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Abstract: Let D be a simple digraph with vertex set V . A Roman dominating

function (RDF) on a digraph D is a function f : V → {0, 1, 2} satisfying the condition

that every vertex v with f(v) = 0 has an in-neighbor u with f(u) = 2. The weight of
an RDF f is the value

∑
v∈V f(v). The Roman domination number of a digraph D

is the minimum weight of an RDF on D. A set {f1, f2, . . . , fd} of Roman dominating

functions on D with the property that
∑d

i=1 fi(v) ≤ 2 for each v ∈ V , is called a
Roman dominating family (of functions) on D. The maximum number of functions

in a Roman dominating family on D is the Roman domatic number of D, denoted by

dR(D). In this paper we continue the investigation of the Roman domination number,
and we initiate the study of the Roman domatic number in digraphs. We present some

bounds for dR(D). In addition, we determine the Roman domatic number of some

digraphs.

Keywords: Roman dominating function, Roman domination number, Roman domatic

number, digraph
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1. Introduction

Throughout this paper, D = (V,A) denotes a finite simple digraph. If (u, v) is an

arc of D, then v is an out-neighbor of u and u is an in-neighbor of v. For a vertex

∗ Corresponding Author



48 The Roman domination and domatic numbers of a digraph

v ∈ V (D), the out-neighborhood and in-neighborhood of v, denoted by N+(v) =

N+
D (v) and N−(v) = N−D (v), are the sets of out-neighbors and in-neighbors of v,

respectively. The closed out-neighborhood and closed in-neighborhood of a vertex v ∈
V (D) are the sets N+[v] = N+

D [v] = N+(v)∪{v} and N−[v] = N−D [v] = N−(v)∪{v},
respectively. The out-degree and in-degree of a vertex v ∈ V (D) are defined by

d+(v) = d+D(v) = |N+(v)| and d−(v) = d−D(v) = |N−(v)|, respectively. The maximum

out-degree, minimum out-degree, maximum in-degree and minimum in-degree among

the vertices of D are denoted by ∆+ = ∆+(D), δ+ = δ+(D), ∆− = ∆−(D) and

δ− = δ−(D), respectively.

A digraph D is out-regular or r-out-regular if d+(v) = r for each v ∈ V (D). Likewise,

a digraph D is in-regular or r-in-regular if d−(v) = r for each v ∈ V (D). The

complement D of a digraph D is the digraph defined on the vertex set V (D), where

(u, v) ∈ A(D) if and only if (u, v) /∈ A(D). The complete digraph K∗n is the digraph

obtained from the complete graph Kn when each edge e of Kn is replaced by two

oppositely oriented arcs with the same ends as e.

A signed dominating function (SDF) on D is a function f : V (D) → {−1, 1} such

that
∑
x∈N−[v] f(x) ≥ 1 for each vertex v ∈ V (D). The weight of an SDF f is

ω(f) =
∑
v∈V (D) f(v). The signed domination number γS(D) of a digraph D is

the minimum weight of an SDF on D. An SDF on D with weight γS(D) is called

a γS(D)-function. The signed domination number of a digraph was introduced by

Zelinka [16].

A Roman dominating function (RDF) on a digraph D is a function f : V (D) →
{0, 1, 2} satisfying the condition that every vertex v with f(v) = 0 has an in-neighbor

u with f(u) = 2. The weight of an RDF f is the value ω(f) =
∑
v∈V (D) f(v). The

Roman domination number of a digraph D, denoted by γR(D), is the minimum weight

of an RDF on D. A γR(D)-function is an RDF on D with weight γR(D). For a sake of

simplicity, an RDF f on D will be represented by the ordered partition (V0, V1, V2) of

V (D) induced by f , where Vi = {v ∈ V (D) : f(v) = i} for i ∈ {0, 1, 2}. The Roman

domination of a digraph was introduced by Kamaraj and Hemalatha [6], which has

been studied by several authors [4, 5, 12].

The definition of the Roman domination number for undirected graphs was introduced

multiplicity by Stewart [13] and ReVelle and Rosing [10], results on which could be

found, for example, in [2, 3, 8, 9, 15, 17].

