The Italian domatic number of a digraph

Lutz Volkmann
Lehrstuhl II für Mathematik, RWTH Aachen University, 52056 Aachen, Germany
volkm@math2.rwth-aachen.de

Received: 6 October 2018; Accepted: 3 February 2019
Published Online: 5 February 2019

Communicated by Zehui Shao

Abstract: An Italian dominating function on a digraph D with vertex set $V(D)$ is defined as a function $f: V(D) \rightarrow \{0, 1, 2\}$ such that every vertex $v \in V(D)$ with $f(v) = 0$ has at least two in-neighbors assigned 1 under f or one in-neighbor w with $f(w) = 2$. A set $\{f_1, f_2, \ldots, f_d\}$ of distinct Italian dominating functions on D with the property that $\sum_{i=1}^{d} f_i(v) \leq 2$ for each $v \in V(D)$, is called an Italian dominating family (of functions) on D. The maximum number of functions in an Italian dominating family on D is the Italian domatic number of D, denoted by $d_I(D)$. In this paper we initiate the study of the Italian domatic number in digraphs, and we present some sharp bounds for $d_I(D)$. In addition, we determine the Italian domatic number of some digraphs.

Keywords: Digraphs, Italian dominating function, Italian domination number, Italian domatic number.

AMS Subject classification: 05C20, 05C69

1. Terminology and introduction

In this paper, D is a simple digraph with vertex set $V = V(D)$ and arc set $A = A(D)$. The order $|V|$ of D is denoted by $n = n(D)$. We write $d^+_D(v) = d^{+}(v)$ for the out-degree of a vertex v and $d^-_D(v) = d^{-}(v)$ for its in-degree. The minimum and maximum in-degree and minimum and maximum out-degree of D are denoted by $\delta^- = \delta^-(D)$, $\Delta^- = \Delta^{-}(D)$, $\delta^+ = \delta^+(D)$ and $\Delta^+ = \Delta^+(D)$, respectively. If uv is an arc of D, then we also write $u \rightarrow v$, and we say that v is an out-neighbor of u and u is an in-neighbor of v. A digraph D is in-regular or r-in-regular when $\delta^-(D) = \Delta^-(D) = r$ and out-regular or r-out-regular when $\delta^+(D) = \Delta^+(D) = r$. If D is r-in-regular and r-out-regular, then D is called r-regular or regular. For a vertex v of a digraph D, we denote the set of in-neighbors and out-neighbors of v by $N^-_D(v) = N^-(v)$ and $N^+_D(v)$.
Let D be a digraph of order n. Then $\gamma_I(D) \leq n$ and $\gamma_I(D) = n$ if and only if $\Delta^-(D), \Delta^+(D) \leq 1$.

We make use of the following known results in this paper.

Proposition 1 ([9]). If D is a digraph of order n, then $\gamma_R(D) \leq n - \Delta^+(D) + 1$.

Proposition 2 ([13]). Let D be a digraph of order n. Then $\gamma_I(D) \leq n$ and $\gamma_I(D) = n$ if and only if $\Delta^-(D), \Delta^+(D) \leq 1$.

In this paper we continue the study of Roman and Italian dominating functions and domatic numbers in graphs and digraphs (see, for example, [1–4, 6, 8, 10–12]). We make use of the following known results in this paper.

A Roman dominating function on a digraph D is defined in [9] as a function $f: V(D) \rightarrow \{0, 1, 2\}$ satisfying the condition that every vertex v with $f(v) = 0$ has an in-neighbor u with $f(u) = 2$. The weight of a Roman dominating function f is the value $\sum_{v \in V(D)} f(v)$. The Roman domination number of a digraph D, denoted by $\gamma_R(D)$, is the minimum taken over the weights of all Roman dominating functions on D.

A set $\{f_1, f_2, \ldots, f_d\}$ of distinct Roman dominating functions on D with $\sum_{i=1}^d f_i(v) \leq 2$ for each $v \in V(D)$, is called in [5] a Roman dominating family (of functions) on D. The maximum number of functions in a Roman dominating family on D is the Roman domatic number of D, denoted by $d_R(D)$.

