# Leap Zagreb Indices of Trees and Unicyclic Graphs 

Zehui Shao ${ }^{1 *}$, Ivan Gutman ${ }^{2}$, Zepeng $\mathbf{L i}^{3}$, Shaohui Wang ${ }^{4}$, $\mathbf{P u} \mathbf{W u}^{1}$<br>${ }^{1}$ Institute of Computing Science and Technology, Guangzhou University<br>Guangzhou 510006, China<br>zshao@gzhu.edu.cn, puwu1997@126.com<br>${ }^{2}$ Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia gutman@kg.ac.rs<br>${ }^{3}$ School of Information Science and Engineering, Lanzhou University Lanzhou 730000, China<br>lizp@lzu.edu.cn<br>${ }^{4}$ Department of Mathematics, Savannah State University, Savannah, GA 31404, USA<br>shaohuiwang@yahoo.com

Received: 1 June 2018; Accepted: 14 August 2018
Published Online: 16 August 2018

Communicated by Seyed Mahmoud Sheikholeslami


#### Abstract

By $d(v \mid G)$ and $d_{2}(v \mid G)$ are denoted the number of first and second neighbors of the vertex $v$ of the graph $G$. The first, second, and third leap Zagreb indices of $G$ are defined as $L M_{1}(G)=\sum_{v \in V(G)} d_{2}(v \mid G)^{2}, L M_{2}(G)=\sum_{u v \in E(G)} d_{2}(u \mid G) d_{2}(v \mid G)$, and $L M_{3}(G)=\sum_{v \in V(G)} d(v \mid G) d_{2}(v \mid G)$, respectively. In this paper, we generalize the results of Naji et al. [Commun. Combin. Optim. 2 (2017), 99-117], pertaining to trees and unicyclic graphs. In addition, we determine upper and lower bounds on these leap Zagreb indices and characterize the extremal graphs.


Keywords: Leap Zagreb index, Zagreb index, degree (of vertex)
AMS Subject classification: 05C10, 05C35, 05C90

## 1. Introduction

In this paper, we only consider graphs without multiple edges or loops. The degree of a vertex $v$ in a considered graph is denoted by $d(v)$. A double star $S_{r, s}$ is a tree with exactly two vertices $u$ and $v$ that are not leaves, such that $(d(u), d(v))=(r+1, s+1)$.

[^0]The triangular unicyclic graph $T_{r, s, t}$ is a unicyclic graph containing a triangle uvw with vertices $u$, $v$, and $w$, such that $(d(u), d(v), d(w))=(r+2, s+2, t+2)$. If $u v w$ is the triangle of an $n$-vertex triangular unicyclic graph $G$, and if $G-u v w \cong P_{n-3}$, then $G$ will be denoted $T P_{n}$. By $S_{n}+e$ is denoted the graph obtained by connecting with a new edge $e$ two leaf vertices of the star $S_{n}$. A graph is called a $\left\{C_{3}, C_{4}\right\}$-free graph if it contains neither $C_{3}$ nor $C_{4}$.
In the interdisciplinary area where chemistry, physics and mathematics meet, molecular-graph-based structure descriptors, usually referred to as topological indices, are of significant importance $[3,4,11]$. Among the most important such structure descriptors are the classical two Zagreb indices $[6,7]$,

$$
M_{1}(G)=\sum_{u \in V(G)} d(u \mid G)^{2} \quad \text { and } \quad M_{2}(G)=\sum_{u v \in E(G)} d(u \mid G) d(v \mid G)
$$

where $G$ is a graph whose vertex set is $V(G)$ and whose edge set is $E(G)$. By $d(u \mid G)$ is denoted the degree (= number of first neighbors) of the vertex $v \in V(G)$ and by $u v$ the edge between the vertices $u$ and $v$. For details of the theory of Zagreb indices see the recent survey [2] and the references cited therein.
Motivated by the success of Zagreb indices, and following an earlier work [10], Naji et al. [9] introduced the concept of leap Zagreb indices, based on the second degrees of vertices.
The $k$-degree of the vertex $v \in V(G)$, denoted by $d_{k}(v \mid G)$ or $d_{k}(v)$, is the number of vertices of $G$ whose distance to $v$ is equal to $k$. Evidently, $d_{1}(v \mid G)=d(v \mid G)$.
The first, second, and third leap Zagreb indices of a graph $G$, proposed in [9], are defined respectively as

$$
\begin{aligned}
& L M_{1}(G)=\sum_{v \in V(G)} d_{2}(v \mid G)^{2} \\
& L M_{2}(G)=\sum_{u v \in E(G)} d_{2}(u \mid G) d_{2}(v \mid G) \\
& L M_{3}(G)=\sum_{v \in V(G)} d(v \mid G) d_{2}(v \mid G)
\end{aligned}
$$

In fact, a quantity identical to the third leap Zagreb index $L M_{3}(G)$ of a graph $G$ appeared in a paper published in the 1970 [7], but did not attract any attention. The same was the case with a paper from 2008 [12]. Quite recently, independently of [9], Ali and Trinajstić re-invented this leap Zagreb index and named it "modified first Zagreb connection indices" [1].
In [9], the leap Zagreb indices of some graph families and graph joins were determined, as well as of triangle- and quadrangle-free graphs. In a later work [8], the leap Zagreb indices of graph operations were studied. Leap Zagreb indices are considered in a recent survey [5].

Motivated by these researches, in the present paper we establish sharp upper and lower bounds on the leap Zagreb indices of trees and unicyclic graphs and characterize the extremal graphs.

## 2. Preliminaries

The following functions and definitions will be used throughout the paper. Let

$$
g(n)= \begin{cases}\frac{2(n-3)^{2}(n+6)}{9}, & n \equiv 0(\bmod 3) \\ \frac{2(n-3)^{2}(n+6)}{9}-\frac{11}{9}, & n \equiv 1(\bmod 3) \\ \frac{2(n-3)^{2}(n+6)}{9}-\frac{7}{9}, & n \equiv 2(\bmod 3)\end{cases}
$$

It can be seen that

$$
\begin{equation*}
g(n)-g(n-1) \geq \frac{2 n^{2}-2 n-21}{3} \tag{1}
\end{equation*}
$$

For an edge $e=u v \in E(G)$, we define $L M_{2}(e \mid G)=d_{2}(u \mid G) d_{2}(v \mid G)$, and $L M_{2}(e \mid G)$ is written as $L M_{2}(e)$ when no confusion can arise.

Proposition 1. [9] Let $P_{n}$ and $S_{n}$ be the path and star on $n$ vertices. For $n \geq 4$,
(i) $L M_{1}\left(S_{n}\right)=(n-1)(n-2)^{2}$ and $L M_{1}\left(P_{n}\right)=4(n-3)$,
(ii) $L M_{2}\left(S_{n}\right)=0$ and $L M_{2}\left(P_{n}\right)=4 n-14$,
(iii) $L M_{3}\left(S_{n}\right)=(n-1)(n-2)$ and $L M_{3}\left(P_{n}\right)=4 n-10$.

The following results are immediate and their proofs are omitted.

Lemma 1. Let $r, s$ be positive integers with $r+s+2=n$. Then $L M_{1}\left(S_{r, s}\right)=r^{3}+s^{3}+r^{2}+s^{2}$ and $L M_{2}\left(S_{r, s}\right)=r s(1+r+s)$.
(i) If $n$ is even, then $L M_{2}\left(S_{r, s}\right) \leq(n-1)\left(\frac{n}{2}-1\right)^{2}$. The equality holds if and only if $r=s$.
(ii) If $n$ is odd, then $L M_{2}\left(S_{r, s}\right) \leq \frac{1}{4}(n-3)(n-1)^{2}$. The equality holds if and only if $|r-s|=1$.

