column.
Let C_{n} denote a directed cycle on n vertices with vertex set $V\left(C_{n}\right)=\{1,2, \ldots, n\}$ and arc set $A\left(C_{n}\right)=\{(i, i+1): 1 \leq i \leq n-1\} \cup\{(n, 1)\}$. Then we have $V\left(C_{m} \square C_{n}\right)=$ $\{(i, j): 1 \leq i \leq m$ and $1 \leq j \leq n\}$ and there is an arc from (i, j) to (p, q) if and only if either $(i=p$ and $q=j+1$ or $q=j+1-n)$ or $(j=q$ and $p=i+1$ or $p=i+1-m)$. Hence, the vertices of the j th column for $2 \leq j \leq n$, can only be dominated by themselves and vertices of $(j-1)$ th column and the vertices in the first column can be dominated by themselves and vertices of nth column.
The i th row of $V\left(P_{m} \square P_{n}\right)$ or $V\left(C_{m} \square C_{n}\right)$ is $R_{i}=\{(i, j): j=1,2, \ldots, n\}$ and its j th column is $K_{j}=\{(i, j): i=1,2, \ldots, m\}$. If S is an independent dominating set for $P_{m} \square P_{n}$ or $C_{m} \square C_{n}$, then we denote $W_{j}^{S}=S \cap K_{j}$ and $s_{j}=\left|W_{j}^{S}\right|$. For any independent dominating set S, the independent dominating sequence corresponding to S is $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$. For the vertex $(i, j), i$ is always modulo m, and j is always modulo n.
The theory of independent domination was formalized by Berge [2] and Ore [13] in 1962. The independent domination number and the notation $i(G)$ were introduced by Cockayne and Hedetniemi in [3, 4]. Independent dominating sets and variations of independent dominating sets are now extensively studied in the literature (see [$1,7,17]$). Independent dominating sets in regular graphs, in particular in cubic graphs, are also well studied (see [5, 6, 9, 18]). Also, independent dominating sets were introduced into the theory of games by Morgenstern [12]. In [8], Klobucar, established the independent domination number of the strong product of undirected paths, undirected cycles and undirected path with cycle. In [10, 11], Lee established an upper bound on the domination number of a digraph D and gave an upper bound for the domination number of a tournament. In [14, 15], the author established the domination number of grid, torodidal grid digraphs. Also in [16], the total domination number of products of two directed cycles has determined. Anyway, there are very few papers that studied the subject of independent domination in directed graphs.

In this paper we continue the study of study independent domination in directed graphs and we determine the independent domination number of $P_{m} \square P_{n}$ for arbitraries m and n, and $C_{m} \square C_{n}$ when $m, n \equiv 0(\bmod 3)$ and $n \equiv 0(\bmod m)$. The proof of the following Observations are easy to check and so omitted.

Observation 1. For any path $P_{n}, i\left(P_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$.
Observation 2. For any cycle C_{n} with $n \equiv 0(\bmod 2), i\left(C_{n}\right)=\frac{n}{2}$.

2. Independent domination number of Cartesian product of paths

We use a $(0,1)$-matrix pattern \mathcal{A} with m rows and n columns to represent an IDS S of $P_{m} \square P_{n}$ (resp. $C_{m} \square C_{n}$), where the value at the entry (i, j) of \mathcal{A} is 0 if $(i, j) \notin S$ and 1 if $(i, j) \in S$.

Lemma 1. For any $i\left(P_{m} \square P_{n}\right)$-set S with independent dominating sequence $\left(s_{1}, s_{2}, \ldots, s_{n}\right),\left\lceil\frac{m-1}{3}\right\rceil \leq s_{j} \leq\left\lceil\frac{m}{2}\right\rceil$ for each $j \in\{1,2, \ldots, n\}$.

Proof. Let S be an $i\left(P_{m} \square P_{n}\right)$-set. Since S is independent we have $(i, j) \notin S$ or $(i+1, j) \notin S$ and so $s_{j} \leq\left\lceil\frac{m}{2}\right\rceil$ for each j.
To prove the lower bound, suppose that $(i, j),(q, j) \in K_{j} \cap S$ and $(i+1, j),(i+$ $2, j), \ldots,(q-1, j) \notin K_{j} \cap S$. If $|q-i| \geq 4$, then to dominate the vertices $(i+2, j)$ and $(i+3, j)$, we must have $\{(i+2, j-1),(i+3, j-1)\} \subseteq K_{j-1} \cap S$ which is a contradiction. Thus, $\{(i+1, j),(i+2, j),(i+2, j)\} \cap S \neq \emptyset$ for each $i \geq 2$. Since either $(1, j) \in S$ or $(2, j) \in S$, we can start from the 2 nd row. This implies that $s_{j} \geq\left\lceil\frac{m-1}{3}\right\rceil$ and the proof is complete.