A set {f1, f2, . . . , fd} of distinct Roman dominating functions on D with the property

that
∑d
i=1 fi(v) ≤ 2 for each v ∈ V (D), is called a Roman dominating family (of

functions) on D. The maximum number of functions in a Roman dominating family

(RD family) on D is the Roman domatic number of D, denoted by dR(D). The

Roman domatic number is well-defined and dR(D) ≥ 1 for all digraphs D since the

set consisting of any RDF forms an RD family on D.

The definition of the Roman domatic number for undirected graphs was given by

Sheikholeslami and Volkmann [11] and has been studied in [7, 14].

Our purpose in this paper is to continue the investigations of the Roman domination

number and to initiate the study of the Roman domatic number in digraphs. We

start with some bounds on the Roman domination number, and then we study basic
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properties for the Roman domatic number of a digraph.

2. Bounds on the Roman domination number

We will make use of the following result due to Sheikholeslami and Volkmann [12].

Proposition 1 ([12]). (a) For any digraph D of order n ≥ 3, γR(D) = 3 if and only
if ∆+ = n− 2, or n = 3 and ∆+ ≤ 1.

(b) For any digraph D of order n ≥ 4, γR(D) = 4 if and only if ∆+ = n−3, or ∆+ ≤ n−4
and there exist two vertices u, v ∈ V (D) such that N+[u] ∪ N+[v] = V (D), or n = 4
and ∆+ ≤ 1.

Let n = 2r + 1 with an integer r ≥ 1. We define the circulant tournament CT (n) of

order n with vertex set {u0, u1, . . . , un−1} as follows. For each i ∈ {0, 1, . . . , n − 1},
the arcs are going from ui to the vertices ui+1, ui+2, . . . , ui+r, where the indices are

taken modulo n.

As a consequence of Proposition 1, we have the following corollary.

Corollary 1. Let n = 2r + 1 with an integer r ≥ 1. Then

γR(CT(n)) =

{
3, if r = 1,
4, otherwise.

Proof. If r = 1, then ∆+ = r = 1 = n − 2 and hence by Proposition 1(a),

γR(CT (n)) = 3. If r = 2, then ∆+ = r = 2 = n − 3 and hence by Proposition 1(b),

γR(CT (n)) = 4. Hence we may assume that r ≥ 3. Observe that ∆+ = r ≤ n − 4

and N+[u0] ∪N+[ur] = V (CT (n)). Consequently, again by Proposition 1(b), we get

γR(CT (n)) = 4, which completes our proof.

Let n ≥ 5. By Corollary 1, we have γR(CT (n)) = 4. However, we obtain γR(CT (n)) ≥
5 by Theorem 9 in [12], which is a contradiction. This demonstrates that Theorem 9

in [12] is not correct when n ≥ 5.

Theorem 1. For any digraph D of order n with ∆+ ≥ 1,

γR(D) ≥ d2n/(∆+ + 1)e,

and this bound is sharp.
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Proof. Let f = (V0, V1, V2) be a γR(D)-function. Since each v ∈ V0 has an in-

neighbor in V2, we observe that |V0| ≤ ∆+|V2|. Consequently, we obtain

(∆+ + 1)γR(D) = (∆+ + 1)|V1|+ 2(∆+ + 1)|V2|
≥ (∆+ + 1)|V1|+ 2|V2|+ 2|V0|
≥ 2|V1|+ 2|V2|+ 2|V0|
= 2n,

which implies the desired lower bound.

Let n = 2r + 1 with an integer r ≥ 1. Then by Corollary 1, we have

γR(CT (n)) =

⌈
3(r + 1) + r − 1

r + 1

⌉
=

⌈
2(2r + 1)

r + 1

⌉
=

⌈
2n

∆+ + 1

⌉
,

which implies that the bound of Theorem 1 is sharp.

A set S ⊆ V (D) is a 2-packing of the digraph D if N+[u] ∩ N+[v] = ∅ for any two

distinct vertices u, v ∈ S. The 2-packing number ρ(D) of D is defined by

ρ(D) = max{|S| : S is a 2-packing of D}.