Proof. By the definitions of $L M_{1}$ and $L M_{2}$, it is clear that $L M_{1}\left(S_{r, s}\right)=r^{3}+s^{3}+$ $r^{2}+s^{2}$ and $L M_{2}\left(S_{r, s}\right)=r s(1+r+s)$. Then

$$
L M_{2}\left(S_{r, s}\right)=r s(1+r+s)=r(n-2-r)(n-1) .
$$

Therefore, (i) If $n$ is even, then $L M_{2}\left(S_{r, s}\right)=r(n-2-r)(n-1) \leq\left(\frac{n-2-r+r}{2}\right)^{2}(n-1)=$ $(n-1)\left(\frac{n}{2}-1\right)^{2}$. The equality holds if and only if $r=n-2-r$, i.e., $r=s=\frac{n-2}{2}$.
(ii) If $n$ is odd, we consider the function $h(r)=r(n-2-r)(n-1)$ and obtain that $h(r)=r(n-2-r)(n-1) \leq \frac{1}{4}(n-3)(n-1)^{2}$, and the equality holds if and only if $|r-s|=1$.

Lemma 2. Let $n \geq 6$. Then

$$
L M_{1}\left(T P_{n}\right)=4 n-10, L M_{1}\left(S_{n}+e\right)=(n-3)\left(n^{2}-2 n-2\right) .
$$

Lemma 3. Let $n \geq 6$ with $r+s+t+3=n$. Then $L M_{2}\left(T P_{n}\right)=4 n-13$ and $L M_{2}\left(T_{r, s, t}\right)=$ $(r+s)(r+t)+(r+s)(s+t)+(r+t)(s+t)+r(r+1)(s+t)+s(s+1)(r+t)+t(t+1)(r+s)$.

Lemma 4. Let $x \leq y \leq z$ be non-negative integers such that $x+y+z+3=n$ and $f(x, y, z)=(x+y)(x+z)+(x+y)(y+z)+(x+z)(y+z)+x(x+1)(y+z)+y(y+1)(x+$ $z)+z(z+1)(x+y)$. Then $f(x, y, z) \leq g(n)$. Moreover,
(i) if $n \equiv 0(\bmod 3)$, then the equality holds if and only if $x=y=z$.
(ii) If $n \equiv 1(\bmod 3)$, then the equality holds if and only if $x=y=z-1$.
(iii) If $n \equiv 2(\bmod 3)$, then the equality holds if and only if $x=y-1=z-1$.

Lemma 5. Let $n \geq 6$ with $r+s+t+3=n$. Then $L M_{3}\left(T P_{n}\right)=4 n-8$ and $L M_{3}\left(T_{r, s, t}\right)=$ $(n-3)(n+2)$.

Lemma 6. Let $G$ be a $\left\{C_{3}, C_{4}\right\}$-free graph. Then for any $v \in V(G)$,

$$
d_{2}(v)=\sum_{u \in N(v)}(d(u)-1)
$$

where $N(v)$ is the set of first neighbors of the vertex $v$.

Recall that Lemma 6 was earlier communicated by Naji et al., [9].

## 3. Main results

In this section, we obtain bounds on the leap Zagreb indices of trees and unicyclic graphs.

### 3.1. Extremal trees on leap Zagreb indices

Theorem 1. Let $T$ be an $n$-vertex tree with $n \geq 4$. Then

$$
4(n-3) \leq L M_{1}(T) \leq(n-1)(n-2)^{2}
$$

with the left equality if and only if $T \cong P_{n}$ and the right equality if and only if $T \cong S_{n}$.

Proof. Since $n \geq 4$, we have $\operatorname{diam}(T) \geq 2$. If $\operatorname{diam}(T)=2$, then $T \cong S_{n}$. By Proposition 1, we know that the result is true. If $\operatorname{diam}(T)=3$, then $T \cong S_{r, s}$, where $r$ and $s$ are two positive integers such that $r+s+2=n$. Then by Lemma 1, $L M_{1}(T)=r^{3}+s^{3}+r^{2}+s^{2}$.

Since $r, s \geq 1$, we have $L M_{1}(T) \geq 2\left(r^{2}+s^{2}\right) \geq(r+s)^{2}=(n-2)^{2} \geq 4(n-3)$. If $n=4$, then $T \cong P_{4}$ and $L M_{1}(T)=(n-2)^{2}=4(n-3)$. Thus, the result is true. If $n \geq 5$, then $L M_{1}(T)=(n-2)^{2}>4(n-3)$.
On the other hand,

$$
\begin{aligned}
L M_{1}(T) & =r^{2}(r+1)+s^{2}(s+1) \\
& =(n-s-2)^{2}(n-s-2+1)+s^{2}(s+1) \\
& =(n-1)(n-2)^{2}+s^{2}(3 n-4)-s\left(3 n^{2}-10 n+8\right) .
\end{aligned}
$$

Since $s<n-2$, we have $s(3 n-4)-\left(3 n^{2}-10 n+8\right)<(n-2)(3 n-4)-\left(3 n^{2}-10 n+8\right)=0$. Thus, $L M_{1}(T)<(n-1)(n-2)^{2}$.
Assume now that $\operatorname{diam}(T) \geq 4$ and proceed by induction on $n$. Let $P=$ $x_{1} x_{2} \ldots x_{\operatorname{diam}(T)}$ be a longest path of $T$. Then $x_{1}$ is a leaf of $T$. Let $T^{\prime}=T-x_{1}$. Then we have $d_{2}\left(v \mid T^{\prime}\right)=d_{2}(v \mid T)-1$ if $v \in N\left(x_{2} \mid T^{\prime}\right)$, and $d_{2}\left(v \mid T^{\prime}\right)=d_{2}(v \mid T)$ otherwise. By Lemma 6, we have

$$
\begin{equation*}
d_{2}\left(x_{1} \mid T\right)=d\left(x_{2} \mid T\right)-1 \tag{2}
\end{equation*}
$$

Thus,

$$
\begin{align*}
L M_{1}(T) & =L M_{1}\left(T^{\prime}\right)-\sum_{v \in N\left(x_{2} \mid T^{\prime}\right)} d_{2}\left(v \mid T^{\prime}\right)^{2}+\sum_{v \in N\left(x_{2} \mid T\right)} d_{2}(v \mid T)^{2} \\
& =L M_{1}\left(T^{\prime}\right)+d_{2}\left(x_{1} \mid T\right)^{2}+\sum_{v \in N\left(x_{2} \mid T^{\prime}\right)}\left(d_{2}(v \mid T)^{2}-d_{2}\left(v \mid T^{\prime}\right)^{2}\right) \\
& =L M_{1}\left(T^{\prime}\right)+\left(d\left(x_{2} \mid T\right)-1\right)^{2}+\sum_{v \in N\left(x_{2} \mid T^{\prime}\right)}\left(2 d_{2}(v \mid T)-1\right) \text { (Applying Eq. }  \tag{2}\\
& =L M_{1}\left(T^{\prime}\right)+\left(d\left(x_{2} \mid T\right)-1\right)\left(d\left(x_{2} \mid T\right)-2\right)+2 \sum_{v \in N\left(x_{2} \mid T^{\prime}\right)} d_{2}(v \mid T) .
\end{align*}
$$

By induction, $4(n-4) \leq L M_{1}\left(T^{\prime}\right) \leq(n-2)(n-3)^{2}$, with the left equality if and only if $T^{\prime} \cong P_{n-1}$ and the right equality if and only if $T^{\prime} \cong S_{n-1}$. Moreover, by Lemma 6 we have $d_{2}(v \mid T)=d\left(x_{2} \mid T\right)-1$ for each $v \in N\left(x_{2} \mid T\right) \backslash\left\{x_{3}\right\}$ and $d\left(x_{2} \mid T\right) \leq d_{2}\left(x_{3} \mid T\right) \leq n-3$ since $\operatorname{diam}(T) \geq 4$. Note that $2 \leq d\left(x_{2} \mid T\right) \leq n-3$. Therefore,

$$
\begin{aligned}
L M_{1}(T) & =L M_{1}\left(T^{\prime}\right)+\left(d\left(x_{2} \mid T\right)-1\right)\left(d\left(x_{2} \mid T\right)-2\right)+2 \sum_{v \in N\left(x_{2} \mid T^{\prime}\right)} d_{2}(v \mid T) \\
& \geq 4(n-4)+2 d_{2}\left(x_{3} \mid T\right) \geq 4(n-4)+2 d\left(x_{2} \mid T\right) \geq 4(n-3)
\end{aligned}
$$

with equality if and only if $L M_{1}\left(T^{\prime}\right)=4(n-4)$ and $d\left(x_{2} \mid T\right)=2$, which yields $T \cong P_{n}$.