Theorem 3. For two paths P_{n} and $P_{m}, i\left(P_{m} \square P_{n}\right) \leq\left\lceil\frac{m n}{2}\right\rceil$.

Proof. Let $D=\left\{(2 i-1,2 j-1) \left\lvert\, 1 \leq j \leq\left\lceil\frac{n}{2}\right\rceil\right.\right.$ and $\left.1 \leq i \leq\left\lceil\frac{m}{2}\right\rceil\right\} \cup\{(2 i, 2 j) \mid 1 \leq$ $j \leq\left\lfloor\frac{n}{2}\right\rfloor$ and $\left.1 \leq i \leq\left\lfloor\frac{m}{2}\right\rfloor\right\}$ (see pattern of D for $P_{5} \square P_{8}$). Clearly $|D|=\left\lceil\frac{m n}{2}\right\rceil$ and we can check that D is an independent dominating set for $P_{m} \square P_{n}$. This implies that $i\left(P_{m} \square P_{n}\right) \leq\left\lceil\frac{m n}{2}\right\rceil$ and the proof is complete.

$$
\text { Fig 1: An IDS of } P_{5} \square P_{8}=\left[\begin{array}{cccccccc}
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0
\end{array}\right]
$$

Proposition 1. For any independent dominating set D of $P_{m} \square P_{n}$,

$$
\left\{(2 i-1,1): 1 \leq i \leq\left\lceil\frac{m}{2}\right\rceil\right\} \cup\left\{(1,2 j-1): 1 \leq j \leq\left\lceil\frac{n}{2}\right\rceil\right\} \subseteq D .
$$

Proof. First we note that the vertices in K_{1} can be dominated only by the vertices of K_{1} and so for R_{1}. Since $\operatorname{id}((1,1))=0$, we have $(1,1) \in D$ and this implies that $(1,2),(2,1) \notin D$ because D is an independent set. Now to dominate the vertices $(1,3)$ and $(3,1)$, we must have $(1,3),(3,1) \in D$ implying that $(1,4),(4,1) \notin D$. By repeating the process we obtain the result.

Proposition 2. Let D be an independent dominating set of $P_{m} \square P_{n}$. If there is a vertex $(i, j) \in K_{j} \cap D$ where $i \neq m$ and $j \neq n$, then $(i+1, j+1) \in K_{j+1} \cap D$.

Proof. Since D is an independent dominating set and since $(i, j) \in K_{j} \bigcap D$, we have $(i, j+1),(i+1, j) \notin D$. Now to dominate the vertex $(i+1, j+1)$, we must have $(i+1, j+1) \in K_{j+1} \cap D$.

Proposition 3. Let D be an independent dominating set of $P_{m} \square P_{n}$. If there is a vertex $(i, j) \in K_{j} \cap D$ where $1 \notin\{i, j\}$, then $(i-1, j-1) \in K_{j-1} \cap D$.

Proof. Suppose, to the contrary, $(i-1, j-1) \notin K_{j-1} \cap D$. Since D is an independent dominating set and since $(i, j) \in K_{j} \cap D$, we have $(i-1, j),(i, j-1) \notin D$. Hence to dominate $(i-1, j)$, we must have $(i-2, j) \in D$. It follows that $(i-2, j-1) \notin D$ because D is independent. Now to dominate $(i-1, j-1)$, we must have $(i-1, j-2) \in D$ implying that $(i, j-2) \in D$. But then $(i, j-1)$ is not dominated by D which is a contradiction. Thus $(i-1, j-1) \in K_{j-1} \cap D$ and the proof is complete.

Proposition 4. Let D be an independent dominating set of $P_{m} \square P_{n}$. If there is a vertex $(i, j) \in K_{j} \cap D$ such that $i \leq m-2$ and $i, j>1$, then $(i+2, j) \in K_{j} \cap D$.