Theorem 2. For any digraph D of order n with δ+ ≥ 1,

γR(D) ≤ n− (δ+ − 1)ρ(D).

Proof. Let S = {v1, v2, . . . , vρ(D)} be a 2-packing of D and let T =
⋃ρ(D)
i=1 N+(vi).

Then clearly |T | = |
⋃ρ(D)
i=1 N+(vi)| =

∑ρ(D)
i=1 d+(vi) ≥ ρ(D)δ+. Define the function f

by f(x) = 2 for x ∈ S, f(x) = 0 for x ∈ T and f(x) = 1 otherwise. We observe that

f is an RDF on D and hence we get

γR(D) ≤
∑
x∈S

f(x) +
∑
x∈T

f(x) +
∑

x∈V (D)\(S∪T )

f(x)

= 2|S|+ (n− |S| − |T |)
= n+ |S| − |T |
≤ n+ ρ(D)− ρ(D)δ+

= n− (δ+ − 1)ρ(D),

establishing the desired result.
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We shall relate the Roman domination number to signed domination number of di-

graphs. For this purpose, we need a result due to Ahangar et al. [1].

Let G be a bipartite (undirected) graph with bipartition (L,R) (standing for “left”

and “right”). A subset S of vertices in R is a left dominating set of G if every vertex

of L is adjacent to a vertex in S. The left domination number, denoted by γL(G), is

the minimum cardinality of a left dominating set of G. A left dominating set of G of

cardinality γL(G) is called a γL(G)-set. Let δL(G) denote the minimum degree of a

vertex of L in G. Ahangar et al. [1] established the following upper bound on the left

domination number of a bipartite (undirected) graph in terms of its order.

Theorem 3 ([1]). Let G be a bipartite (undirected) graph of order n with bipartition
(L,R). If δL(G) ≥ 2, then γL(G) ≤ n/3.

Using Theorem 3, we shall obtain the following result.

Theorem 4. For any digraph D of order n,

γR(D) ≤ γS(D)/2 + 5n/6.

Proof. Let f be a γS(D)-function and let L and R denote the sets of those vertices

in D which are assigned under f the values −1 and 1, respectively. Then |L|+ |R| = n

and γS(D) = ω(f) = |R| − |L|, which implies that 2|R| = n+ γS(D).

If L = ∅, that is, if R = V (D), then we set g(x) = 1 for each x ∈ V (D). Observe that

g is an RDF on D, implying that

γR(D) ≤ ω(g) = n = |R| = γS(D) < γS(D)/2 + 5n/6.

So in the following we may assume that L 6= ∅. Let D′ be the bipartite spanning

subdigraph of D with bipartition (L,R), where A(D′) = {(u, v) ∈ A(D) : u ∈
R and v ∈ L}. Since f is a γS(D)-function, each vertex of L has at least 2 in-

neighbors in R in D′ and hence δ−L (D′) ≥ 2, where δ−L (D′) = min{d−D′(v) : v ∈ L}.
Let H be the (undirected) graph obtained from D′ by replacing any arc with an edge.

It is easy to see that H is a bipartite (undirected) graph of order n with bipartition

(L,R). Let R2 be a γL(H)-set. Observe that δL(H) = δ−L (D′) ≥ 2 and hence by

Theorem 3, |R2| = γL(H) ≤ n/3. Moreover, since R2 is a γL(H)-set, any vertex in

L is adjacent to some vertex in R2 in H and hence any vertex in L has at least one

in-neighbor in R2 in D′ and so in D. Let R1 = R\R2. Set

h(x) =


0, if x ∈ L,
1, if x ∈ R1,

2, if x ∈ R2.
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It is easy to see that h is an RDF on D and hence

γR(D) ≤ ω(h) = |R1|+ 2|R2|
= (|R1|+ |R2|) + |R2| = |R|+ |R2|
≤ (n+ γS(D))/2 + n/3

= γS(D)/2 + 5n/6,

which completes our proof.