On the other hand,

$$
\begin{aligned}
L M_{1}(T) & =L M_{1}\left(T^{\prime}\right)+\left(d\left(x_{2} \mid T\right)-1\right)\left(d\left(x_{2} \mid T\right)-2\right)+2 \sum_{v \in N\left(x_{2} \mid T^{\prime}\right)} d_{2}(v \mid T) \\
& \leq L M_{1}\left(T^{\prime}\right)+3\left(d\left(x_{2} \mid T\right)-1\right)\left(d\left(x_{2} \mid T\right)-2\right)+2 d_{2}\left(x_{3} \mid T\right) \\
& \leq(n-2)(n-3)^{2}+3(n-4)(n-5)+2(n-3) \\
& <(n-2)(n-3)^{2}+(n-3)(3 n-10) \\
& <(n-1)(n-2)^{2} .
\end{aligned}
$$

By Proposition 1, we have
Corollary 1. Let $T$ be an n-vertex tree with $n \geq 3$. Then $L M_{2}(T)=0$ if and only if $\operatorname{diam}(T) \leq 2$.

Proof. If $T \cong S_{n}$, then by Proposition 1, part (ii), $L M_{2}(T)=0$.
Suppose that $L M_{2}(T)=0$. Then $\operatorname{diam}(T) \leq 2$. Otherwise, $T$ would contain a path $P=x_{1} x_{2} x_{3} x_{4}$, which would imply $L M_{2}(T) \geq d_{2}\left(x_{2} \mid T\right) d_{2}\left(x_{3} \mid T\right) \geq 1$, a contradiction. Therefore, $T \cong S_{n}$.

We use $E(x \mid G)$ to denote the set of edges incident with $x$ in $G$.

Lemma 7. For any tree $T$ with diam $(T) \geq 4$, there exists a tree $T^{*}$ with $\left|V\left(T^{*}\right)\right|=|V(T)|$ and $\operatorname{diam}\left(T^{*}\right)=\operatorname{diam}(T)-1$, such that $L M_{2}\left(T^{*}\right)>L M_{2}(T)$.

Proof. Choose a longest path $P=x_{1} x_{2} \ldots x_{t}$ in $T$ and let $N\left(x_{2} \mid T\right)=\left\{x_{1}, x_{3}\right.$, $\left.y_{1}, \ldots, y_{r}\right\}$. Then $t \geq 5$ since $\operatorname{diam}(T) \geq 4$. We construct a new tree $T_{1}$ as follows:

$$
\begin{aligned}
& V\left(T_{1}\right)=V(T) \\
& E\left(T_{1}\right)=E(T) \cup\left\{x_{4} x_{1}, x_{4} y_{1}, \ldots, x_{4} y_{r}\right\} \backslash\left\{x_{2} x_{1}, x_{2} y_{1}, \ldots, x_{2} y_{r}\right\}
\end{aligned}
$$

It can be checked that $d_{2}\left(v \mid T_{1}\right) \geq d_{2}(v \mid T)$ for any vertex $v \in V\left(T_{1}\right)$ and $d_{2}\left(x_{5} \mid T_{1}\right)>$ $d_{2}\left(x_{5} \mid T\right)$. Thus, $L M_{2}\left(T_{1}\right)>L M_{2}(T)$. If $\operatorname{diam}\left(T_{1}\right)=\operatorname{diam}(T)-1$, then $T_{1}$ is a desired graph and we set $T^{*}=T_{1}$. Otherwise, $\operatorname{diam}\left(T_{1}\right)=\operatorname{diam}(T)$. By repeating the procedure we obtain a tree $T_{m}$ with $\left|V\left(T_{m}\right)\right|=|V(T)|, \operatorname{diam}\left(T_{m}\right)=\operatorname{diam}(T)-1$ and $L M_{2}\left(T_{m}\right)>L M_{2}(T)$. Then $T_{m}$ is the desired graph and we set $T^{*}=T_{m}$.

Theorem 2. For any n-vertex tree with $n \geq 5$ vertices and $\operatorname{diam}(T) \geq 3$, it holds $L M_{2}\left(P_{n}\right) \leq L M_{2}(T) \leq L M_{2}\left(S_{r, s}\right)$, where $r, s$ are two positive integers such that $r+s+2=n$ and $|r-s| \in\{0,1\}$.

Proof. The proof is by induction on $n$. If $n=5$, then the result is trivial. Therefore, assume that $n \geq 6$. Let $P=x_{1} x_{2} \ldots x_{\operatorname{diam}(T)}$ be a longest path of $T$ and $T^{\prime}=$ $T-\left(N\left(x_{2} \mid T\right) \backslash\left\{x_{3}\right\}\right)$. Then $d_{2}\left(v \mid T^{\prime}\right)=d_{2}(v \mid T)-d\left(x_{2} \mid T\right)+1$ if $v=x_{3}$ and $d_{2}\left(v \mid T^{\prime}\right)=$ $d_{2}(v \mid T)$ otherwise. Thus,

$$
\begin{aligned}
L M_{2}(T) & =L M_{2}\left(T^{\prime}\right)-\sum_{u v \in E\left(x_{3} \mid T^{\prime}\right)} d_{2}\left(u \mid T^{\prime}\right) d_{2}\left(v \mid T^{\prime}\right)+\sum_{u v \in E\left(x_{2} \mid T\right) \cup E\left(x_{3} \mid T\right)} d_{2}(u \mid T) d_{2}(v \mid T) \\
& =L M_{2}\left(T^{\prime}\right)+\sum_{u v \in E\left(x_{3} \mid T\right)}\left(d_{2}(u \mid T) d_{2}(v \mid T)-d_{2}\left(u \mid T^{\prime}\right) d_{2}\left(v \mid T^{\prime}\right)\right) \\
& +\sum_{u v \in E\left(x_{2} \mid T\right) \backslash\left\{x_{2} x_{3}\right\}} d_{2}(u \mid T) d_{2}(v \mid T) \\
& =L M_{2}\left(T^{\prime}\right)+\sum_{v \in N\left(x_{2} \mid T\right) \backslash\left\{x_{3}\right\}} d_{2}\left(x_{2} \mid T\right) d_{2}(v \mid T) \\
& +\sum_{v \in N\left(x_{3} \mid T\right)}\left(d_{2}\left(x_{3} \mid T\right) d_{2}(v \mid T)-d_{2}\left(x_{3} \mid T^{\prime}\right) d_{2}\left(v \mid T^{\prime}\right)\right) \\
& =L M_{2}\left(T^{\prime}\right)+d_{2}\left(x_{2} \mid T\right)\left(d\left(x_{2} \mid T\right)-1\right)^{2}+\left(d\left(x_{2} \mid T\right)-1\right) \sum_{v \in N\left(x_{3} \mid T\right)} d_{2}(v \mid T) .
\end{aligned}
$$