An Italian dominating function (IDF) on a digraph D is defined in [13] as a function $f: V(D) \rightarrow \{0, 1, 2\}$ such that every vertex $v \in V(D)$ with $f(v) = 0$ has at least two in-neighbors assigned 1 under f or one in-neighbor w with $f(w) = 2$. The weight of an Italian dominating function f is the value $\omega(f) = f(V(D)) = \sum_{u \in V(D)} f(u)$. The Italian domination number of a digraph D, denoted by $\gamma_I(D)$, is the minimum taken over the weights of all ID functions on D. A $\gamma_I(D)$-function is an Italian dominating function on D with weight $\gamma_I(D)$. An Italian dominating function $f: V(D) \rightarrow \{0, 1, 2\}$ can be represented by the ordered partition (V_0, V_1, V_2) (or (V_0^f, V_1^f, V_2^f) to refer to f) of $V(D)$, where $V_i = V_i^f = \{v \in V(D): f(v) = i\}$ for $i \in \{0, 1, 2\}$. In this representation, the weight of f is $\omega(f) = |V_1| + 2|V_2|$.

A set $\{f_1, f_2, \ldots, f_d\}$ of distinct Italian dominating functions on D with the property that $\sum_{i=1}^d f_i(v) \leq 2$ for each $v \in V(D)$, is called an Italian dominating family (of functions) on D (ID family on D). The maximum number of functions in an ID family on D is the Italian domatic number of D, denoted by $d_I(D)$.

We note that if D is a digraph, then $\gamma_I(D) \leq \gamma_R(D)$ (see [13]), and the definitions lead to $d_I(D) \geq d_R(D) \geq 1$.

In this paper we continue the study of Italian domatic number in digraphs, and we present some sharp bounds for $d_I(D)$. In addition, we determine the Italian domatic number of some digraphs.
Proposition 3 ([13]). If D is a directed cycle or a directed path of order n, then \(\gamma_I(D) = n \).

Proposition 4 ([13]). If D is a digraph of order n, then

\[
\gamma_I(D) \geq \left\lceil \frac{2n}{\Delta^+(D) + 2} \right\rceil.
\]

2. Properties of the Italian domatic number

In this section we present basic properties and sharp bounds on the Italian domatic number of digraphs.

Theorem 1. If D is a digraph of order n, then

\[
\gamma_I(D) \cdot d_I(D) \leq 2n.
\]

Moreover, if $\gamma_I(D) \cdot d_I(D) = 2n$, then for each Italian dominating family \(\{f_1, f_2, \ldots, f_d\} \) on D with $d = d_I(D)$, each function f_i is a $\gamma_I(D)$-function and $\sum_{i=1}^{d} f_i(v) = 2$ for all $v \in V(D)$.

Proof. Let \(\{f_1, f_2, \ldots, f_d\} \) be an ID family on D such that $d = d_I(D)$ and let $v \in V(D)$. Then

\[
d \cdot \gamma_I(D) = \sum_{i=1}^{d} \gamma_I(D) \leq \sum_{i=1}^{d} \sum_{v \in V(D)} f_i(v) = \sum_{v \in V(D)} \sum_{i=1}^{d} f_i(v) \leq \sum_{v \in V(D)} 2 = 2n.
\]

If $\gamma_I(D) \cdot d_I(D) = 2n$, then the two inequalities occurring in inequality chain above become equalities. Hence, for the ID family \(\{f_1, f_2, \ldots, f_d\} \) on D and for each i, $\sum_{v \in V(D)} f_i(v) = \gamma_I(D)$. Thus, each function f_i is a $\gamma_I(D)$-function, and $\sum_{i=1}^{d} f_i(v) = 2$ for all $v \in V(D)$.

Since $\gamma_I(D) \geq 2$ for each digraph D of order $n \geq 2$, Theorem 1 implies the next result immediately.

Corollary 1. If D is a digraph of order n, then \(d_R(D) \leq d_I(D) \leq n \).