3. Properties of the Roman domatic number

In this section we turn our attention to the Roman domatic number of digraphs. We

begin with the following result, which will be useful in many of the results of this

paper.

Theorem 5. For any digraph D, dR(D) ≥ 1 with equality if and only if D has no directed
even cycle.

Proof. The lower bound is trivial. We proceed to show the sufficiency. Let D has

no directed even cycle. Suppose, to the contrary, that dR(D) ≥ 2. Let {f1, f2, . . . , fd}
be an RD family on D such that d = dR(D).

We now claim that there exist some RDF, say f1, of {f1, f2, . . . , fd} and some vertex,

say v0, of D such that f1(v0) = 0. By contradiction. Suppose that fi(x) ≥ 1 for all

i ∈ {1, 2, . . . , d} and x ∈ V (D). If fi(x) = 1 for all i ∈ {1, 2, . . . , d} and x ∈ V (D),

then d = dR(D) = 1, a contradiction. Hence there exist some RDF, say f1, of

{f1, f2, . . . , fd} and some vertex, say v, of D such that f1(v) = 2. Then by the

definition of RD family, we have f2(v) = 0, which is a contradiction. So, this claim is

true.

It follows from the definition of RDF that there exists some vertex, say v1, of D such

that f1(v1) = 2. Hence by the definition of RD family, we get f2(v1) = 0. Then again

by the definition of RDF, there exists some vertex, say v2, of D such that f2(v2) = 2.

So again by the definition of RD family, we get f1(v2) = 0. Repeating this process we

can obtain a sequence v1, v2, . . . of vertices of D satisfying the following properties:

For each i ∈ {1, 2, . . . },

(a) vi+1 is an in-neighbor of vi.

(b) f1(v2i) = f2(v2i−1) = 0 and f1(v2i−1) = f2(v2i) = 2.

Note that D is finite. Therefore, we may assume that l is minimum such that the

vertex vl of D coincides with the vertex vk of D for some k < l. By (a) and (b), we

get f1(vl−1) = 0 and f1(vl) = f1(vk) = 2, or f2(vl−1) = 0 and f2(vl) = f2(vk) = 2. If

f1(vl−1) = 0 and f1(vl) = f1(vk) = 2, then by (b), we have that both k and l are odd.
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This implies that vlvl−1 · · · vk is a directed even cycle of length l− k, a contradiction.

The discussion for the case when f2(vl−1) = 0 and f2(vl) = f2(vk) = 2 is analogous.

Consequently, we have dR(D) = 1.

Conversely, assume that dR(D) = 1. Suppose, to the contrary, that D has a directed

even cycle u1u2 · · ·u2k, where k ≥ 1 is an integer. Define the functions f and g as

follows:

f(u2i−1) = 0 and f(u2i) = 2 for i = 1, 2, . . . , k, and f(x) = 1 otherwise, and

g(u2i−1) = 2 and g(u2i) = 0 for i = 1, 2, . . . , k, and g(x) = 1 otherwise.

We observe that {f, g} is an RD family on D and hence dR(D) ≥ 2, a contradiction.

Consequently, D has no directed even cycle.

The proof is completed.

Theorem 6. For any digraph D of order n,

γR(D) · dR(D) ≤ 2n.

Moreover, if γR(D) · dR(D) = 2n, then for each RD family {f1, f2, . . . , fd} on D with d =
dR(D), each function fi is a γR(D)-function, and

∑d
i=1 fi(v) = 2 for all v ∈ V (D).

Proof. Let {f1, f2, . . . , fd} be an RD family on D such that d = dR(D). Then

γR(D) · dR(D) =

d∑
i=1

γR(D) ≤
d∑
i=1

∑
v∈V (D)

fi(v)

=
∑

v∈V (D)

d∑
i=1

fi(v) ≤
∑

v∈V (D)

2 = 2n.