Proof. Since D is an independent dominating set and since $(i, j) \in K_{j} \cap D$, we have $(i-1, j),(i, j-1) \notin D$. Suppose, to the contrary, that $(i+2, j) \notin K_{j} \cap D$. To dominate $(i+2, j)$, we must have $(i+2, j-1) \in K_{j-1} \cap D$. We deduce from Proposition 3 that $(i-1, j-1) \in K_{j-1} \cap D$ and $(i+1, j-2) \in K_{j-2} \cap D$. By repeating this argument, we have $\left(i-1-q_{1}, j-1-q_{1}\right) \in K_{j-1-q_{1}} \cap D$ for $0 \leq q_{1} \leq \min \{i-2, j-2\}$ and $\left(i+1-q_{2}, j-2-q_{2}\right) \in K_{j-2-q_{2}} \cap D$ for $0 \leq q_{2} \leq \min \{i, j-3\}$. If $i \geq j$, then Proposition 3 yields to $(i-j+1,1) \in K_{1} \cap D$ and $(i-j+4,1) \in K_{1} \cap D$ and this leads to $|(i-j+1)-(i-j+4)|=3$, a contradiction with Proposition 1. Assume that $i<j$. If $j=i+1$ (resp. $j=i+2$), then we have $(1,2) \in K_{2} \cap D$ (resp. $\left.(2,1) \in K_{1} \cap D\right)$, a contradiction with $(1,1) \in D$ (see Proposition 1). Let $i+3 \leq j$. Using above argumentation, we have $(1, j-i+1) \in R_{1} \cap D$ and $(1, j-i-2) \in R_{1} \cap D$. But then $(1, j-i-1),(1, j-i) \notin D$ and so $(1, j-i)$ is not dominated, a contradiction. Thus $(i+2, j) \in K_{j} \cap D$ and the proof is complete.

The proof of next result is similar to the proof of Proposition 4 and therefore omitted.

Proposition 5. Let D be an independent dominating set of $P_{m} \square P_{n}$. If there is a vertex $(i, j) \in K_{j} \cap S^{\prime}$ such that $j \leq n-2$, then $(i, j+2) \in K_{j+2} \cap D$.

Theorem 4. For two paths P_{n} and $P_{m}, i\left(P_{m} \square P_{n}\right)=\left\lceil\frac{m n}{2}\right\rceil$.

Proof. By Propositions $1,2,3,4$ and $5, P_{m} \square P_{n}$ has exactly one independent dominating set which presented in Theorem 3 and this implies that $i\left(P_{m} \square P_{n}\right) \geq\left\lceil\frac{\mathrm{mn}}{2}\right\rceil$. Now by Theorem 3 we have $i\left(P_{m} \square P_{n}\right)=\left\lceil\frac{m n}{2}\right\rceil$ and the proof is complete.

3. Independent domination number of $C_{m} \square C_{n}$

In this section we determine the independent domination number of $C_{m} \square C_{n}$ for some values of m and n. We start with a definition. Suppose that D is an independent dominating set of $C_{m} \square C_{n}$ and assume that $1 \leq j, h \leq n$. We say that the h th column is an t-shift of the j th column with respect to D, if $(i, j) \in D$ implies that $(i+t, h) \in D$ and vice versa, where the indices $i, i+t$ are taken modulo m and j, h are taken modulo n.
We observe that Propositions 2 and 3 are true for $C_{m} \square C_{n}$, but here for any i, j. The proof of the next lemma is similar to that of Lemma 1 and therefore omitted.

Lemma 2. For any $i\left(C_{m} \square C_{n}\right)$-set S with independent dominating sequence $\left(s_{1}, s_{2}, \ldots, s_{n}\right),\left\lceil\frac{m-1}{3}\right\rceil \leq s_{j} \leq\left\lceil\frac{m}{2}\right\rceil$ for each $j \in\{1,2, \ldots, n\}$.

We note that C_{n} has no independent dominating set when $n \equiv 1(\bmod 2)$.
Theorem 5. Let m, n be positive integers. If $m \equiv 0(\bmod 3)$ and $n \equiv 0(\bmod 3)$, then $i\left(C_{m} \square C_{n}\right)=\frac{m n}{3}$.

Proof. Let $S=\{(i, j) \mid 1 \leq i \leq n$ and $j \equiv i(\bmod 3)\}$ (see Figure 2). Obviously, and it is easy to see that S is an independent dominating set of $C_{m} \square C_{n}$. This implies that

$$
\begin{equation*}
i\left(C_{m} \square C_{n}\right) \leq \frac{m n}{3} \tag{1}
\end{equation*}
$$

Fig 2 : An IDS of $C_{6} \square C_{9}=\left[\begin{array}{ccccccccc}1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1\end{array}\right]$

To prove the inverse inequality, let D be an $i\left(C_{m} \square C_{n}\right)$-set. Since $C_{m} \square C_{n}$ is a 2regular digraph, any vertex of S dominates exactly two vertices in $V\left(C_{m} \square C_{n}\right)-S$ and so

$$
\begin{equation*}
i\left(C_{m} \square C_{n}\right) \geq \frac{m n}{3} \tag{2}
\end{equation*}
$$

By (1) and (2), we have $i\left(C_{m} \square C_{n}\right)=\frac{m n}{3}$ as desired.
Next we consider the case $n \equiv 0(\bmod m)$.