Theorem 2. If D is a digraph, then $d_I(D) = 1$ if and only if $\Delta^-(D) \leq 1$ and D has no directed cycle of even length.
Proof. Assume first that $\Delta^{-}(D) \geq 2$, and let w be a vertex with $d^{-}(w) \geq 2$. Define $f, g : V(D) \to \{0, 1, 2\}$ by $f(x) = 1$ for each $x \in V(D)$ and $g(w) = 0$ and $g(v) = 1$ for $v \in V(D) \setminus \{w\}$. Since $d^{-}(w) \geq 2$, we observe that f and g are Italian dominating functions on D with the property that $f(x) + g(x) \leq 2$ for each $x \in V(G)$. Therefore $\{f, g\}$ is an ID family on D and so $d_{I}(D) \geq 2$. Assume next that D has a directed cycle $C = v_{1}v_{2} \cdots v_{2p}v_{1}$ for an integer $p \geq 1$. Then the functions $f : V(D) \to \{0, 1, 2\}$ with $f(v_{1}) = f(v_{3}) = \cdots = f(v_{2p-1}) = 2$, $f(v_{2}) = f(v_{4}) = \cdots = f(v_{2p}) = 0$ and $f(x) = 1$ for each $x \in V(D) - V(C)$ and $g : V(D) \to \{0, 1, 2\}$ with $g(v_{1}) = g(v_{3}) = \cdots = g(v_{2p-1}) = 0$, $g(v_{2}) = g(v_{4}) = \cdots = g(v_{2p}) = 2$ and $g(x) = 1$ for each $x \in V(D) - V(C)$ are Italian dominating functions on D. This implies that $\{f, g\}$ is an ID family on D, and therefore $d_{I}(D) \geq 2$. Conversely assume that $d_{I}(D) \geq 2$. Suppose to the contrary that $\Delta^{-}(D) \leq 1$ and D has no directed cycle of even length. Let f and g be two distinct ID functions of an ID family on D. Since $\Delta^{-}(D) \leq 1$, we note that $V_{0}^{f}, V_{0}^{g}, V_{2}^{f}, V_{2}^{g} \neq \emptyset$. By definition, $f(v) + g(v) \leq 2$ for every vertex v. It follows that $V_{2}^{f} \subseteq V_{0}^{g}$ and $V_{2}^{g} \subseteq V_{0}^{f}$. Since f is an IDF, every vertex $v \in V_{2}^{g} \subseteq V_{0}^{f}$ has an in-neighbor in V_{2}^{f}. Likewise, every vertex $w \in V_{2}^{f} \subseteq V_{0}^{g}$ has an in-neighbor in V_{2}^{g}. Hence the bipartite subdigraph D' with vertex set $V_{2}^{f} \cup V_{2}^{g}$ and the arcs of D between V_{2}^{f} and V_{2}^{g} has minimum in-degree at least 1. It follows that D' has a directed cycle and, obviously, this directed cycle has even length, a contradiction.

Corollary 2. If P_{n} is a directed path of order n, then $d_{I}(P_{n}) = 1$. If C_{n} is a directed cycle of order n, then $d_{I}(C_{n}) = 1$ if n is odd and $d_{I}(C_{n}) = 2$ if n is even.

Proof. Theorem 2 implies $d_{I}(P_{n}) = 1$, $d_{I}(C_{n}) = 1$ if n is odd and $d_{I}(C_{n}) \geq 2$ if n is even. Using Proposition 3 and Theorem 1, we obtain $d_{I}(C_{n}) \leq 2$ and thus $d_{I}(C_{n}) = 2$ if n is even.

Proposition 5. Let D be a digraph of order $n \geq 2$. Then $\gamma_{I}(D) = n$ and $d_{I}(D) = 2$ if and only if $\Delta^{-}(D) = \Delta^{+}(D) = 1$ and D contains a directed cycle of even length.

