Eternal m-security subdivision numbers in trees

Maryam Atapour
Department of Mathematics, Faculty of basic sciences, University of Bonab
Bonab, I.R. Iran
m.atapour@bonabu.ac.ir

Received: 29 May 2017; Accepted: 29 October 2018
Published Online: 1 November 2018
Communicated by Francesco Belardo

Abstract: An eternal m-secure set of a graph $G = (V,E)$ is a set $S_0 \subseteq V$ that can defend against any sequence of single-vertex attacks by means of multiple-guard shifts along the edges of G. A suitable placement of the guards is called an eternal m-secure set. The eternal m-security number $\sigma_m(G)$ is the minimum cardinality among all eternal m-secure sets in G. An edge $uv \in E(G)$ is subdivided if we delete the edge uv from G and add a new vertex x and two edges ux and vx. The eternal m-security subdivision number $sd\sigma_m(G)$ of a graph G is the minimum cardinality of a set of edges that must be subdivided (where each edge in G can be subdivided at most once) in order to increase the eternal m-security number of G. In this paper, we study the eternal m-security subdivision number in trees. In particular, we show that the eternal m-security subdivision number of trees is at most 2 and we characterize all trees attaining this bound.

Keywords: eternal m-secure set, eternal m-security number, eternal m-security subdivision number

AMS Subject classification: 05C69

1. Introduction

Throughout this paper, G is a simple connected graph with vertex set $V = V(G)$ and edge set $E = E(G)$. The numbers of vertices and edges are called the order and size of the G, respectively. For every vertex $v \in V$, the open neighborhood of v is the set $N(v) = \{u \in V(G) \mid uv \in E(G)\}$ and the closed neighborhood of v is the set $N[v] = N(v) \cup \{v\}$. The degree $\deg(v)$ of v is the number of edges incident with v or equivalently $\deg(v) = |N(v)|$. The minimum and maximum degree of G are denoted by $\delta(G)$ and $\Delta(G)$, respectively. A leaf of G is a vertex of degree 1 and a support
vertex of G is a vertex adjacent to a leaf. A support vertex is called strong support vertex if it is adjacent to at least two leaves. We denote the set of leaves of a graph G and the set of leaves adjacent to $v \in V(G)$ by $L(G)$ and L_v, respectively. For a vertex v in a rooted tree T, let $D(v)$ denote the set of descendants of v. An edge $uv \in E(G)$ is subdivided if the edge uv is deleted and a new vertex x and two new edges ux and vx are added in G.

The concept of domination in graphs was first defined by Ore in 1962 [7]. A set S of vertices in a graph G is called a dominating set if every vertex in V is either an element of S or is adjacent to an element of S. The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality among all dominating sets of G. A $\gamma(G)$-set is a dominating set of G of size $\gamma(G)$.

The domination subdivision number $sd_\gamma(G)$ of a graph G is the minimum cardinality of a set of edges of G that must be subdivided (where each edge in G can be subdivided at most once) in order to increase the domination number of G. This concept was first introduced by Velammal in his Ph.D. thesis [8] and since then many results have been obtained on some domination parameters (see for instance [2, 5]).

An eternal 1-secure set of a graph G is a set $S_0 \subseteq V$ that can defend against any sequence of single-vertex attacks by means of single-guard shifts along the edges of G. That is, for any k and any sequence v_1, v_2, \ldots, v_k of vertices, there exists a sequence of guards u_1, u_2, \ldots, u_k with $u_i \in S_{i-1}$ and either $u_i = v_i$ or $u_i v_i \in E$, such that each set $S_i = (S_{i-1} \setminus \{u_i\}) \cup \{v_i\}$ is a dominating set. It follows that each S_i can be chosen to be an eternal 1-secure set. The eternal 1-security number of G, denoted by $\sigma_1(G)$, is the minimum cardinality among all eternal 1-secure set. The eternal 1-security number was introduced by Burger et al. [3] using the notation γ_∞. In order to reduce the number of guards needed in an eternal secure set, Goddard et al. [4] considered allowing more guards to move. Suppose that in responding to each attack, every guard may shift along an incident edge. The eternal m-security number $\sigma_m(G)$ is the minimum number of guards to handle an arbitrary sequence of single attacks using multiple-guard shifts. A suitable placement of the guards is called an eternal m-secure set (EmSS) of G. An EmSS of size $\sigma_m(G)$ is called a $\sigma_m(G)$-set.