By induction, we have $4 n-18=L M_{2}\left(P_{n-1}\right) \leq L M_{2}\left(T^{\prime}\right) \leq L M_{2}\left(S_{r^{\prime}, s^{\prime}}\right)$, with the left equality if and only if $T^{\prime} \cong P_{n-d\left(x_{2} \mid T\right)+1}$ and the right equality if and only if $T^{\prime} \cong S_{r^{\prime}, s^{\prime}}$, where $r^{\prime}, s^{\prime}$ are two positive integers such that $r^{\prime}+s^{\prime}+2=n-d\left(x_{2} \mid T\right)+1$ and $\left|r^{\prime}-s^{\prime}\right| \in\{0,1\}$. Since $L M_{2}(T)>0$, by Theorem 1 , $\operatorname{diam}(T) \geq 3$. Then $d\left(x_{2} \mid T\right) \geq 2$ and $d\left(x_{3} \mid T\right) \geq 2$.
If $d\left(x_{2} \mid T\right) \geq 3$, then

$$
\begin{aligned}
L M_{2}(T) & \geq L M_{2}\left(T^{\prime}\right)+4 d_{2}\left(x_{2} \mid T\right)+2 \sum_{v \in N\left(x_{3} \mid T\right)} d_{2}(v \mid T) \geq 4 n-18+4\left(d\left(x_{3} \mid T\right)-1\right) \\
& +2 d\left(x_{3} \mid T\right)\left(d\left(x_{3} \mid T\right)-1\right) \geq 4 n-10>4 n-14
\end{aligned}
$$

If $d\left(x_{3} \mid T\right) \geq 3$, then

$$
\begin{aligned}
L M_{2}(T) & \geq L M_{2}\left(T^{\prime}\right)+d_{2}\left(x_{2} \mid T\right)+\sum_{v \in N\left(x_{3} \mid T\right)} d_{2}(v \mid T) \geq 4 n-18+\left(d\left(x_{3} \mid T\right)-1\right) \\
& +d\left(x_{3} \mid T\right)\left(d\left(x_{3} \mid T\right)-1\right) \geq 4 n-10>4 n-14
\end{aligned}
$$

Assume now that $d\left(x_{2} \mid T\right)=d\left(x_{3} \mid T\right)=2$. Since $n \geq 6$, we have $\operatorname{diam}(T) \geq 4$. If $\operatorname{diam}(T)=4$, then $T^{\prime} \cong S_{1, n-4}$ and by Lemma $1, L M_{2}\left(T^{\prime}\right)=(n-4)(n-2)$. Thus,

$$
\begin{aligned}
L M_{2}(T) & =L M_{2}\left(T^{\prime}\right)+d_{2}\left(x_{2} \mid T\right)\left(d\left(x_{2} \mid T\right)-1\right)^{2}+\left(d\left(x_{2} \mid T\right)-1\right) \sum_{v \in N\left(x_{3} \mid T\right)} d_{2}(v \mid T) \\
& =(n-4)(n-2)+1+2>4 n-14
\end{aligned}
$$

If $\operatorname{diam}(T) \geq 5$, then $d_{2}\left(x_{4} \mid T\right) \geq 2$ and $\sum_{v \in N\left(x_{3} \mid T\right)} d_{2}(v \mid T) \geq 3$. Thus,

$$
\begin{aligned}
L M_{2}(T) & =L M_{2}\left(T^{\prime}\right)+d_{2}\left(x_{2} \mid T\right)\left(d\left(x_{2} \mid T\right)-1\right)^{2}+\left(d\left(x_{2} \mid T\right)-1\right) \sum_{v \in N\left(x_{3} \mid T\right)} d_{2}(v \mid T) \\
& \geq 4 n-18+1+3=4 n-14
\end{aligned}
$$

with the equality if and only if $T^{\prime} \cong P_{n-d\left(x_{2} \mid T\right)+1}$ and $\sum_{v \in N\left(x_{3} \mid T\right)} d_{2}(v \mid T)=3$. Note that $d\left(x_{2} \mid T\right)=2$, from which it follows $T \cong P_{n}$.
Now we show the right inequality.
If $\operatorname{diam}(T)=3$, then $T$ is a double star. By Lemma 1 , we know that the inequality is true. Now we assume that $\operatorname{diam}(T)=p \geq 4$. By Lemma 7, there exists a sequence of $n$-vertex trees $T_{1}, T_{2}, \ldots, T_{p-3}$ such that $\operatorname{diam}\left(T_{i}\right)=\operatorname{diam}(T)-i$ and $L M_{2}\left(T_{i-1}\right)<$ $L M_{2}\left(T_{i}\right)$, where $i=1,2, \ldots, p-3$ and $T_{0}=T$. Hence, $L M_{2}(T)<L M_{2}\left(T_{p-3}\right)$. Note that $\operatorname{diam}\left(T_{p-3}\right)=\operatorname{diam}(T)-(p-3)=3$, that is, $T_{p-3}$ is a double star. By Lemma $1, L M_{2}\left(T_{p-3}\right) \leq L M_{2}\left(S_{r, s}\right)$, where $r, s$ are two positive integers such that $r+s+2=n$ and $|r-s| \in\{0,1\}$. Hence, $L M_{2}(T)<L M_{2}\left(S_{r, s}\right)$, which completes the proof.

Theorem 3. Let $T$ be an n-vertex tree with $n \geq 5$ vertices. Then $2(2 n-5) \leq L M_{3}(T) \leq$ $(n-1)(n-2)$. The left equality holds if and only if $T \cong P_{n}$ whereas the right equality holds if and only if $T$ is a star or a double star.

Proof. The proof is by induction on $n$ and is fully analogous to that of Theorem 2. We omit the details.

### 3.2. Extremal unicyclic graphs on leap Zagreb indices

Theorem 4. Let $G$ be an $n$-vertex unicyclic graph with $n \geq 6$. Then

$$
4 n-10 \leq L M_{1}(G) \leq(n-3)\left(n^{2}-2 n-2\right)
$$

with the left equality if and only if $G \cong T P_{n}$ and the right equality if and only if $G \cong S_{n}+e$.

Proof. The proof is by induction on $n$. If $n=6$, then the result is trivial. Now we assume that $n \geq 7$. Let $P=x_{1} x_{2} \ldots x_{t}$ be a longest path of $G$ from a leaf to the cycle. If $t=0$, then $G \cong C_{n}$ and $L M_{1}(G)=4 n<(n-3)\left(n^{2}-2 n-2\right)$. So the result is true.
Assume now that $t \geq 1$ and let $G^{\prime}=G-x_{1}$. Then $d_{2}(v \mid G)=d_{2}\left(v \mid G^{\prime}\right)+1$ if
$v \in N\left(x_{2} \mid G^{\prime}\right)$ and $d_{2}\left(v \mid G^{\prime}\right)=d_{2}(v \mid G)$ otherwise. Thus,

$$
\begin{aligned}
L M_{1}(G) & =L M_{1}\left(G^{\prime}\right)-\sum_{v \in N\left(x_{2} \mid G^{\prime}\right)} d_{2}\left(v \mid G^{\prime}\right)^{2}+\sum_{v \in N\left(x_{2} \mid T\right)} d_{2}(v \mid G)^{2} \\
& =L M_{1}\left(G^{\prime}\right)+d_{2}\left(x_{1} \mid G\right)^{2}+\sum_{v \in N\left(x_{2} \mid G^{\prime}\right)}\left(d_{2}(v \mid G)^{2}-d_{2}\left(v \mid G^{\prime}\right)^{2}\right) \\
& =L M_{1}\left(G^{\prime}\right)+\left(d\left(x_{2} \mid G\right)-1\right)^{2}+\sum_{v \in N\left(x_{2} \mid G^{\prime}\right)}\left(2 d_{2}(v \mid G)-1\right) \\
& =L M_{1}\left(G^{\prime}\right)+\left(d\left(x_{2} \mid G\right)-1\right)\left(d\left(x_{2} \mid G\right)-2\right)+2 \sum_{v \in N\left(x_{2} \mid G^{\prime}\right)} d_{2}(v \mid G) .
\end{aligned}
$$