Proof. Assume first that $\gamma_{I}(D) = n$ and $d_{I}(D) = 2$. It follows from Proposition 2 that $\Delta^{-}(D), \Delta^{+}(D) \leq 1$. Since $d_{I}(D) = 2$, Theorem 2 implies that D has a directed cycle of even length and so $\Delta^{-}(D) = \Delta^{+}(D) = 1$. Conversely, assume that $\Delta^{-}(D) = \Delta^{+}(D) = 1$ and D contains a directed cycle of even length. Proposition 2 leads to $\gamma_{I}(D) = n$, and Theorem 2 shows that $d_{I}(D) \geq 2$. Therefore Theorem 1 implies $d_{I}(D) \leq 2$ and thus $d_{I}(D) = 2$.

Next we show that the upper bound in Corollary 1 is attained only for complete digraphs.

Theorem 3. If D is a digraph of order $n \geq 2$, then $d_{I}(D) = n$ if and only if D is the complete digraph on n vertices.
Proof. Let $D = K_n^*$ be the complete digraph on n vertices with vertex set \{v_1, v_2, \ldots, v_n\}. Define the functions $f_i: V(D) \rightarrow \{0, 1, 2\}$ by $f_i(v_i) = 2$ and $f_i(v_j) = 0$ for $j \neq i$ and $1 \leq i, j \leq n$. Then f_i is an IDF on D for each $1 \leq i \leq n$ such that $\sum_{i=1}^{n} f_i(v) = 2$ for each $v \in V(D)$. Therefore $\{f_1, f_2, \ldots, f_n\}$ is an ID family on D. Combining this with Corollary 1, we deduce that $d_I(K_n^*) = n$.

Conversely, assume that $d_I(D) = n$. If $n = 2$, then the result is immediate. Assume next that $n \geq 3$. Then $\gamma_I(D) \geq 2$ and it follows from Theorem 1 that $\gamma_I(D) = 2$. Let $\{f_1, f_2, \ldots, f_n\}$ be an ID family on D. We deduce from Theorem 1 that f_i is a $\gamma_I(D)$-function for each i, and $\sum_{d=1}^{n} f_i(v) = 2$ for all $v \in V(D)$. Since $n \geq 3$ and $\gamma_I(D) = 2$, we conclude that for each i, there exists a vertex $x \in V(D)$ such that $f_i(x) \geq 1$. Assume, without loss of generality, that $f_i(v_i) \geq 1$ for each $i \in \{1, 2, \ldots, n\}$.

Suppose, without loss of generality, that there doesn’t exist the arc $v_n v_1$. If $f_n(v_n) = 2$, then $f_n(v_1) = f_n(v_2) = \ldots = f_n(v_{n-1}) = 0$, and we obtain the contradiction $f_n(N^-[v_1]) = 0$. Therefore $f_n(v_n) = 1$ and thus $f_n(v_1) = 1$. Since $f_1(v_1) \geq 1$, we deduce that $f_1(v_1) = 1$. As f_1 and f_n are distinct, we deduce that $f_1(v_n) = 0$. Since $\sum_{i=1}^{n} f_i(v_n) = 2$, there exists an index $j \in \{2, 3, \ldots, n-1\}$ with $f_j(v_n) = 1$ and $f_j(v_1) = 0$. This leads to the contradiction $f_j(N^-[v_1]) \leq 1$. This completes the proof.

Since $d_R(D) \leq d_I(D)$, Theorem 3 and the first part of its proof lead to the next result.

Corollary 3. ([5]) If D is a digraph of order $n \geq 2$, then $d_R(D) = n$ if and only if D is the complete digraph on n vertices.

The upper bound on the product $\gamma_I(D) \cdot d_I(D)$ leads to an upper bound on the sum of these terms.

Theorem 4. If D is a digraph of order $n \geq 2$, then

$$\gamma_I(D) + d_I(D) \leq n + 2.$$ \hspace{1cm} (1)

Moreover, equality holds if and only if $\Delta^+(D) = \Delta^-(D) = 1$ and D has a directed cycle of even length or D is the complete digraph.