Obviously, any EmSS of G is a dominating set of G. So we have $\gamma(G) \leq \sigma_m(G)$. When an edge $uv \in E(G)$ is subdivided with a vertex x, then the eternal m-security number of G can not decrees. The eternal m-security subdivision number $sd_{\sigma_m}(G)$ of a graph G is the minimum cardinality of a set of edges of G that must be subdivided (where each edge in G can be subdivided at most once) in order to increase the eternal m-security number of G. Since in the study of eternal m-security subdivision number, the assumption $\sigma_m(G) < n$ is necessary, we always assume that when we discuss $sd_{\sigma_m}(G)$, all graphs involved satisfy $\sigma_m(G) < n$, i.e., all graphs are nonempty. In this paper, we study of the eternal m-security subdivision number in trees. In particular, we prove that the eternal m-security subdivision number of a tree is at most 2 and we characterize all trees attaining this bound. For a more thorough treatment of domination parameters and for terminology not presented here see [6, 9]. The proof of the following results can be found in [4].
Theorem A. For any graph G, $\gamma(G) \leq \sigma_m(G)$.

Theorem B. For any graph G, $\sigma_m(G) \leq \alpha(G)$.

Theorem C.
1. $\sigma_m(K_n) = 1$.
2. $\sigma_m(P_n) = \lceil \frac{n}{2} \rceil$.
3. $\sigma_m(C_n) = \lceil \frac{n}{3} \rceil$.

Theorem D. For any graph G, $\sigma_m(G) \geq (\text{diam}(G) + 1)/2$.

Next results are immediate consequence of Propositions C and D.

Corollary 1. For any graph G, $\sigma_m(G) = 1$ if and only if $G \cong K_n$.

Corollary 2. For $n \geq 2$, $\text{sd}_{\sigma_m}(K_n) = 1$.

Corollary 3. For $n \geq 2$, $\text{sd}_{\sigma_m}(P_n) = \begin{cases} 1, & \text{if } n \text{ is even} \\ 2, & \text{if } n \text{ is odd} \end{cases}$.

2. Main Results

In this section, we show that for any tree T, $\text{sd}_{\sigma_m}(T) \leq 2$ and we characterize all trees attaining this bound. We start with two propositions.

Proposition 1. Let G be a connected graph. If G has a vertex u with $|L_u| \geq 3$, then $\text{sd}_{\sigma_m}(G) = 1$.

Proof. Let $w_1, w_2, w_3 \in L_u$ and let G' be the graph obtained from G by subdividing the edge uw_1 by subdivision vertex x. Let S be a $\sigma_m(G')$—set containing w_2 (we may assume that S is a response to an attack on w_2). To dominate w_3, we may assume that $u \in S$. On the other hand, to dominate w_1, we must have $|S \cap \{w_1, x\}| \geq 1$. It is easy to see that $S \setminus \{w_1, x\}$ is an EmSS of G. This implies that $\text{sd}_{\sigma_m}(T) = 1$. □

Proposition 2. Let G be a connected graph. If G has a vertex u with $|L_u| = 2$, then $\text{sd}_{\sigma_m}(G) \leq 2$.

Proof. Let $w_1, w_2 \in L_u$ and let G' is the graph obtained from G by subdividing the edges uw_1 and uw_2 by subdivision vertices x and y respectively. Let S be a $\sigma_m(G')$—set containing u (we may assume that S is a response to an attack on u). To dominate w_1 and w_2, we must have $|S \cap \{w_1, x\}| \geq 1$ and $|S \cap \{w_1, y\}| \geq 1$, respectively. It is easy to see that $(S \setminus \{w_1, x, y\}) \cup \{w_2\}$ is an EmSS of G. This implies that $\text{sd}_{\sigma_m}(T) \leq 2$. □
Theorem 1. For any tree T, $sd_{\sigma_m}(T) \leq 2$.