By induction, we have $4 n-14 \leq L M_{1}\left(G^{\prime}\right) \leq(n-4)\left(n^{2}-4 n+1\right)$, with the left equality if and only if $G^{\prime} \cong T P_{n-1}$ and the right equality if and only if $G^{\prime} \cong S_{n-1}+e$. If $d\left(x_{2} \mid G\right) \geq 3$ or $d_{2}\left(x_{3} \mid G\right) \geq 2$, then $L M_{1}(G) \geq L M_{1}\left(G^{\prime}\right)+4=4 n-10$, with the equality if and only if $G^{\prime} \cong T P_{n-1}$, and $d\left(x_{2} \mid G\right)=3$ and $d_{2}\left(x_{3} \mid G\right) \leq 1$ or $d\left(x_{2} \mid G\right) \leq 2$ and $d_{2}\left(x_{3} \mid G\right)=2$. Since $n \geq 7, d_{2}\left(x_{3} \mid G\right) \geq 2$. So the equality holds if and only if $G^{\prime} \cong T P_{n-1}, d\left(x_{2} \mid G\right)=2$, and $d_{2}\left(x_{3} \mid G\right)=2$, which implies that $G^{\prime} \cong T P_{n}$.
If $d\left(x_{2} \mid G\right) \leq 2$ and $d_{2}\left(x_{3} \mid G\right) \leq 1$, then $d\left(x_{2} \mid G\right)=2$ and $d_{2}\left(x_{3} \mid G\right)=1$. Thus, $N\left[x_{3} \mid G\right]=V(G) \backslash\left\{x_{1}\right\}$ and $G^{\prime} \cong S_{n-1}+e$. It follows hat $L M_{1}(G) \geq L M_{1}\left(G^{\prime}\right)+2=$ $(n-4)\left(n^{2}-4 n+1\right)+2>4 n-10$.
On the other hand, if $d\left(x_{2} \mid G\right) \leq n-2$, then

$$
\begin{aligned}
L M_{1}(G) & \leq L M_{1}\left(G^{\prime}\right)+(n-3)(n-4)+2(n-3)^{2} \\
& \leq(n-4)\left(n^{2}-4 n+1\right)+(n-3)(3 n-10) \\
& =(n-3)\left(n^{2}-2 n-2\right)-(6 n-20) \\
& <(n-3)\left(n^{2}-2 n-2\right) .
\end{aligned}
$$

If $d\left(x_{2} \mid G\right) \geq n-1$, then $G^{\prime} \cong S_{n}+e$ and $L M_{1}(G)=(n-3)\left(n^{2}-2 n-2\right)$.

Theorem 5. Let $G$ be an n-vertex unicyclic graph with at least eight vertices. Then

$$
L M_{2}\left(T P_{n}\right)<L M_{2}(G)<L M_{2}\left(T_{r, s, t}\right)
$$

where $r, s$, and $t$ are positive integers, such that $r \geq s \geq t, r+s+t+3=n$, and $|r-t| \leq 1$.

Proof. We first prove the left inequality. The proof is by induction on $n$. If $n=8$, then the result can be verified by computer search. Therefore, we assume that $n \geq 9$. Note that if $G \cong T P_{n}$, then $L M_{2}(G)=4 n-13$. Now we show that there exists no unicyclic graph $G$ having minimum $L M_{2}(G)$, but $G \not \approx T P_{n}$. Otherwise, let $G^{*}$ be such a graph for which

$$
\begin{equation*}
L M_{2}\left(G^{*}\right) \geq L M_{2}\left(T P_{n}\right)=4 n-13 . \tag{3}
\end{equation*}
$$

Note that $L M_{2}\left(C_{n}\right)=4 n>4 n-13$, implying that $G^{*}$ is not a cycle. Therefore, there exists a vertex $v$ with degree one in $G^{*}$. Let $v u w$ be a path in $G^{*}$ with $d\left(w \mid G^{*}\right) \neq 1$.
Case 1. If $d\left(u \mid G^{*}\right) \geq 3$, then $d_{2}\left(v \mid G^{*}\right) \geq 2$.
If $d_{2}\left(u \mid G^{*}\right) \geq 2$, then $L M_{2}\left(u v \mid G^{*}\right) \geq 4$. Let $H=G^{*}-v$. Then $L M_{2}\left(G^{*}\right) \geq$ $L M_{2}(H)+L M_{2}\left(u v \mid G^{*}\right) \geq L M_{2}(H)+4$. By induction, $L M_{2}(H) \geq 4(n-1)-13$ and so we have $L M_{2}\left(G^{*}\right) \geq 4 n-13$. Due to $L M_{2}\left(G^{*}\right)$ being minimum, we can deduce $H \cong T P_{n-1}$. Therefore, $G^{*}$ is the graph obtained by adding a vertex $u$ and an edge $u v$, where $v$ is a vertex with degree one in $T P_{n-1}$. It is clear that $L M_{2}\left(G^{*}\right)$ is minimum if and only if $G^{*} \cong T P_{n}$.
If $d_{2}\left(u \mid G^{*}\right)=1$, then $d_{2}\left(v \mid G^{*}\right) \geq 2$. Then $d_{2}(x \mid H)=d_{2}\left(x \mid G^{*}\right)-1$ for any $x \in$ $N(u) \backslash\{v\}$. Therefore,

$$
\begin{aligned}
L M_{2}\left(G^{*}\right) & \geq L M_{2}(H)+L M_{2}\left(u v \mid G^{*}\right)+\sum_{e \in E\left(u \mid G^{*}\right) \backslash\{u v\}} L M_{2}(e)-\sum_{e \in E(u \mid H) \backslash\{u v\}} L M_{2}(e) \\
& \geq 4(n-1)-13+2+d_{2}(u)(d(u)-1) \geq 4 n-13 .
\end{aligned}
$$

Since $L M_{2}\left(G^{*}\right)$ is minimum, we have $H \cong T P_{n-1}$. Therefore, $G^{*}$ is the graph obtained by adding a vertex $u$ and an edge $u v$, where $v$ is a vertex with degree one in $T P_{n-1}$. Clearly, $L M_{2}\left(G^{*}\right)$ is minimum if and only if $G^{*} \cong T P_{n}$.
If $d_{2}(u)=0$, then $G^{*}$ is the graph obtained by adding an edge to the star. Clearly, $L M_{2}\left(G^{*}\right)>4 n-13$, a contradiction with Eq. (3).
Case 2. If $d(u)=2$, then $d_{2}(u)=d(w)-1$ and $d_{2}(v)=1$. First, we show that $d_{2}(w) \geq 2$. Otherwise, $N[w] \cup\{v\}=V\left(G^{*}\right)$. Since $n \geq 9$, there is a vertex $x \in N(w)$ with $d(x)=1$. Then we get the left inequality as desired by the proof of Case 1 . Now we have $d_{2}(w) \geq 2$ and so $d_{2}(y) \geq 1$, for each $y \in V\left(G^{*}\right)$. Therefore,

$$
\begin{aligned}
L M_{2}(G) & \geq L M_{2}(H)+L M_{2}\left(u v \mid G^{*}\right)+L M_{2}\left(u w \mid G^{*}\right) \\
& +\sum_{e \in\left(E\left(w \mid G^{*}\right) \backslash\{u w\}\right)} L M_{2}(e)-\sum_{e \in(E(w \mid H) \backslash\{u w\})} L M_{2}(e)-L M_{2}(u w \mid H) \\
& \geq 4(n-1)-13+d_{2}(u)+d_{2}(u) * d_{2}(w)+\sum_{v \in N(w) \backslash\{u\}} d_{2}(v) \\
& -d_{2}(u)\left(d_{2}(w)-1\right) \\
& \geq 4(n-1)-13+d(w)-1+d(w)-1+\sum_{v \in N(w) \backslash\{u\}} d_{2}(v) .
\end{aligned}
$$

If there is a vertex $q \in N(w)-\{u\}$ with $d_{2}(q) \geq 2$ or $d(w) \geq 3$, then

$$
\begin{aligned}
L M_{2}(G) & \geq 4(n-1)-13+d(w)-1+d(w)-1+\sum_{v \in N(w) \backslash\{u\}} d_{2}(v) \\
& \geq 4(n-1)-13+d(w)-1+d(w)-1+2 \geq 4 n-13
\end{aligned}
$$

We now only consider the condition $d(w)=2$ and $d_{2}(x)=2$ for any $x \in N(w)-\{u\}$. Then all vertices except $u, v, x$ are adjacent to $x$. Since $n \geq 9$, there is a leaf adjacent to $x$ and $d(x) \geq 3$. Then we get the inequality by the proof of Case 1 .
Now we prove the right inequality. Let $G^{\prime}$ be a unicyclic graph that maximizes $L M_{2}\left(G^{\prime}\right)$ and $C=v_{1} v_{2} \cdots v_{k}$ be the unique cycle of $G^{\prime}$. Then

Claim 1. For any $u \in V\left(G^{\prime}\right), d(u, C) \leq 1$.

