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Abstract: The rings considered in this article are commutative with identity which

admit at least two maximal ideals. We denote the set of all maximal ideals of a ring R

by Max(R) and we denote the Jacobson radical of R by J(R). Let R be a ring such
that |Max(R)| ≥ 2. Let I(R) denote the set of all proper ideals of R. In this article, we

associate an undirected graph denoted by INC(R) with a subcollection of ideals of R

whose vertex set is {I ∈ I(R)|I 6⊆ J(R)} and two distinct vertices I1, I2 are adjacent in
INC(R) if and only if I1 6⊆ I2 and I2 6⊆ I1 (that is, I1 and I2 are not comparable under

the inclusion relation). The aim of this article is to investigate the interplay between
the graph-theoretic properties of INC(R) and the ring-theoretic properties of R.
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1. Introduction

The rings considered in this article are commutative with identity which admit at

least two maximal ideals. Let R be a ring. We denote the set of all maximal ideals of

R by Max(R) and we denote the Jacobson radical of R by J(R). As in [8], we denote

the collection of all proper ideals of R by I(R). For a set A, we denote the cardinality

of A by the notation |A|. This article is motivated by the interesting theorems proved

by M. Ye and T. Wu in [17]. Let R be a ring with |Max(R)| ≥ 2. Inspired by the

research work done on the comaximal graph of a ring in [10, 12–16] and the research

work done on the annihilating-ideal graph of a ring in [8, 9]. M. Ye and T. Wu in [17],

introduced and investigated an undirected graph associated with R whose vertex set
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equals {I ∈ I(R)|I 6⊆ J(R)} and distinct vertices I1 and I2 are joined by an edge if

and only if I1 +I2 = R. M. Ye and T. Wu called the graph introduced and studied by

them in [17] as the comaximal ideal graph of R and denoted it by the notation C (R).

For a ring R, we denote the set of all units of R by U(R) and the set of all nonunits

of R by NU(R).

This article is also motivated by the inspiring theorems proved on cozero-divisor graph

of a commutative ring by M. Afkhami and K. Khashyarmanesh in [1–3]. Let R be

a ring. Recall from [1] that the cozero-divisor graph of R denoted by Γ′(R) is an

undirected graph whose vertex set is NU(R)\{0} and distinct vertices a, b are joined

by an edge if and only if a /∈ Rb and b /∈ Ra. That is, a, b are joined by an edge if

and only if Ra and Rb are not comparable under the inclusion relation.

Let R be a ring with |Max(R)| ≥ 2. Motivated by the research work on the comaximal

ideal graph of a commutative ring in [17] and by the research work on the cozero-

divisor graph of a ring in [1–3], in this article, we introduce an undirected graph

structure associated with R, denoted by INC(R) whose vertex set equals {I ∈ I(R)|I 6⊆
J(R)} and distinct vertices I1, I2 are joined by an edge if and only if I1 6⊆ I2 and

I2 6⊆ I1. That is, I1 and I2 are joined by an edge if and only if I1 and I2 are

not comparable under the inclusion relation. The aim of this article is to study the

interplay between the graph-theoretic properties of INC(R) and the ring-theoretic

properties of R.

The graphs considered in this article are undirected and simple. Let G = (V,E) be

a graph. We denote the vertex set of G by V (G) and the edge set of G by E(G).

If H is a subgraph of G, then we say that G is a supergraph of H. A subgraph H

of G is said to be a spanning subgraph of G if V (H) = V (G). Let R be a ring with

|Max(R)| ≥ 2. Observe that V (C (R)) = V (INC(R)) = {I ∈ I(R) | I 6⊆ J(R)}. Let

I1, I2 ∈ V (C (R)) be such that I1 6= I2. If there is an edge of C (R) joining I1 and I2,

then I1+I2 = R. Since I1, I2 ∈ I(R), it follows that I1 6⊆ I2 and I2 6⊆ I1. Hence, there

is an edge of INC(R) joining I1 and I2. Therefore, C (R) is a spanning subgraph of

INC(R). In this article, we study the influence of some graph parameters of INC(R)

on the structure of the ring R.