Proof. The result is obvious for $n(T) \leq 3$. Let $n(T) \geq 4$. If T is a star, then the result follows from Proposition 1. Assume that T is not a star and $v_1v_2\ldots v_k$ be a diametrical path in T. Root T at v_k. If $\deg(v_2) \geq 3$, then the result follows from Proposition 2. Suppose that $\deg(v_2) = 2$ and T' is the tree obtained from T by subdividing the edges v_1v_2 and v_2v_3 by subdivision vertices x and y, respectively. Let S be a $\sigma_m(T')$-set containing v_2. To dominate v_1, we may assume that $x \in S$. Let $S' = S \setminus \{x\}$ if $y \notin S$, $S' = (S \setminus \{x, y\}) \cup \{v_3\}$ if $v_3 \notin S$ and $y \in S$ and $S' = (S \setminus \{x, y\}) \cup \{w\}$ if $v_3, y \in S$, where $w \in N_T(v_3) \setminus \{v_2\}$. Clearly, S' is an EmSS of T of size $|S| - 1$ and this completes the proof.

Now we give a constructive characterization of trees T for which $sd_{\sigma_m}(T) = 2$. For this purpose, we describe a procedure to build a family \mathcal{T} of trees as follows. Let T be the family of trees that: A path P_3 is a tree in \mathcal{T} and if T is a tree in \mathcal{T}, then the tree T' obtained from T by the following four operations which extend the tree T by attaching a tree to a vertex $v \in V(T)$, called an attacher, is also a tree in \mathcal{T}.

Operation \mathcal{T}_1. If $v \in V(T)$, then \mathcal{T}_1 adds a path vxy to T.

Operation \mathcal{T}_2. If $v \in V(T)$, then \mathcal{T}_2 adds a star $K_{1,3}$ with center y and leaves x, w, z and joins x to v.

Operation \mathcal{T}_3. If $v \in V(T)$ is a leaf of T, then \mathcal{T}_3 adds a pendant edge vw and a star $K_{1,2}$ with center x and leaves y, z and joins x to v.

Operation \mathcal{T}_4. If v is a leaf of T, then \mathcal{T}_4 adds two new stars $K_{1,2}$ with centers x_1 and x_2 and joins v to x_1 and x_2 (see Fig. 1).

![Fig. 1. The four operations](image-url)

The proof of the following Lemmas can be found in [1].

Lemma 1. Let T' be a tree, $v \in V(T')$ and T be obtained from T' by Operation \mathcal{T}_1. Then $\sigma_m(T) = \sigma_m(T') + 1$.

Lemma 2. Let T' be a tree and $v \in V(T')$. If T is the tree obtained from T' by Operation Ξ_2, then $\sigma_m(T) = \sigma_m(T') + 2$.

Lemma 3. Let T' be a tree and $v \in L(T')$. If T is the tree obtained from T' by Operation Ξ_3, then $\sigma_m(T) = \sigma_m(T') + 2$.

Lemma 4. Let T' be a tree and let $v \in L(T')$. If T is the tree obtained from T' by Operation Ξ_4, then $\sigma_m(T) = \sigma_m(T') + 3$.

Lemma 5. Let $T' \in \mathcal{T}$ and $u \in V(T')$. If T is a tree obtained from T' by adding a pendant edge uu', then $\sigma_m(T) = \sigma_m(T')$.

Observation 2. Let T' be a tree and T be obtained from T' by an operation from the set $\{\Xi_1, \Xi_2, \Xi_3, \Xi_4\}$. Then $sd_{\sigma_m}(T) \leq sd_{\sigma_m}(T')$.