Proof. Suppose to the contrary that there exists a vertex $u$ such that $d(u, C)=$ $p-1 \geq 2$. Assume that $u_{1} u_{2} \cdots u_{p}$ is a shortest path from $u_{1}$ to $C$ where $u_{1}=u$ and $u_{p}=v_{i}$ for some $i=1,2, \ldots, k$.
If $p \geq 4$, then we construct a graph $G^{\prime \prime}$ such that $V\left(G^{\prime \prime}\right)=V\left(G^{\prime}\right)$ and $E\left(G^{\prime \prime}\right)=$ $E\left(G^{\prime}\right) \cup\left\{u_{p-3} x \mid x \in L\left(u_{p-1}\right)\right\} \backslash\left\{u_{p-1} x \mid x \in L\left(u_{p-1}\right)\right\}$. Then $L M_{2}\left(G^{\prime \prime}\right)>L M_{2}\left(G^{\prime}\right)$, contradicting with the assumption that $G^{\prime}$ has maximum $L M_{2}\left(G^{\prime}\right)$.
If $p=3$, then we construct a graph $G^{\prime \prime}$ such that $V\left(G^{\prime \prime}\right)=V\left(G^{\prime}\right)$ and $E\left(G^{\prime \prime}\right)=$ $E\left(G^{\prime}\right) \cup\left\{v_{i-1} x \mid x \in L\left(u_{p-1}\right)\right\} \backslash\left\{u_{p-1} x \mid x \in L\left(u_{p-1}\right)\right\}$. Then $L M_{2}\left(G^{\prime \prime}\right)>L M_{2}\left(G^{\prime}\right)$, contradicting with the assumption that $G^{\prime}$ has maximum $L M_{2}\left(G^{\prime}\right)$.

For the upper bound, the proof is by induction on $n$. If $n=8$, we can verify the result by computer search. Now we consider the case $n \geq 9$ and suppose that for any unicyclic graph $G^{\prime \prime}$ of order $n-1$,

$$
\begin{equation*}
L M_{2}\left(G^{\prime \prime}\right) \leq L M_{2}\left(T_{r^{\prime}, s^{\prime}, t^{\prime}}\right) \tag{4}
\end{equation*}
$$

where $r^{\prime} \geq s^{\prime} \geq t^{\prime}, r^{\prime}+s^{\prime}+t^{\prime}+3=n-1$ and $\left|r^{\prime}-t^{\prime}\right| \leq 1$.
It can be verified that $L M_{2}\left(C_{n}\right)<L M_{2}\left(T_{r, s, t}\right)$, where $r \geq s \geq t, r+s+t+3=n$ and $|r-t| \leq 1$. Therefore, $G^{\prime}$ is not a cycle. Therefore, each vertex not in $C$ of degree one and has a neighbor in $C$.
If $k=3$, then by Lemmas 4 and 5 , the right inequality holds.
If $k=4$, then $G^{\prime}$ is a graph whose removal of all leaf vertices results in $C_{4}$. Then by analysis a function with three variables, we can obtain the desired result.
If $k=5$, then $G^{\prime}$ is a graph whose removal of all leaf vertices results in $C_{5}$. Then by analysis a function with four variables, we can obtain the desired result.
Now we consider the case $k \geq 6$. Let $v_{i}$ be a vertex in $C$ with minimum degree. Construct a graph $G^{\prime \prime}$ such that $V\left(G^{\prime \prime}\right)=V\left(G^{\prime}\right) \backslash\left\{v_{i-1}\right\}$ and $E\left(G^{\prime \prime}\right)=E\left(G^{\prime}\right) \cup$
$\left\{v_{i-2} v_{i}\right\} \cup\left\{v_{i} x \mid x \in L\left(v_{i-1}\right)\right\} \backslash\left\{v_{i-1} x \mid x \in L\left(v_{i-1}\right)\right\}$. Let

$$
\begin{aligned}
& A_{1}=\left\{v_{i-1} u \mid u \in L\left(v_{i-1} \mid G^{\prime}\right)\right\} \\
& B_{1}=\left\{v_{i-1} v_{i-2}\right\} \\
& C_{1}=\left\{v_{i} u \mid u \in L\left(v_{i} \mid G^{\prime}\right)\right\} \\
& D_{1}=E\left(G^{\prime}\right) \backslash\left(A_{1} \cup B_{1} \cup\left\{v_{i-1} v_{i}\right\} \cup C_{1} \cup E_{1}\right) \\
& E_{1}=\left\{v_{i} v_{i+1}\right\} \\
& A_{2}=\left\{v_{i} u \mid u \in L\left(v_{i-1} \mid G^{\prime}\right)\right\} \\
& B_{2}=\left\{v_{i-2} v_{i}\right\} \\
& C_{2}=\left\{v_{i} u \mid u \in L\left(v_{i} \mid G^{\prime \prime}\right)\right\}, \\
& D_{2}=E\left(G^{\prime \prime}\right) \backslash\left(A_{2} \cup B_{2} \cup E_{1}\right)
\end{aligned}
$$

We define a one-to-one mapping $h: E\left(G^{\prime}\right) \rightarrow E\left(G^{\prime \prime}\right)$ such that

$$
\begin{aligned}
h\left(v_{p} v_{q}\right) & =v_{p} v_{q} \text { if } v_{p} v_{q} \in D_{1}, \\
h\left(v_{i-1} u\right) & =v_{i} u \text { if } u \in L\left(v_{i-1} \mid G^{\prime}\right), \text { i.e., } v_{i-1} u \in A_{1}, \\
h\left(v_{i-1} v_{i-2}\right) & =v_{i-2} v_{i}, i . e ., v_{i-1} u \in B_{1} .
\end{aligned}
$$

Let

$$
\Delta_{1}=d_{2}\left(v_{i-2} \mid G^{\prime}\right) d_{2}\left(v_{i-1} \mid G^{\prime}\right)-d_{2}\left(v_{i-2} \mid G^{\prime \prime}\right) d_{2}\left(v_{i} \mid G^{\prime \prime}\right)
$$

Then by the choice of $v_{i}$ and Lemma 6 we have

$$
\begin{aligned}
\Delta_{1} & =\left(d\left(v_{i-3} \mid G^{\prime}\right)+d\left(v_{i-1} \mid G^{\prime}\right)-2\right)\left(d\left(v_{i-2} \mid G^{\prime}\right)+d\left(v_{i} \mid G^{\prime}\right)-2\right) \\
& -\left(d\left(v_{i-3} \mid G^{\prime \prime}\right)+d\left(v_{i} \mid G^{\prime \prime}\right)-2\right)\left(d\left(v_{i-2} \mid G^{\prime \prime}\right)+d\left(v_{i+1} \mid G^{\prime \prime}\right)-2\right)
\end{aligned}
$$