It is useful to recall the following definitions from graph theory before we describe the

results that are proved in this article on INC(R), where R is a ring with |Max(R)| ≥ 2.

Let G = (V,E) be a graph. Let a, b ∈ V with a 6= b. Recall that the distance between

a and b, denoted by d(a, b) is defined as the length of a shortest path in in G if there

exists such a path in G; otherwise, we define d(a, b) =∞. We define d(a, a) = 0. The

diameter of G, denoted by diam(G) is defined as diam(G) = sup{d(a, b)|a, b ∈ V } [6].

A graph G = (V,E) is said to be connected if for any distinct a, b ∈ V , there exists

a path in G between a and b. Let G = (V,E) be a connected graph. Let a ∈ V .

Then the eccentricity of a, denoted by e(a) is defined as e(a) = sup{d(a, b)|b ∈ V }.
The radius of G, denoted by r(G) is defined as r(G) = min{e(a)|a ∈ V } [6]. Let

G = (V,E) be a graph. Recall from [[6], page 159] that the girth of G, denoted by

girth(G) is defined as the length of a shortest cycle in G if G admits at least one

cycle. If G does not admit any cycle, then we set girth(G) = ∞. A simple graph

G = (V,E) is said to be complete if every pair of distinct vertices of G are adjacent
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in G [[6], Definition 1.1.11]. Recall from [[6], Definition 1.2.2] that a clique of G is a

complete subgraph of G. A subset S of G is said to be an independent set if no two

members of S are adjacent in G.

A graph G = (V,E) is said to be bipartite if V can be partitioned into nonempty

subsets V1 and V2 such that each edge of G has one end in V1 and the other in V2. A

bipartite graph with vertex partition V1 and V2 is said to be complete if each element

of V1 is adjacent to every element of V2. A complete bipartite graph with vertex

partition V1 and V2 is called a star if either |V1| = 1 or |V2| = 1 [[6], Definition 1.1.12].

Let I be an ideal of a ring R. As in [15], we denote {m ∈ Max(R)|m ⊇ I} by

M(I). The Krull dimension of a ring R is simply referred to as the dimension of R

and is denoted by the notation dimR. A ring which has only one maximal ideal is

referred to as a quasilocal ring. A ring which has only a finite number of maximal

ideals is referred to as a semiquasilocal ring. A Noetherian quasilocal (respectively,

semiquasilocal) ring is referred to as a local (respectively, semilocal) ring. Recall from

[[11], page 184] that a ring R is said to be a chained ring if the set of ideals of R is

linearly ordered by inclusion. Whenever a set A is a subset of a set B and A 6= B,

then we denote it symbolically by the notation A ⊂ B. For n ∈ N with n ≥ 2, we

denote the ring of integers modulo n by Zn.

Let R be a ring such that |Max(R)| ≥ 2. In Section 2 of this article, some basic

properties of INC(R) are proved. It is proved in Lemma 1 that INC(R) is connected

and diam(INC(R)) ≤ 2. If |Max(R)| ≥ 3, then it is shown that diam(INC(R)) =

r(INC(R)) = 2 (see, Lemmas 1 and 2). Let R be a ring with Max(R) = {m1,m2}.
We denote {I ∈ V (INC(R)) |M(I) = {mi}} by Vi for each i ∈ {1, 2}. It is proved in

Lemma 3 that diam(INC(R)) = r(INC(R)) = 2 if |Vi| ≥ 2 for each i ∈ {1, 2}. It is

shown in Proposition 1 that INC(R) is complete if and only if R ∼= F1 × F2 as rings,

where Fi is a field for each i ∈ {1, 2}. It is observed in Lemma 4 that if |Max(R)| ≥ 3,

then C (R) 6= INC(R). The rest of Section 2 is devoted to characterizing rings R with

|Max(R)| = 2 such that C (R) = INC(R). If |Max(R)| = 2, then we know from

(3)⇒ (1) of [[17], Theorem 4.5] that C (R) is a complete bipartite graph. Hence, we

focus on characterizing rings R such that INC(R) is a bipartite graph. If INC(R)