Proof. Let F be a set of edges in T' where subdividing the edges in F increases the eternal $m-$ security number of T'. Let T_1 and T_2 be the trees obtained from T' and T, by subdividing the edges in F, respectively. Then T_2 is obtained from T_1 by one of the Operations Ξ_1, \ldots, Ξ_4 and the result follows from Lemmas 1, 2, 3 and 4. □

Theorem 3. Let $T \in \mathcal{T}$ and let T' be a tree obtained from T by subdividing an edge of T. Then $\sigma_m(T') = \sigma_m(T)$.

Proof. Let $T \in \mathcal{T}$, $e \in E(T)$ and let T' be the tree obtained from T by subdividing the edge e by subdivision vertex u. First note that $\sigma_m(T') \geq \sigma_m(T)$. Let T be obtained from a path P_3 by successive operations Ξ_1, \ldots, Ξ_m, respectively, where $\Xi_i \in \{\Xi_1, \Xi_2, \Xi_3, \Xi_4\}$ for $1 \leq i \leq m$ if $m \geq 1$ and $T = P_3$ if $m = 0$. We proceed by induction on m. If $m = 0$, then clearly the statement is true by Corollary 3. Assume $m \geq 1$ and that the statement holds for all trees which are obtained from P_3 by applying at most $m-1$ operations. Suppose T_{m-1} is a tree obtained by applying the first $m-1$ operations Ξ_1, \ldots, Ξ^{m-1}. When $e \in E(T_{m-1})$, let T'_{m-1} be obtained from T_{m-1} by subdividing the edge e. We consider the following cases:

Case 1. $\Xi^m = \Xi_1$. Then T is obtained from T_{m-1} by attaching a path vxy to $v \in V(T_{m-1})$. If $e \in E(T_{m-1})$, then by the inductive hypothesis, $\sigma_m(T''_{m-1}) = \sigma_m(T_{m-1})$ and by Lemma 1,

$$\sigma_m(T') = \sigma_m(T''_{m-1}) + 1 = \sigma_m(T_{m-1}) + 1 = \sigma_m(T).$$

Assume that $e = xy$ (the case $e = vx$ is similar). Let $T^* = T' - \{u, y\}$. Then T^* is obtained from T_{m-1} by attaching a pendant edge vy. By Lemma 5, $\sigma_m(T^*) = \sigma_m(T_{m-1})$ and by Lemma 1, we have

$$\sigma_m(T') = \sigma_m(T^*) + 1 = \sigma_m(T_{m-1}) + 1 = \sigma_m(T).$$
Case 2. \(\mathfrak{T}^m = \mathfrak{T}_2 \). Then \(T \) is obtained from \(T_{m-1} \) by adding a star \(K_{1,3} \) centered at \(y \) and leaves \(x, w, z \) and joining \(x \) to \(v \). If \(e \in E(T_{m-1}) \), then by the inductive hypothesis, \(\sigma_m(T_{m-1}) = \sigma_m(T_{m-1}) \) and by Lemma 2,

\[
\sigma_m(T') = \sigma_m(T'_{m-1}) + 2 = \sigma_m(T_{m-1}) + 2 = \sigma_m(T).
\]

If \(e = xy \) (the case \(e = vx \) is similar), then let \(T^* = T' - \{u, y, z, w\} \). Then \(T^* \) is obtained from \(T_{m-1} \) by attaching a pendant edge \(vx \). By Lemma 5, \(\sigma_m(T^*) = \sigma_m(T_{m-1}) \) and by Lemma 2, we have

\[
\sigma_m(T') = \sigma_m(T^*) + 2 = \sigma_m(T_{m-1}) + 2 = \sigma_m(T).
\]

Assume that \(e = yz \) (the case \(e = yw \) is similar). Let \(T^* = T' - z \). Then \(T^* \cong T \) and \(T' \) is obtained from \(T^* \) by attaching a pendant edge \(uz \). It follows from Lemma 5 that \(\sigma_m(T') = \sigma_m(T^*) = \sigma_m(T) \).