Proof. If $d_I(D) \leq 1$, then obviously $\gamma_I(D) + d_I(D) \leq n + 1$. Assume now that $d_I(D) \geq 2$. According to Corollary 1, we have $d_I(D) \leq n$. Theorem 1 implies that

$$\gamma_I(D) + d_I(D) \leq \frac{2n}{d_I(D)} + d_I(D).$$

Using the fact that the function $g(x) = x + 2n/x$ is decreasing for $2 \leq x \leq \sqrt{2n}$ and increasing for $\sqrt{2n} \leq x \leq n$, this inequality leads to

$$\gamma_I(D) + d_I(D) \leq \frac{2n}{d_I(D)} + d_I(D) \leq \max\{n + 2, 2 + n\} = n + 2,$$ \hspace{1cm} (2)
and this is the desired bound.

If D is the complete digraph on n vertices, then $\gamma_I(D) = 2$ and by Theorem 3, $d_I(D) = n$. If $\Delta^+(D) = \Delta^-(D) = 1$ and D contains an even cycle, then it follows from Proposition 5 that $\gamma_I(D) = n$ and $d_I(D) = 2$. Thus $\gamma_I(D) + d_I(D) = n + 2$ in both cases.

Conversely, let equality hold in (1). It follows from (2) that

$$n + 2 = \gamma_I(D) + d_I(D) \leq \frac{2n}{d_I(D)} + d_I(D) \leq n + 2,$$

which implies that $\gamma_I(D) = 2n/d_I(D)$ and $d_I(D) = 2$ or $d_I(D) = n$. If $d_I(D) = n$, then D is the complete digraph by Theorem 3. If $d_I(D) = 2$, then $\gamma_I(D) = n$, and it follows from Proposition 5 that $\Delta^+(D) = \Delta^-(D) = 1$ and D contains a directed cycle of even length. This completes the proof.

The Italian domatic number of a digraph may also be bounded from above by its minimum in-degree plus 2.

Theorem 5. For every digraph D,

$$d_I(D) \leq \delta^-(D) + 2$$

and this bound is sharp.

Proof. If $d_I(D) \leq 2$, then the bound is immediate. Let now $d_I(D) \geq 3$ and let $\{f_1, f_2, \ldots, f_d\}$ be an ID family on D such that $d = d_I(D)$. Assume that v is a vertex of minimum in-degree $\delta^-(D)$. Since the equality $\sum_{x \in N^-[v]} f_i(x) = 1$ holds for at most two indices $i \in \{1, 2, \ldots, d\}$, we have

$$2d - 2 = \sum_{i=1}^{d} \sum_{x \in N^-[v]} f_i(x) = \sum_{x \in N^-[v]} \sum_{i=1}^{d} f_i(x) \leq \sum_{x \in N^-[v]} 2 = 2(\delta^-(D) + 1).$$

This implies the desired bound $d_I(D) \leq \delta^-(D) + 2$.

To prove sharpness, let $k \geq 2$ be an integer. In addition, let D_i be a copy of the complete digraph K^*_k with vertex set $V(D_i) = \{v_1^i, v_2^i, \ldots, v_{k+3}^i\}$ for $1 \leq i \leq k$, and let D be the digraph obtained from $\bigcup_{i=1}^{k} D_i$ by adding a new vertex v and the arcs vv_1^1 as well as $v_j^i v_1^i$ for $1 \leq i \leq k$. Define the ID functions $f_1, f_2, \ldots, f_{k+2}$ as follows:

\[
\begin{align*}
 f_i(v_1^i) &= 2, \\
 f_i(v_{i+1}^j) &= 2 & \text{if } j \in \{1, 2, \ldots, k\} - \{i\} & \text{and } f(x) = 0 \text{ otherwise } (1 \leq i \leq k), \\
 f_{k+1}(v) &= 1, \\
 f_{k+1}(v_{k+2}^j) &= 2 & \text{if } j \in \{1, 2, \ldots, k\} & \text{and } f(x) = 0 \text{ otherwise},
\end{align*}
\]

...
and
\[f_{k+2}(v) = 1, f_{k+2}(v'_{k+3}) = 2, \text{ if } j \in \{1, 2, \ldots, k\} \text{ and } f(x) = 0 \text{ otherwise.} \]

It is easy to see that every \(f_i \) is an IDF on \(D \) and that \(\{f_1, f_2, \ldots, f_{k+2}\} \) is an ID family on \(D \). Since \(\delta^{-}(D) = k \), we deduce that \(d_I(D) = \delta^{-}(D) + 2. \)

Since \(d_R(D) \leq d_I(D) \), Theorem 5, and the example in the proof of Theorem 5 yield to the next result.