Since $d\left(v_{j} \mid G^{\prime}\right)=d\left(v_{j} \mid G^{\prime \prime}\right)$ for any $j \in\{i-3, i-2, i+1\}, d\left(v_{i} \mid G^{\prime}\right)-2 \geq 0$, and $d\left(v_{i} \mid G^{\prime \prime}\right)=d\left(v_{i} \mid G^{\prime}\right)+d\left(v_{i-1} \mid G^{\prime}\right)-2$, we have $\Delta_{1} \leq 0$, i.e., for any $e \in B_{1}$

$$
\begin{equation*}
L M_{2}\left(e \mid G^{\prime}\right) \leq L M_{2}\left(h(e) \mid G^{\prime \prime}\right) \tag{5}
\end{equation*}
$$

For any vertex $u \in L\left(v_{i-1}\right)$ in $G^{\prime}$,

$$
\begin{aligned}
d_{2}\left(u \mid G^{\prime}\right) d_{2}\left(v_{i-1} \mid G^{\prime}\right) & =\left(d\left(v_{i} \mid G^{\prime}\right)-1\right) d_{2}\left(v_{i} \mid G^{\prime}\right) \\
& =\left(d\left(v_{i} \mid G^{\prime}\right)-1\right)\left(d\left(v_{i-2} \mid G^{\prime}\right)+d\left(v_{i} \mid G^{\prime}\right)-2\right),
\end{aligned}
$$

and

$$
\begin{aligned}
d_{2}\left(u \mid G^{\prime \prime}\right) d_{2}\left(v_{i} \mid G^{\prime \prime}\right) & =\left(d\left(v_{i} \mid G^{\prime \prime}\right)-1\right) d_{2}\left(v_{i} \mid G^{\prime \prime}\right) \\
& =\left(d\left(v_{i} \mid G^{\prime \prime}\right)-1\right)\left(d\left(v_{i-2} \mid G^{\prime \prime}\right)+d\left(v_{i+1} \mid G^{\prime \prime}\right)-2\right)
\end{aligned}
$$

Since $d\left(v_{j} \mid G^{\prime}\right)=d\left(v_{j} \mid G^{\prime \prime}\right)$ for any $j \in\{i-1, i+2\}$,

$$
d_{2}\left(u \mid G^{\prime}\right) d_{2}\left(v_{i-1} \mid G^{\prime}\right) \leq d_{2}\left(u \mid G^{\prime \prime}\right) d_{2}\left(v_{i} \mid G^{\prime \prime}\right)
$$

Then for any $e \in A_{1}$, we have

$$
L M_{2}\left(e \mid G^{\prime}\right) \leq L M_{2}\left(h(e) \mid G^{\prime \prime}\right)
$$

Now for any vertex $u \in L\left(v_{i}\right)$ in $G^{\prime}$, we have

$$
\begin{aligned}
d_{2}\left(u \mid G^{\prime}\right) d_{2}\left(v_{i} \mid G^{\prime}\right) & =\left(d\left(v_{i} \mid G^{\prime}\right)-1\right) d_{2}\left(v_{i} \mid G^{\prime}\right) \\
& =\left(d\left(v_{i} \mid G^{\prime}\right)-1\right)\left(d\left(v_{i-1} \mid G^{\prime}\right)+d\left(v_{i+1} \mid G^{\prime}\right)-2\right),
\end{aligned}
$$

$$
\begin{aligned}
d_{2}\left(u \mid G^{\prime \prime}\right) d_{2}\left(v_{i} \mid G^{\prime \prime}\right) & =\left(d\left(v_{i} \mid G^{\prime \prime}\right)-1\right) d_{2}\left(v_{i} \mid G^{\prime \prime}\right) \\
& =\left(d\left(v_{i} \mid G^{\prime}\right)+d\left(v_{i-1}\right)-3\right)\left(d\left(v_{i-2} \mid G^{\prime}\right)+d\left(v_{i+1} \mid G^{\prime}\right)-2\right)
\end{aligned}
$$

Let $\Delta_{2}=d_{2}\left(u \mid G^{\prime \prime}\right) d_{2}\left(v_{i} \mid G^{\prime \prime}\right)-d_{2}\left(u \mid G^{\prime}\right) d_{2}\left(v_{i} \mid G^{\prime}\right)$. Then

$$
\begin{aligned}
\Delta_{2} & =\left(d\left(v_{i} \mid G^{\prime}\right)-1\right)\left(d\left(v_{i-2} \mid G^{\prime}\right)-d\left(v_{i-1} \mid G^{\prime}\right)\right)+\left(d\left(v_{i-1} \mid G^{\prime}\right)-2\right)\left(d\left(v_{i-2} \mid G^{\prime}\right)\right. \\
& \left.+d\left(v_{i+1} \mid G^{\prime}\right)-2\right)=\left(d\left(v_{i-1} \mid G^{\prime}\right)-2\right)\left(d\left(v_{i+1} \mid G^{\prime}\right)-1-d\left(v_{i} \mid G^{\prime}\right)+1\right) \\
& +\left(d\left(v_{i-2} \mid G^{\prime}\right)-2\right)\left(d\left(v_{i} \mid G^{\prime}\right)-1\right)+\left(d\left(v_{i-1} \mid G^{\prime}\right)-2\right)\left(d\left(v_{i-2} \mid G^{\prime}\right)-1\right) \geq 0
\end{aligned}
$$

Then for any $e \in C_{1}$, we have

$$
L M_{2}\left(e \mid G^{\prime}\right) \leq L M_{2}\left(h(e) \mid G^{\prime \prime}\right)
$$

Now for $e \in E_{1}$, we have

$$
d_{2}\left(v_{i} \mid G^{\prime}\right) d_{2}\left(v_{i+1} \mid G^{\prime}\right)=\left(d\left(v_{i+1} \mid G^{\prime}\right)+d\left(v_{i-1} \mid G^{\prime}\right)-2\right)\left(d\left(v_{i} \mid G^{\prime}\right)+d\left(v_{i+2} \mid G^{\prime}\right)-2\right)
$$

and

$$
\begin{aligned}
d_{2}\left(v_{i} \mid G^{\prime \prime}\right) d_{2}\left(v_{i+1} \mid G^{\prime \prime}\right) & =\left(d\left(v_{i+1} \mid G^{\prime \prime}\right)+d\left(v_{i-2} \mid G^{\prime \prime}\right)-2\right)\left(d\left(v_{i} \mid G^{\prime \prime}\right)\right. \\
& \left.+d\left(v_{i+2} \mid G^{\prime \prime}\right)-2\right)=\left(d\left(v_{i+1} \mid G^{\prime}\right)+d\left(v_{i-2} \mid G^{\prime}\right)-2\right)\left(d\left(v_{i} \mid G^{\prime}\right)\right. \\
& \left.+d\left(v_{i-1} \mid G^{\prime}\right)-2+d\left(v_{i+2} \mid G^{\prime}\right)-2\right)
\end{aligned}
$$

Let $\Delta_{3}=d_{2}\left(v_{i} \mid G^{\prime}\right) d_{2}\left(v_{i+1} \mid G^{\prime}\right)-d_{2}\left(v_{i} \mid G^{\prime \prime}\right) d_{2}\left(v_{i+1} \mid G^{\prime \prime}\right)$. Then

$$
\begin{aligned}
\Delta_{3} & =-\left(d\left(v_{i+1} \mid G^{\prime}\right)-2\right)\left(d\left(v_{i-1} \mid G^{\prime}\right)-2\right)+\left(d\left(v_{i-2} \mid G^{\prime}\right)-d\left(v_{i-1} \mid G^{\prime}\right)\right)\left(d\left(v_{i} \mid G^{\prime}\right)\right. \\
& \left.+d\left(v_{i+1} \mid G^{\prime}\right)-2\right)-d\left(v_{i-2} \mid G^{\prime}\right)\left(d\left(v_{i-1} \mid G^{\prime}\right)-2\right) \\
& \leq\left(d\left(v_{i-2} \mid G^{\prime}\right)-d\left(v_{i-1} \mid G^{\prime}\right)\right)\left(d\left(v_{i} \mid G^{\prime}\right)+d\left(v_{i+1} \mid G^{\prime}\right)-2\right) .
\end{aligned}
$$