is bipartite, then it is verified in Proposition 2 that INC(R) = C (R) is a complete

bipartite graph. Let R = R1 × R2, where (Ri,mi) is a quasilocal ring for each

i ∈ {1, 2}. It is shown in Proposition 3 that INC(R) is a bipartite graph if and only

if Ri is a chained ring for each i ∈ {1, 2}. For a ring R with |Max(R)| ≥ 2, it is

proved in Proposition 4 that INC(R) is a star graph if and only if R ∼= R1 × R2 as

rings, where Ri is a chained ring for each i ∈ {1, 2} with Ri is a field for at least one

i ∈ {1, 2}. If dimR = 0, then it is shown in Proposition 5 that INC(R) is a bipartite

graph if and only if R ∼= R1 × R2 as rings, where Ri is a zero-dimensional chained

ring for each i ∈ {1, 2}. In Example 1 (respectively, in Example 2), an example is

provided to illustrate that (i)⇒ (ii) of Proposition 5 can fail to hold if the hypothesis

dimR = 0 is omitted in Proposition 5. For a ring R with |Max(R)| ≥ 2, it is verified in

Proposition 6 that girth(INC(R)) ∈ {3, 4,∞}. Moreover, it is proved in Proposition

6 that girth(INC(R)) = ∞ if and only if R ∼= R1 × R2 as rings, where R1 is a field

and R2 is a chained ring.
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Let G = (V,E) be a graph. Recall that G is a split graph if V is the disjoint union

of two nonempty subsets K and S such that the subgraph of G induced on K is

complete and S is an independent set of G. In [12], M. I. Jinnah and S.C. Mathew

classified rings R such that the comaximal graph of R is a split graph. In Section 3

of this article, we try to characterize rings R with |Max(R)| ≥ 2 such that INC(R)

is a split graph. It is proved in Proposition 7 that if INC(R) is a split graph, then

|Max(R)| = 2. Let R be a ring such that |Max(R)| = 2. It is shown in Theorem

2 that INC(R) is a split graph if and only if R ∼= R1 × R2 as rings, where Ri is a

quasilocal ring for each i ∈ {1, 2} with Ri is a field for at least one i ∈ {1, 2} and if Ri

is not a field for some i ∈ {1, 2}, then either Ri is a chained ring or I(Ri) = W1 ∪W2

satisfying the property that |Wk| ≥ 2 for each k ∈ {1, 2} such that W1 is a chain under

the inclusion relation and no two distinct members of W2 are comparable under the

inclusion relation. Some examples are given in Example 4 to illustrate Theorem 2.

Let G = (V,E) be a graph. Recall from [4] that two distinct vertices u, v of G are

said to be orthogonal, written u ⊥ v if u and v are adjacent in G and there is no

vertex of G which is adjacent to both u and v in G; that is, the edge u− v is not the

edge of any triangle in G. Let u ∈ V . A vertex v of G is said to be a complement

of u if u ⊥ v [4]. Moreover, recall from [4] that G is complemented if each vertex of

G admits a complement in G. Furthermore, G is said to be uniquely complemented

if G is complemented and whenever the vertices u, v, w of G are such that u ⊥ v and

u ⊥ w, then a vertex x of G is adjacent to v in G if and only if x is adjacent to w in

G. Let R be a ring which is not an integral domain. The authors of [4] determined in

Section 3 of [4] rings R such that Γ(R) is complemented or uniquely complemented,

where Γ(R) is the zero-divisor graph of R. Let R be a ring with |Max(R)| ≥ 2. In

[[15], Proposition 3.11], it was shown that the subgraph of the comaximal graph of R

induced on NU(R)\J(R) is complemented if and only if dim( R
J(R) ) = 0. In Section

4 of this article, we try to characterize rings R with |Max(R)| ≥ 2 such that INC(R)

is complemented. It is proved in Lemma 10 that if INC(R) is complemented, then

|Max(R)| ≤ 3. Let R be a ring with |Max(R)| = 2. Let Max(R) = {m1,m2}. Let

V1 = {I ∈ I(R) | M(I) = {m1}} and let V2 = {J ∈ I(R) | M(J) = {m2}}. If

|Vi| = 1 for each i ∈ {1, 2}, (it is noted in Remark 3 that this can happen if and only

if R ∼= F1 × F2 as rings, where Fi is a field for each i ∈ {1, 2} ) then it is clear that

INC(R) is a complete graph on two vertices and hence, INC(R) is complemented.