Case 3. \(\mathfrak{T}^m = \mathfrak{T}_3 \). Then \(T \) is obtained from \(T_{m-1} \) by attaching a pendant edge \(vw \) to the leaf \(v \in V(T_{m-1}) \) and adding a star \(K_{1,2} \) with center \(x \) and leaves \(y, z \) and joining \(x \) to \(v \). If \(e \in E(T_{m-1}) \), then by the inductive hypothesis, \(\sigma_m(T'_{m-1}) = \sigma_m(T_{m-1}) \) and by Lemma 3,

\[
\sigma_m(T') = \sigma_m(T'_{m-1}) + 2 = \sigma_m(T_{m-1}) + 2 = \sigma_m(T).
\]

If \(e = xv \), then let \(T^* = T' - \{u, x, y, z\} \). Then \(T' \) is obtained from \(T^* \) by adding a star with center \(x \) and leaves \(u, y, z \) and joining \(u \) to \(v \). On the other hand, \(T^* \) is obtained from \(T_{m-1} \) by attaching a pendant edge \(vw \). By Lemmas 5 and 2,

\[
\sigma_m(T') = \sigma_m(T^*) + 2 = \sigma_m(T_{m-1}) + 2 = \sigma_m(T).
\]

If \(e = vw \), then let \(T^* = T' - w \). Then \(T^* \cong T \) and \(T' \) is obtained from \(T^* \) by attaching a pendant edge \(u'w \). By Lemma 5, \(\sigma_m(T') = \sigma_m(T^*) = \sigma_m(T) \). If \(e = xy \) (the case \(e = xz \) is similar), then let \(T^* = T' - y \). Then \(T^* \cong T \) and \(T' \) is obtained from \(T^* \) by attaching a pendant edge \(uy \). By Lemma 5, \(\sigma_m(T') = \sigma_m(T^*) = \sigma_m(T) \).

Case 4. \(\mathfrak{T}^m = \mathfrak{T}_4 \). Then \(T \) is obtained from \(T_{m-1} \) by adding two stars \(K_{1,2} \) with centers \(x_1 \) and \(x_2 \) and joining \(x_1, x_2 \) to \(v \). Let \(y_i, z_i \) be the leaves adjacent to \(x_i \), for \(i = 1, 2 \). If \(e \in E(T_{m-1}) \), then by the inductive hypothesis, \(\sigma_m(T'_{m-1}) = \sigma_m(T_{m-1}) \) and by Lemma 4,

\[
\sigma_m(T') = \sigma_m(T'_{m-1}) + 3 = \sigma_m(T_{m-1}) + 3 = \sigma_m(T).
\]
By Proposition 1, three copies adjacent to the center of a star \(n \) holds for any tree of order less than \(n \). According to Corollary 4, we only need to prove the necessity. We proceed by Proof.

Now we are ready to prove the main theorem of this section. Let \(T \) be a tree and \(v \) be a strong support vertex in \(T \) such that \(v \) is adjacent to the center of a star \(K_{1,2} \). Then \(\text{sd}_{\sigma_m}(T) = 1 \).

Proposition 3. Let \(T \) be a tree and \(v \) be a strong support vertex in \(T \) such that \(v \) is adjacent to the center of a star \(K_{1,2} \). Then \(\text{sd}_{\sigma_m}(T) = 1 \).

Proof. Let \(v \) be adjacent to the vertex \(u \) which is a center of a star \(K_{1,2} \) and let \(T' \) be the tree obtained from \(T \) by subdividing the edge \(vu \) with the subdivision vertex \(z \). Assume that \(S \) is a \(\sigma_m(T') \)-set containing \(z \) (we may assume \(S \) as a response to an attack on \(z \)). To dominate the leaves in \(L_u \) and \(L_v \), we have \(|(N_{T'}[u] \cup N_{T'}[v]) \cap S| \geq 4 \) and we may assume that \(v, u \in S \). It is easy to see that \(S \setminus \{z\} \) is an EmSS of \(T \) of size \(|S| - 1 \). This completes the proof.

Proposition 4. Let \(T \) be a tree and \(v \in V(T) \). If \(T' \) is a tree obtained from \(T \) by adding three copies \(x_iy_iz_i \) \((1 \leq i \leq 3)\) of \(P_3 \) and joining \(v \) to \(y_1, y_2, y_3 \), then \(\text{sd}_{\sigma_m}(T') = 1 \).