If γR(D) · dR(D) = 2n, then the two inequalities occurring in the proof become

equalities. Hence for the RD family {f1, f2, . . . , fd} on D and for each i, we get∑
v∈V (D) fi(v) = γR(D), implying that each function fi is a γR(D)-function, and∑d
i=1 fi(v) = 2 for all v ∈ V (D). This completes the proof.

As a consequence of Theorem 6, we have the following result on the Roman domatic

number.

Corollary 2. For any digraph D of order n ≥ 2, dR(D) ≤ n with equality if and only if
D is a complete digraph.

Proof. It is easy to see that γR(D) ≥ 2 since n ≥ 2. Therefore, it follows from

Theorem 6 that dR(D) ≤ 2n/γR(D) ≤ n, establishing the desired upper bound.

Let V (D) = {v1, v2, . . . , vn}. Suppose that D is a complete digraph. For each

i, j ∈ {1, 2, . . . , n}, set fi(vj) = 2 if i = j and fi(vj) = 0 otherwise. We observe
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that {f1, f2, . . . , fn} is an RD family on D and hence dR(D) ≥ n. As shown earlier,

dR(D) ≤ n. Consequently, we have dR(D) = n.

Conversely, suppose that dR(D) = n. If n = 2, then by Theorem 5, the result is

trivial. Hence we may assume that n ≥ 3. Observe that γR(D) ≥ 2. Moreover,

we get γR(D) ≤ 2n/dR(D) = 2 by Theorem 6. Thus we have γR(D) = 2. Let

{f1, f2, . . . , fn} be an RD family on D. Note that γR(D) · dR(D) = 2n. Therefore,

again by Theorem 6, we obtain that for i ∈ {1, 2, . . . , n}, each function fi is a γR(D)-

function and hence ω(fi) = γR(D) = 2, implying that there exists one vertex, say

vi, assigned 2 under fi and the others assigned 0. By the definition of RDF, we

have that for each i ∈ {1, 2, . . . , n}, vi is an in-neighbor of the other vertices of D

and hence d+(vi) ≥ n − 1. Note that D is simple. Therefore, d+(vi) = n − 1 for

each i ∈ {1, 2, . . . , n}. Consequently, we obtain that D is a complete digraph. This

completes the proof.

Sheikholeslami and Volkmann [12] established the following upper bound on the Ro-

man domination number of a digraph.

Proposition 2 ([12]). Let D be a digraph of order n ≥ 2. Then γR(D) < n if and only
if ∆+ ≥ 2.

Using Proposition 2, Theorem 5 and Theorem 6, we may derive the following corollary.

Corollary 3. Let D be a digraph of order n ≥ 2. Then γR(D) = n and dR(D) = 2 if
and only if ∆+ ≤ 1 and D has a directed even cycle.

Proof. Suppose that γR(D) = n and dR(D) = 2. It is easy to see that ∆+ ≤ 1 by

Proposition 2 and D has a directed even cycle by Theorem 5.

Conversely, suppose that ∆+ ≤ 1 and D has a directed even cycle. Then by Proposi-

tion 2, γR(D) = n since ∆+ ≤ 1. Moreover, it follows from Theorem 5 that dR(D) ≥ 2

since D has a directed even cycle. Note that dR(D) ≤ 2n/γR(D) = 2 by Theorem 6.

Therefore, we have dR(D) = 2.

Corollary 4. Let D be a digraph of order n ≥ 2. Then

γR(D) + dR(D) ≤ n+ 2

with equality if and only if D is a complete digraph, or ∆+ ≤ 1 and D has a directed even
cycle.

Proof. If dR(D) = 1, then obviously γR(D) + dR(D) ≤ n+ 1. Let now dR(D) ≥ 2.

Note that dR(D) ≤ n by Corollary 2. Using these inequalities, and the fact that
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the function g(x) = x + (2n)/x is decreasing for 2 ≤ x ≤
√

2n and increasing for√
2n ≤ x ≤ n, we obtain that by Theorem 6,

γR(D) + dR(D) ≤ 2n

dR(D)
+ dR(D) ≤ max

{
2n

2
+ 2,

2n

n
+ n

}
= n+ 2, (1)

establishing the desired upper bound.