Suppose that |V1| = 1 and |V2| ≥ 2. Then it is shown in Proposition 9 that INC(R) is

complemented if and only if R ∼= R1 ×R2 as rings, where R1 is a chained ring which

is not a field and R2 is a field. Suppose that |Vi| ≥ 2 for each i ∈ {1, 2}. It is proved

in Proposition 10 that INC(R) is complemented if and only if INC(R) is a complete

bipartite graph. We are not able to characterize rings R with |Max(R)| = 2 such that

|Vi| ≥ 2 for each i ∈ {1, 2} and INC(R) is complemented. However, if dimR = 0, it

is shown in Proposition 11 that R has the above mentioned properties if and only if

R ∼= R1×R2 as rings, where Ri is a chained ring which is not a field for each i ∈ {1, 2}.
In Remark 4, an example is mentioned to illustrate that the hypothesis dimR = 0

cannot be omitted in Proposition 11. Let R be a ring such that |Max(R)| = 3. It is

proved in Theorem 3 that INC(R) is complemented if and only if R ∼= F1 × F2 × F3
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as rings, where Fi is a field for each i ∈ {1, 2, 3}.

2. Basic properties of INC(R)

In this section we investigate some basic properties of INC(R).

Lemma 1. Let R be a ring such that |Max(R)| ≥ 2. Then INC(R) is connected and
diam(INC(R)) ≤ 2. If |Max(R)| ≥ 3, then diam(INC(R)) = 2.

Proof. Let I1, I2 ∈ V (INC(R)) be such that I1 6= I2. Suppose that I1 and I2 are

not adjacent in INC(R). Then either I1 ⊂ I2 or I2 ⊂ I1. Without loss of generality,

we can assume that I1 ⊂ I2. Since I1 ∈ V (INC(R)), there exists m ∈ Max(R) such

that I1 6⊆ m. As I1 ⊂ I2, it follows that I2 6⊆ m. Thus Ii + m = R for each i ∈ {1, 2}
and so, I1 −m− I2 is a path in C (R) and hence, it is a path in INC(R). This proves

that INC(R) is connected and diam(INC(R)) ≤ 2.

Suppose that |Max(R)| ≥ 3. Let {mi | i ∈ {1, 2, 3}} ⊆ Max(R). Note that m1,m1 ∩
m2 ∈ V (INC(R)) and as m1∩m2 ⊂ m1, it follows that m1 and m1∩m2 are not adjacent

in INC(R). Hence, we obtain that diam(INC(R)) ≥ 2 and so, diam(INC(R)) = 2.

Lemma 2. Let R be a ring such that |Max(R)| ≥ 3. Then r(INC(R)) = 2.

Proof. We know from Lemma 1 that INC(R) is connected and diam(INC(R)) = 2.

Let I ∈ V (INC(R)). Then I ⊆ m for some m ∈ Max(R). We consider the following

cases.

Case 1. I = m.

Let m′ ∈ Max(R) be such that m′ 6= m. As |Max(R)| ≥ 3, m ∩ m′ ∈ V (INC(R)).

From m ∩m′ ⊂ m, we obtain that m and m ∩m′ are not adjacent in INC(R). Hence,

d(m,m ∩m′) ≥ 2 in INC(R). This shows that e(m) ≥ 2 in INC(R).

Case 2. I ⊂ m.

Now, I and m are not adjacent in INC(R) and so, d(I,m) ≥ 2 in INC(R). Hence,

e(I) ≥ 2 in INC(R).

This proves that e(I) ≥ 2 in INC(R) for any I ∈ V (INC(R)) and from

diam(INC(R)) = 2, it follows that e(I) = 2 for each I ∈ INC(R). Therefore,

r(INC(R)) = 2.