Proof. Let \(T_1 \) be the tree obtained from \(T \) by subdividing the edge \(vy_1 \) by subdivision vertex \(w \). Let \(S \) be a \(\sigma_m(T_1) \)-set containing \(w \) (we may consider a response to an attack on \(w \)). To dominate \(x_1 \) and \(z_1 \), we may assume that \(y_1 \in S \). If \(v \notin S \), then we may assume that \(z_i, y_i \in S \) for \(i = 2, 3 \) and the set \(S' = (S \setminus \{w, y_2\}) \cup \{v\} \) is clearly an EmSS of \(T' \) of size less than \(\sigma_m(T_1) \). If \(v \in S \), then it is not hard to see that the set \(S' = S \setminus \{w\} \) is an EmSS of \(T \) of size \(|S| - 1 \). This implies that \(\text{sd}_{\sigma_m}(T) = 1 \).

Now we are ready to prove the main theorem of this section.

Theorem 4. For any tree \(T \) of order \(n \geq 3 \), \(\text{sd}_{\sigma_m}(T) = 2 \) if and only if \(T \in \mathcal{X} \).

Proof. According to Corollary 4, we only need to prove the necessity. We proceed by induction \(n \). The result is trivial for \(n = 3 \). Let \(n \geq 4 \) and assume that the statement holds for any tree of order less than \(n \). Let \(T \) be a tree of order \(n \) and \(\text{sd}_{\sigma_m}(T) = 2 \). By Proposition 1, \(T \) is not a star and so \(\text{diam}(T) \geq 3 \). Assume \(P := v_1, v_2, \ldots, v_k \) is the
diametrical path in T such that $\deg(v_2)$ is as small as possible. Suppose that T is rooted at v_k. It follows from Proposition 1 and the assumption $\text{sd}_{\sigma_m}(T) = 2$ that $\deg(v_2) \leq 3$. If $\deg(v_2) = 2$, then let $T' = T - \{v_1, v_2\}$. It follows from Lemma 1 and Observation 2, that $\text{sd}_{\sigma_m}(T') = 2$. By the inductive hypothesis, $T' \in \mathcal{T}$. Now T can be obtained from T' by Operation \mathcal{T}_1 and so $T \in \mathcal{T}$. Let $\deg(v_2) = 3$. Suppose that $w \neq v_1$ is a leaf adjacent to v_2. If $\deg(v_3) = 2$, then let $T' = T - \{v_1, v_2, v_3, w\}$. It follows from Lemma 1 and Observation 2 that $\text{sd}_{\sigma_m}(T') = 2$. By the inductive hypothesis, $T' \in \mathcal{T}$. Now T can be obtained from T' by Operation \mathcal{T}_2 and so $T \in \mathcal{T}$.

Let $\deg(v_3) \geq 3$. It follows from the assumption about v_2 and Propositions 3 and 4 that $\deg(v_3) = 3$ and there is only two possible cases.

Case 1. v_3 is adjacent to a leaf x. Let $T' = T - \{v_1, v_2, x, w\}$. It follows from Lemma 3 and Observation 2 that $\text{sd}_{\sigma_m}(T') = 2$. By the inductive hypothesis, $T' \in \mathcal{T}$. Now T can be obtained from T' by Operation \mathcal{T}_3 and so $T \in \mathcal{T}$.

Case 2. v_3 is adjacent to the center of a star $K_{1,2}$ other than v_2. Let $T' = T - D(v_3)$. It follows from Lemma 4 and Observation 2 that $\text{sd}_{\sigma_m}(T') = 2$. By the inductive hypothesis, $T' \in \mathcal{T}$. Now T can be obtained from T' by Operation \mathcal{T}_4 and so $T \in \mathcal{T}$.

This completes the proof.

We conclude this paper with the following problem.

Problem. Prove or disprove: For any nonempty graph G, $1 \leq \text{sd}_{\sigma_m}(G) \leq 3$.

References