If D is a complete digraph, then clearly γR(D) = 2 and by Corollary 2, dR(D) = n.

This implies that γR(D) + dR(D) = n + 2. If ∆+ ≤ 1 and D has a directed even

cycle, then by Corollary 3, γR(D) = n and dR(D) = 2. This also implies that

γR(D) + dR(D) = n+ 2.

Conversely, let γR(D) + dR(D) = n + 2. Then we have equality throughout the

inequality chain (1), implying that γR(D) = 2 and dR(D) = n, or γR(D) = n and

dR(D) = 2. If γR(D) = 2 and dR(D) = n, then by Corollary 2, D is a complete

digraph. If γR(D) = n and dR(D) = 2, then by Corollary 3, ∆+ ≤ 1 and D has a

directed even cycle.

Sheikholeslami and Volkmann [12] determined the exact value of the Roman domina-

tion number of directed cycles.

Proposition 3 ([12]). For any directed cycle Cn of length n, γR(Cn) = n.

We now derive the exact value of the Roman domatic number of directed cycles.

Proposition 4. For any directed cycle Cn of length n,

dR(Cn) =

{
1, if n is odd,
2, if n is even.

Proof. If n is odd, then by Theorem 5, dR(Cn) = 1. Now let n be even. Then by The-

orem 6 and Proposition 3, we have dR(Cn) ≤ 2n/γR(Cn) = 2. Let Cn = v1v2 · · · vnv1.

Define the Roman dominating functions f1 and f2 as follows: f1(v2i−1) = f2(v2i) = 2

and f1(v2i) = f2(v2i−1) = 0 for i = 1, 2, . . . , n/2. Then {f1, f2} is an RD family on

Cn, implying that dR(Cn) ≥ 2. Consequently, we obtain dR(Cn) = 2.

Theorem 7. For any digraph D,

dR(D) ≤ δ− + 2.

Moreover, this upper bound is sharp.
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Proof. If dR(D) ≤ 2, then the result is immediate. Hence we may assume that

dR(D) ≥ 3. Let {f1, f2, . . . , fd} be an RD family on D such that d = dR(D) and let

v be a vertex of in-degree δ−. Note that
∑
u∈N−[v] fi(u) ≥ 1 and the equality holds

for at most two indices i ∈ {1, 2, . . . , d}. Therefore, we get

2 + 2(d− 2) ≤
d∑
i=1

∑
u∈N−[v]

fi(u) =
∑

u∈N−[v]

d∑
i=1

fi(u)

≤
∑

u∈N−[v]

2 = 2(δ− + 1),

which implies the desired upper bound.

To prove the sharpness, let Di be a copy of the complete digraph K∗k+3 with vertex

set V (Di) = {vi1, vi2, . . . , vik+3} for 1 ≤ i ≤ k and let D be the digraph obtained from⋃k
i=1Di by adding a new vertex v and two new arcs (v, vi1) and (vi1, v). Define the

functions f1, f2, . . . , fk+2 as follows: For 1 ≤ i ≤ k,

fi(v
i
1) = 2, fi(v

j
i+1) = 2 if j ∈ {1, 2, . . . , k}\{i} and fi(x) = 0 otherwise,

fk+1(v) = 1, fk+1(vjk+2) = 2 if j ∈ {1, 2, . . . , k} and fk+1(x) = 0 otherwise,

and

fk+2(v) = 1, fk+2(vjk+3) = 2 if j ∈ {1, 2, . . . , k} and fk+2(x) = 0 otherwise.

We obverse that fi is an RDF on D for each i = 1, 2, . . . , k + 2 and hence

{f1, f2, . . . , fk+2} is an RD family on D, which implies that dR(D) ≥ k+ 2 = δ−+ 2.

As shown earlier, dR(D) ≤ δ− + 2. Therefore, we have dR(D) = δ− + 2.

Theorem 8. If D is a k-out-regular digraph of order n, where n = p(k + 1) + r with
integers p ≥ 1 and 0 ≤ r ≤ k, then

dR(D) ≤ k + ε

with ε = 1 when k = 0, or r = 0, or 2r = k + 1, and ε = 0 otherwise.