Lemma 3. Let R be a ring such that |Max(R)| = 2. Let {m1,m2} denote the set
of all maximal ideals of R. Let V1 = {I ∈ V (INC(R)) | M(I) = {m1}} and let V2 =
{J ∈ V (INC(R)) | M(J) = {m2}}. If |Vi| ≥ 2 for each i ∈ {1, 2}, then diam(INC(R)) =
r(INC(R)) = 2.

Proof. We know from Lemma 1 that INC(R) is connected and diam(INC(R)) ≤ 2.

Suppose that |Vi| ≥ 2 for each i ∈ {1, 2}. Note that mi ∈ Vi for each i ∈ {1, 2}.
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Observe that there exist I1 ∈ V1 such that I1 6= m1 and I2 ∈ V2 such that I2 6= m2.

It is clear that m1 and any I ∈ V1\{m1} are not adjacent in INC(R). Therefore,

e(A) ≥ 2 in INC(R) for any A ∈ V1. If J is any element of V2 with J 6= m2, then

J and m2 are not adjacent in INC(R). Hence, e(B) ≥ 2 in INC(R) for any B ∈ V2.

As V (INC(R)) = V1 ∪ V2 and diam(INC(R)) ≤ 2 , we obtain that e(A) = 2 for any

A ∈ V (INC(R)). Therefore, we obtain that diam(INC(R)) = r(INC(R)) = 2.

Let R be a ring such that |Max(R)| ≥ 2. In Proposition 1, we characterize such rings

R whose INC graph is complete.

Proposition 1. Let R be a ring such that |Max(R)| ≥ 2. The following statements are
equivalent:
(i) INC(R) is complete.
(ii) R ∼= F1 × F2 as rings, where Fi is a field for each i ∈ {1, 2}.

Proof. (i)⇒ (ii) We are assuming that INC(R) is complete. Hence, we obtain from

Lemma 1 that |Max(R)| = 2. Let {m1,m2} denote the set of all maximal ideals of R.

Let V1, V2 be as in the statement of Lemma 3. Note that mi ∈ Vi for each i ∈ {1, 2}.
Let i ∈ {1, 2}. Let I ∈ Vi. We claim that I = mi. Suppose that I 6= mi. Then

I ⊂ mi and so, I and mi are not adjacent in INC(R). This is in contradiction to the

assumption that INC(R) is complete. Therefore, I = mi and this shows that |Vi| = 1

for each i ∈ {1, 2}. Note that Vi = {mi} for each i ∈ {1, 2}. Let a ∈ m1\m2. Then

Ra ∈ V1 and so, Ra = m1. Let b ∈ m2\m1. Then Rb ∈ V2 and so, m2 = Rb. Now,

for each i ∈ {1, 2}, m2
i ∈ Vi and hence, mi = m2

i . Therefore, m1 = Ra = Ra2 and

m2 = Rb = Rb2. Thus we get that Rab = Ra2b2. This implies that ab = ra2b2 for

some r ∈ R and hence, ab(1− rab) = 0. Since ab ∈ m1 ∩ m2 = J(R), we obtain that

1−rab ∈ U(R) and so, ab = 0. Hence, m1m2 = Rab = (0). As m1+m2 = R, it follows

from [5, Proposition 1.10(i)] that m1∩m2 = m1m2. Therefore, m1∩m2 = (0). Now, it

follows from the Chinese remainder theorem [[5], Proposition 1.10(ii) and (iii)] that

R ∼= R
m1
× R

m2
, as desired.

(ii) ⇒ (i) We are assuming that R ∼= F1 × F2 as rings, where F1 and F2 are fields.

Let us denote the ring F1×F2 by T . Note that V (INC(T )) = {(0)×F2, F1× (0)} and

(0)×F2 and F1× (0) are adjacent in C (T ) and so, they are adjacent in INC(T ). This

proves that INC(T ) is complete and therefore, we obtain that INC(R) is complete.

Let R be a ring such that |Max(R)| ≥ 2. We want to determine such rings R which

satisfies C (R) = INC(R).

Lemma 4. Let R be a ring such that |Max(R)| ≥ 3. Then C (R) 6= INC(R).