Corollary 4. ([5]) For every digraph \(D \),
\[d_R(D) \leq \delta^{-}(D) + 2 \]
and this bound is sharp.

3. Nordhaus-Gaddum type results

The complement \(\overline{D} \) of a digraph \(D \) is the digraph with vertex set \(V(D) \) such that for any two distinct vertices \(u, v \) the arc \(uv \) belongs to \(\overline{D} \) if and only if \(uv \) does not belong to \(D \). Results of Nordhaus-Gaddum type study extreme values of the sum or the product of a parameter on a digraph and its complement. We establish such inequalities for the Italian domination number.

Theorem 6. For every digraph \(D \) of order \(n \),
\[d_I(D) + d_I(\overline{D}) \leq n + 3. \]
If \(d_I(D) + d_I(\overline{D}) = n + 3 \), then \(D \) is in-regular.

Proof. Since \(\Delta^{-}(D) + \delta^{-}(\overline{D}) + 1 = n \), Theorem 5 implies
\[
\begin{align*}
d_I(D) + d_I(\overline{D}) & \leq (\delta^{-}(D) + 2) + (\delta^{-}(\overline{D}) + 2) \\
& = (\delta^{-}(D) + 2) + (n - \Delta^{-}(D) - 1) + 2 \\
& = n - (\Delta^{-}(D) - \delta^{-}(D)) + 3 \leq n + 3,
\end{align*}
\]
and this is the desired bound. If \(D \) is not in-regular, then \(\Delta^{-}(D) - \delta^{-}(D) \geq 1 \), and the inequality chain above leads to the better bound \(d_I(D) + d_I(\overline{D}) \leq n + 2. \)

For a lot of regular digraphs we will improve first Theorem 5 and then Theorem 6.

Theorem 7. Let \(D \) be a \(\delta \)-regular digraph of order \(n \) with \(\delta \geq 1 \), and let \(n = p(\delta + 2) + r \) with integers \(p \geq 0 \) and \(0 \leq r \leq \delta + 1 \). If \(1 \leq r < (\delta + 2)/2 \) or \((\delta + 2)/2 < r \leq \delta + 1 \), then \(d_I(D) \leq \delta + 1 \).
Proof. If \(1 \leq r < (\delta + 2)/2\), then Proposition 4 implies that
\[
\gamma_I(D) \geq \left\lceil \frac{2n}{\delta + 2} \right\rceil = \left\lceil \frac{2p(\delta + 2) + 2r}{\delta + 2} \right\rceil \geq 2p + 1.
\]

Using Theorem 1, we obtain
\[
d_I(D) \leq \frac{2n}{\gamma_I(D)} \leq \frac{2p(\delta + 2) + 2r}{2p + 1} < \frac{2p(\delta + 2) + \delta + 2}{2p + 1} = \delta + 2,
\]
and therefore \(d_I(D) \leq \delta + 1\) in this case.

If \((\delta + 2)/2 < r \leq \delta + 1\), then Proposition 4 implies that
\[
\gamma_I(D) \geq \left\lceil \frac{2n}{\delta + 2} \right\rceil = \left\lceil \frac{2p(\delta + 2) + 2r}{\delta + 2} \right\rceil \geq 2p + 2.
\]

Using Theorem 1, we obtain
\[
d_I(D) \leq \frac{2n}{\gamma_I(D)} \leq \frac{2p(\delta + 2) + 2r}{2p + 2} < \frac{2p(\delta + 2) + 2(\delta + 2)}{2p + 2} = \delta + 2,
\]
and therefore \(d_I(D) \leq \delta + 1\) also in this case.

\[\square\]

Theorem 8. If \(D\) is a \(\delta\)-regular digraph of order \(n\), then
\[
d_I(D) + d_I(\overline{D}) \leq n + 2,
\]

with exception of the cases that \(D\) is 4-regular of order 9, 7-regular of order 18 or 16-regular of order 45.