Theorem 6. Let m, n be positive integers. If $n \equiv 0(\bmod m)$, then $i\left(C_{m} \square C_{n}\right)=\left\lceil\frac{m}{3}\right\rceil n$.

Proof. Let $S=\{(i, j) \mid 1 \leq j \leq n$ and $i \equiv j(\bmod m)\} \cup\{(i, j) \mid 1 \leq j \leq n$ and $i \equiv$ $j+2+3 q(\bmod m)$ for $\left.0 \leq q \leq\left\lceil\frac{m}{3}\right\rceil-2\right\}$. Clearly $|S|=\left\lceil\frac{m}{3}\right\rceil n$ and it is easy to see that S is an independent dominating set of $C_{m} \square C_{n}$. Hence $i\left(C_{m} \square C_{n}\right) \leq\left\lceil\frac{m}{3}\right\rceil n$.
Now let D be an independent dominating set of $C_{m} \square C_{n}$ with independent dominating sequence $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$. By Lemma 2, we have $s_{j} \geq\left\lceil\frac{m}{3}\right\rceil$ for each $j \in\{1,2, \ldots, n\}$. Thus $i\left(C_{m} \square C_{n}\right) \geq\left\lceil\frac{m}{3}\right\rceil n$, and hence $i\left(C_{m} \square C_{n}\right)=\left\lceil\frac{m}{3}\right\rceil n$.

References

[1] S. Ao, E.J. Cockayne, G. MacGillivray, and C.M. Mynhardt, Domination critical graphs with higher independent domination numbers, J. Graph Theory 22 (1996), no. 1, 9-14.
[2] C. Berge, The Theory of Graphs and its Applications, Methuen, London, 1962.
[3] E.J. Cockayne and S.T. Hedetniemi, Independence graphs, Congr. Numer. 10 (1974), 471-491.
[4] , Towards a theory of domination in graphs, Networks 7 (1977), no. 3, 247-261.
[5] J. Haviland, Independent domination in regular graphs, Discrete Math. 143 (1995), no. 1-3, 275-280.
[6] , Upper bounds for independent domination in regular graphs, Discrete Math. 307 (2007), no. 21, 2643-2646.
[7] P. Haxell, B. Seamone, and J. Verstraete, Independent dominating sets and hamiltonian cycles, J. Graph Theory 54 (2007), no. 3, 233-244.
[8] A. Klobučar, Independent sets and independent dominating sets in the strong product of paths and cycles, Math. Commun. 10 (2005), no. 1, 23-30.
[9] A.V. Kostochka, The independent domination number of a cubic 3-connected graph can be much larger than its domination number, Graphs Combin. 9 (1993), no. 2-4, 235-237.
[10] C. Lee, The domination number of a tournament, Kangweon-Kyungki Math. J. 9 (1975), 21-28.
[11] \qquad , Domination in digraphs, J. Korean Math. Soc. 35 (1998), no. 4, 843-853.
[12] O. Morgenstern, The collaboration between oskar morgenstern and john von neumann on the theory of games, J. Eco. Literat. 14 (1976), no. 3, 805-816.
[13] O. Ore, Theory of Graphs (Amer. Math. Soc. Colloq. Publ. 38), American Mathematical Society, Providence, R. I., 1962.
[14] R. Shaheen, Domination number of toroidal grid digraphs, Util. Math. 78 (2009), 175-184.
[15] _ On the domination number of cartesian products of two directed paths, Int. J. Contemp. Math. Sciences 7 (2012), no. 36, 1785-1790.
[16] \qquad , Total domination number of products of two directed cycles, Util. Math. 92 (2013), 235-250.
[17] Z. Shao, E. Zhu, and F. Lang, On the domination number of cartesian product of two directed cycles, J. Appl. Math. 2013 (2013), Article ID 619695, 7 pages.
[18] J. Southey and M.A. Henning, Domination versus independent domination in cubic graphs, Discrete Math. 313 (2013), no. 11, 1212-1220.

