[1] N. Abreu, D.M. Cardoso, I. Gutman, E.A. Martins, and M. Robbiano, Bounds for the signless laplacian energy, Linear Algebra Appl. 435 (2011), no. 10, 2365–2374.
[2] C. Adiga, R. Balakrishnan, and W. So, The skew energy of a digraph, Linear Algebra Appl. 432 (2010), no. 7, 1825–1835.
[3] C. Adiga and B.R. Rakshith, More skew-equienergetic digraphs, Commun. Comb. Optim. 1 (2016), no. 1, 55–71.
[4] X.L. Chen, X.L. Li, and H. Lian, 4-regular oriented graphs with optimum skew energy, Linear Algebra Appl. 439 (2013), no. 10, 2948–2960.
[5] D. CvetkoviÄ‡, M. Doob, and H. Sachs, Spectra of Graphs: Theory and Application, Academic Press, New York, 1980.
[6] S.C. Gong and G.H. Xu, 3-regular digraphs with optimum skew energy, Linear Algebra Appl. 436 (2012), no. 3, 465–471.
[7] S.C. Gong, G.H. Xu, and W.B. Zhong, 4-regular oriented graphs with optimum skew energies, European. J. Combin. 36 (2014), 77–85.
[8] L.F. Guo and L.G. Wang, Optimum skew energy of a tournament, Linear Algebra Appl. 530 (2017), 405–413.
[9] L.F. Guo, L.G. Wang, and P. Xiao, 5-regular oriented graphs with optimum skew energy, Appl. Math. Comput. 301 (2017), 43–59.
[10] I. Gutman, The energy of a graph, Ber. Math. Statist. sekt. Forschungsz. Graz. 103 (1978), 1–22.
[11] I. Gutman and X.L. Li, Energies of Graphs-Theory and Applications, Mathematical Chemistry Monograph, No.17, 2016.
[12] I. Gutman, X.L. Li, and J.B. Zhang, Graph energy, in: M. Dehmer and F. Emmert-Streib (eds.) Analysis of Complex Networks: From Biology to Linguistics, Wiley/VCH, Weinheim, 2009, 145–174.
[13] I. Gutman and O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin, 1986.
[14] I. Gutman and B. Zhou, Laplacian energy of a graph, Linear Algebra Appl. 414 (2006), no. 1, 29–37.
[15] Y.P. Hou and T. Lei, Characteristic polynomials of skew-adjacency matrices of oriented graphs, Electron. J. Combin. 18 (2011), no. 1, P156, 12pp.
[16] G. Indulal, I. Gutman, and A. Vijayakumar, On distance energy of graphs, MATCH Commun. Math. Comput. Chem. 60 (2008), 461–472.
[17] K. Ito, The skew energy of tournaments, Linear Algebra Appl. 518 (2017), 144–158.
[18] X.L. Li and H.S. Lian, A survey on the skew energy of oriented graphs, Available at https://arxiv.org/abs/1304.5707v6, 2015.
[19] X.L. Li, Z.M. Qin, K. Yang, and J.F. Wang, Tricyclic oriented graphs with maximal skew energy, Bull. Malays. Math. Sci. Soc. 40 (2017), no. 1, 321–333.
[20] X.L. Li, Y.T. Shi, and I. Gutman, Graph Energy, Springer, New York, 2012.
[21] H.S. Ramane, K.C. Nandeesh, I. Gutman, and X.L. Li, Skew equienergetic digraphs, Trans. Comb. 5 (2016), no. 1, 15–23.
[22] X.L. Shen, Y.P. Hou, and C.Y. Zhang, Bicyclic digraphs with extremal skew energy, Electron. J. Linear Algebra 23 (2012), no. 1, 340–355.
[23] F.L. Tian and D. Wong, Relation between the skew energy of an oriented graph and its matching number, Discrete Appl. Math. 222 (2017), 179–184.
[24] W.H. Wang, Ordering of oriented unicyclic graphs by skew energies, Appl. Math. Comput. 284 (2016), 136–148.