Proof. Since \(D\) is \(\delta\)-regular, \(\overline{D}\) is \(\overline{\delta}\)-regular with \(\overline{\delta} = n - \delta - 1\). Assume, without loss of generality, that \(\delta \leq \overline{\delta}\).

If \(\delta = 0\), then it follows from Corollary 1 and Theorem 2 that \(d_I(D) + d_I(\overline{D}) \leq n + 1\).

If \(\delta = 1\), then Corollary 2 and Theorem 3 lead to \(d_I(D) + d_I(\overline{D}) \leq 2 + n - 1 = n + 1\).

Thus let now \(\delta \geq 2\) and \(n = p(\delta + 2) + r\) with integers \(p \geq 0\) and \(0 \leq r \leq \delta + 1\). If \(r \neq 0, (\delta + 2)/2\), then Theorem 7 implies \(d_I(D) \leq \delta + 1\), and we obtain \(d_I(D) + d_I(\overline{D}) \leq n + 2\) as in the proof of Theorem 6. Next we discuss the cases \(r = 0\) or \(r = (\delta + 2)/2\).

a) Let \(r = 0\) and therefore \(n = p(\delta + 2)\). We observe that \(n = (\overline{\delta} + 2) + (\delta - 1)\) with \(\delta - 1 \geq 1\). If \(\delta - 1 \neq (\overline{\delta} + 2)/2\), then Theorem 7 implies \(d_I(\overline{D}) \leq \overline{\delta} + 1\), and we obtain \(d_I(D) + d_I(\overline{D}) \leq n + 2\) as in the proof of Theorem 6. Let now \(\delta - 1 = (\overline{\delta} + 2)/2\). Then
\[
n = (\overline{\delta} + 2) + \frac{\overline{\delta} + 2}{2} = \frac{3}{2}(\overline{\delta} + 2) = \frac{3}{2}(n + 1 - \delta)
\]
and thus \(n = 3\delta - 3 \). Hence \(p(\delta + 2) = 3\delta - 3 \), and this leads to \(p = 2 \). We deduce that \(\delta = 7 \) and \(n = 18 \).

b) Let \(r = (\delta + 2)/2 \) and therefore \(n = p(\delta + 2) + (\delta + 2)/2 \). As in case a), there remains the case that \(n = 3\delta - 3 \). Hence \((p + 1/2)(\delta + 2) = 3\delta - 3 = 3(\delta + 2) - 9 \), and this yields to \(p \leq 2 \).

If \(p = 1 \), then we observe that \(\delta = 4 \) and \(n = 9 \).
If \(p = 2 \), then we obtain \(\delta = 16 \) and \(n = 45 \).

\[\square \]

4. Open problems

We conclude by mentioning some conjectures suggested by this research.

Conjecture 1. If \(D \) is a \(\delta \)-regular digraph, then \(d_I(D) \leq \delta + 1 \).

The next conjecture is a consequence of Conjecture 1.

Conjecture 2. If \(D \) is a \(\delta \)-regular digraph of order \(n \), then \(d_I(D) + d_I(D) \leq n + 1 \).

Conjecture 2 is valid for \(\delta = 0 \) and for \(\delta = 1 \). If \(n = p_1(\delta + 2) + r_1 \) with \(r_1 \neq 0, (\delta + 2)/2 \) and \(n = p_2(\delta + 2) + r_2 \) with \(r_2 \neq 0, (\delta + 2)/2 \), then Theorem 7 shows that Conjecture 2 is also valid. I even think that the bound in Conjecture 2 is valid for all digraphs.

Conjecture 3. If \(D \) is a digraph of order \(n \), then \(d_I(D) + d_I(D) \leq n + 1 \).

References