Proof. If k = 0, then Theorem 5 implies the desired result. Hence we may as-

sume that k ≥ 1. Let {f1, f2, . . . , fd} be an RD family on D such that d = dR(D).

Consequently, we obtain

d∑
i=1

ω(fi) =

d∑
i=1

∑
v∈V (D)

fi(v) =
∑

v∈V (D)

d∑
i=1

fi(v) ≤
∑

v∈V (D)

2 = 2n. (2)

Assume first that r = 0. By Theorem 1, we have ω(fi) ≥ γR(D) ≥ d2n/(k+ 1)e = 2p

for each i ∈ {1, 2, . . . , d}. If d ≥ k + 2, then

d∑
i=1

ω(fi) ≥
d∑
i=1

(2p) = 2pd ≥ 2p(k + 2) > 2n,
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which is a contradiction to (2). Therefore, we get dR(D) ≤ k + 1.

Assume now that 2 ≤ 2r < k + 1. By Theorem 1, we have ω(fi) ≥ γR(D) ≥
d2n/(k + 1)e = 2p+ 1 for each i ∈ {1, 2, . . . , d}. If d ≥ k + 1, then

d∑
i=1

ω(fi) ≥
d∑
i=1

(2p+ 1) = (2p+ 1)d ≥ (2p+ 1)(k + 1) > 2n,

which is a contradiction to (2). Therefore, we get dR(D) ≤ k.

Assume next that 2r = k+1. By Theorem 1, we have ω(fi) ≥ γR(D) ≥ d2n/(k+1)e =

2p+ 1 for each i ∈ {1, 2, . . . , d}. If d ≥ k + 2, then

d∑
i=1

ω(fi) ≥
d∑
i=1

(2p+ 1) = (2p+ 1)d ≥ (2p+ 1)(k + 2) > 2n,

which is a contradiction to (2). Therefore, we get dR(D) ≤ k + 1.

Finally assume that 2r > k + 1. By Theorem 1, we have ω(fi) ≥ γR(D) ≥ d2n/(k +

1)e = 2p+ 2 for each i ∈ {1, 2, . . . , d}. If d ≥ k + 1, then

d∑
i=1

ω(fi) ≥
d∑
i=1

(2p+ 2) = (2p+ 2)d ≥ (2p+ 2)(k + 1) > 2n

since k + 1 > r, which is a contradiction to (2). Therefore, we get dR(D) ≤ k.

The proof is completed.

Theorem 9. If D is a digraph of order n ≥ 2, then

dR(D) + dR(D) ≤ n+ ε

with ε = 1 when D is out-regular, ε = 2 when D is not in-regular and ε = 3 otherwise.

Proof. If D is k-out-regular, then D is (n−k−1)-out-regular and hence by Theorem

8, we obtain

dR(D) + dR(D) ≤ (k + 1) + (n− k − 1 + 1) = n+ 1.

If D is not in-regular, then ∆−(D)− δ−(D) ≥ 1 and hence by Theorem 7, we have

dR(D) + dR(D) ≤ (δ−(D) + 2) + (δ−(D) + 2)

= (δ−(D) + 2) + (n−∆−(D)− 1 + 2)

≤ n+ 2.
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If D is in-regular but not out-regular, then again by Theorem 7, we get

dR(D) + dR(D) ≤ (δ−(D) + 2) + (δ−(D) + 2)

= (δ−(D) + 2) + (n−∆−(D)− 1 + 2)

= n+ 3,

and this completes the proof.

Corollary 5. If D is a digraph of order n ≥ 2, then

dR(D) · dR(D) ≤ (n+ ε)2/4

with ε = 1 when D is out-regular, ε = 2 when D is not in-regular and ε = 3 otherwise.

Proof. It follows from Theorem 9 that

(n+ ε)2 ≥ (dR(D) + dR(D))2

= (dR(D)− dR(D))2 + 4dR(D) · dR(D)

≥ 4dR(D) · dR(D),

implying the desired upper bound.
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