- If $d\left(v_{i-2} \mid G^{\prime}\right)-d\left(v_{i-1} \mid G^{\prime}\right)<0$, then

$$
\left(d\left(v_{i-2} \mid G^{\prime}\right)-d\left(v_{i-1} \mid G^{\prime}\right)\right)\left(d\left(v_{i} \mid G^{\prime}\right)+d\left(v_{i+1} \mid G^{\prime}\right)-2\right)<0 .
$$

- If $d\left(v_{i-2} \mid G^{\prime}\right)-d\left(v_{i-1} \mid G^{\prime}\right)>0$, then

$$
\begin{aligned}
\Delta_{3} & \leq\left(d\left(v_{i-2} \mid G^{\prime}\right)-d\left(v_{i-1} \mid G^{\prime}\right)\right)\left(d\left(v_{i} \mid G^{\prime}\right)+d\left(v_{i+1} \mid G^{\prime}\right)-2\right) \\
& \leq\left(\frac{d\left(v_{i-1} \mid G^{\prime}\right)-d\left(v_{i-2} \mid G^{\prime}\right)+d\left(v_{i} \mid G^{\prime}\right)+d\left(v_{i+1} \mid G^{\prime}\right)-2}{2}\right)^{2} \\
& \leq\left(\frac{d\left(v_{i} \mid G^{\prime}\right)+d\left(v_{i+1} \mid G^{\prime}\right)-2}{2}\right)^{2} \leq\left(\frac{n-2}{2}\right)^{2} .
\end{aligned}
$$

As above, for $e \in E_{1}$,

$$
L M_{2}\left(e \mid G^{\prime}\right)-L M_{2}\left(e \mid G^{\prime \prime}\right) \leq\left(\frac{n-2}{2}\right)^{2}
$$

Now we have

$$
\begin{aligned}
L M_{2}\left(v_{i} v_{i-1} \mid G^{\prime}\right) & =\left(d\left(v_{i-1} \mid G^{\prime}\right)+d\left(v_{i+1} \mid G^{\prime}\right)-2\right)\left(d\left(v_{i} \mid G^{\prime}\right)+d\left(v_{i-2} \mid G^{\prime}\right)-2\right) \\
& \leq\left(\frac{d\left(v_{i-1} \mid G^{\prime}\right)+d\left(v_{i+1} \mid G^{\prime}\right)+d\left(v_{i} \mid G^{\prime}\right)+d\left(v_{i-2} \mid G^{\prime}\right)-4}{2}\right)^{2} \\
& \leq\left(\frac{n-2}{2}\right)^{2}
\end{aligned}
$$

Finally, it is clear that for any $e \in D_{1}$

$$
\begin{equation*}
L M_{2}\left(e \mid G^{\prime}\right) \leq L M_{2}\left(h(e) \mid G^{\prime \prime}\right) \tag{6}
\end{equation*}
$$

Since $E\left(G^{\prime}\right)=A_{1} \cup B_{1} \cup D_{1} \cup\left\{v_{i-1} v_{i}\right\}$, together with Eqs. (5)-(6) we obtain

$$
\begin{aligned}
L M_{2}\left(G^{\prime}\right) & =\sum_{e \in A_{1}} L M_{2}\left(e \mid G^{\prime}\right)+\sum_{e \in B_{1}} L M_{2}\left(e \mid G^{\prime}\right)+\sum_{e \in D_{1}} L M_{2}\left(e \mid G^{\prime}\right) \\
& +\sum_{e \in C_{1}} L M_{2}\left(e \mid G^{\prime}\right)+L M_{2}\left(v_{i} v_{i+1} \mid G^{\prime}\right)+L M_{2}\left(v_{i} v_{i-1} \mid G^{\prime}\right) \\
& \leq \sum_{e \in A_{2}} L M_{2}\left(e \mid G^{\prime \prime}\right)+\sum_{e \in B_{2}} L M_{2}\left(e \mid G^{\prime \prime}\right)+\sum_{e \in D_{2}} L M_{2}\left(e \mid G^{\prime \prime}\right) \\
& +\sum_{e \in C_{2}} L M_{2}\left(e \mid G^{\prime \prime}\right)+L M_{2}\left(v_{i} v_{i+1} \mid G^{\prime \prime}\right)+L M_{2}\left(v_{i} v_{i+1} \mid G^{\prime}\right) \\
& -L M_{2}\left(v_{i} v_{i+1} \mid G^{\prime \prime}\right)+L M_{2}\left(v_{i} v_{i-1} \mid G^{\prime}\right) \\
& \leq L M_{2}\left(G^{\prime \prime}\right)+\left(\frac{n-2}{2}\right)^{2}+\left(\frac{n-2}{2}\right)^{2} \\
& <g(n-1)+\frac{2 n^{2}-2 n-21}{3} \text { (apply induction assumption Eq. (4)) } \\
& \leq g(n)
\end{aligned}
$$

contradicting to the assumption made on the graph $G^{\prime}$.
By this, the proof of Theorem 5 is completed.
In a manner analogous to the proof of Theorem 5 we can establish the following:

Theorem 6. Let $G$ be an n-vertex unicyclic graph with $n \geq 6$. Then $4 n-8 \leq L M_{3}(G) \leq$ $(n-3)(n+2)$, where $r, s, t$ are positive integers such that $r+s+t+3=n$. The left equality holds if and only if $G \cong T P_{n}$ and the right equality holds if and only if $G \cong T_{r, s, t}$ for $r, s, t \geq 0$.

## References

[1] A. Ali and N. Trinajstić, A novel/old modification of the first zagreb index, Mol. Inf. 37 (2018), no. 6/7, Article ID: 1800008.
[2] B. Borovicanin, K.C. Das, B. Furtula, and I. Gutman, Bounds for Zagreb indices, MATCH Commun. Math. Comput. Chem 78 (2017), no. 1, 17-100.
[3] J.C. Dearden, The Use of Topological Indices in QSAR and QSPR Modeling, Advances in QSAR Modeling, Springer, Cham, 2017, pp. 57-88.
[4] J. Devillers and A.T. Balaban (Eds.), Topological Indices and Related Descriptors in QSAR and QSPAR, Gordon \& Breach, Amsterdam, 2000.
[5] I. Gutman, E. Milovanović, and I. Milovanović, Beyond the zagreb indices, AKCE Int. J. Graphs Combin. (2018), in press.
[6] I. Gutman, B. Ruščić, N. Trinajstić, and C.F. Wilcox, Graph theory and molecular orbitals. XII. acyclic polyenes, J. Chem. Phys. 62 (1975), no. 9, 3399-3405.
[7] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total $\varphi$ electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972), no. 4, 535-538.
[8] A.M. Naji and N.D. Soner, The first leap zagreb index of some graph opertations, Int. J. Appl. Graph Theory 2 (2018), no. 2, 7-18.
[9] A.M. Naji, N.D. Soner, and I. Gutman, The first leap zagreb index of some graph opertations, Commun. Comb. Optim. 2 (2017), no. 2, 99-117.
[10] N.D. Soner and A.M. Naji, The $k$-distance neighborhood polynomial of a graph, Int. J. Math. Comput. Sci. 3 (2016), no. 9, 2359-2364.
[11] R. Todeschini and V. Consonni, Molecular Descriptors for Chemoinformatics, Wiley-VCH, Weinheim, 2009.
[12] S. Yamaguchi, Estimating the zagreb indices and the spectral radius of triangleand quadrangle-free connected graphs, Chem. Phys. Lett. 458 (2008), no. 4-6, 396-398.


[^0]:    * Corresponding Author