Proof. Let {mi | i ∈ {1, 2, 3}} ⊆ Max(R). Let I1 = m1 ∩ m2 and let I2 = m1 ∩ m3.

Note that I1, I2 ∈ V (C (R)) = V (INC(R)), I1 6= I2, and as I1 + I2 ⊆ m1, it follows

that I1 and I2 are not adjacent in C (R). It is clear that I1 6⊆ I2 and I2 6⊆ I1. Hence,

I1 and I2 are adjacent in INC(R). This proves that C (R) 6= INC(R).
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Remark 1. Let R be a ring such that |Max(R)| ≥ 2. If C (R) = INC(R), then we know
from Lemma 4 that |Max(R)| = 2. If |Max(R)| = 2, then it follows from (3) ⇒ (2) of
[[17], Theorem 4.5] that C (R) is a bipartite graph. Thus if C (R) = INC(R), then INC(R) is
necessarily a bipartite graph.

Motivated by the results proved on C (R) in Section 4 of [17], we next try to charac-

terize rings R with |Max(R)| ≥ 2 such that INC(R) is bipartite.

Lemma 5. Let R be a ring such that |Max(R)| ≥ 2. If INC(R) is bipartite, then
|Max(R)| = 2.

Proof. It is already noted in the introduction that C (R) is a spanning subgraph of

INC(R). Thus if INC(R) is bipartite, then C (R) is also a bipartite graph. Hence, we

obtain from (2)⇒ (3) of [[17], Theorem 4.5] that |Max(R)| = 2.

We use Observation 1 in the proof of Proposition 2. As this observation is easy to

prove, we omit its proof.

Observation 1. Let H be a spanning subgraph of a graph G = (V,E). Suppose that H is
a complete bipartite graph. If G is a bipartite graph, then H = G.

Proposition 2. Let R be a ring with |Max(R)| ≥ 2. The following statements are
equivalent:
(i) INC(R) is a bipartite graph.
(ii) INC(R) = C (R) is a complete bipartite graph.
(iii) INC(R) is a complete bipartite graph.

Proof. (i) ⇒ (ii) Assume that INC(R) is a bipartite graph. Then we know from

Lemma 5 that |Max(R)| = 2. Hence, we obtain from (3)⇒ (1) of [[17], Theorem 4.5]

that C (R) is a complete bipartite graph. As C (R) is a spanning subgraph of INC(R),

we obtain from Observation 1 that INC(R) = C (R). Therefore, INC(R) = C (R) is a

complete bipartite graph.

(ii)⇒ (iii) This is clear.

(iii)⇒ (i) This is clear.

Proposition 3. Let (Ri,mi) be a quasilocal ring for each i ∈ {1, 2} and let R = R1×R2.
The following statements are equivalent:
(i) INC(R) is a bipartite graph.
(ii) INC(R) = C (R) is a complete bipartite graph.
(iii) Ri is a chained ring for each i ∈ {1, 2}.

Proof. Note that |Max(R)| = 2 and Max(R) = {M1 = m1 × R2,M2 = R1 ×
m2}. Observe that C (R) is a complete bipartite graph with vertex partition V1



158 Some results on a supergraph of the comaximal ideal graph of a ring

and V2, where V1 = {I × R2 | I is a proper ideal of R1} and V2 = {R1 × J |
J is a proper ideal of R2}.
(i)⇒ (ii) This follows from (i)⇒ (ii) of Proposition 2.

(ii)⇒ (iii) Let I1, I2 be distinct proper ideals of R1. Now, Ai = Ii×R2 ∈ V1 for each

i ∈ {1, 2} and A1 6= A2. Hence, A1 and A2 are not adjacent in INC(R). Therefore,

either A1 = I1 ×R2 ⊂ A2 = I2 ×R2 or A2 ⊂ A1. This implies that either I1 ⊂ I2 or

I2 ⊂ I1. This shows that R1 is a chained ring. Similarly, using the fact that no two

distinct elements of V2 are adjacent in INC(R), it can be shown that R2 is a chained

ring.

(iii) ⇒ (i) Assume that Ri is a chained ring for each i ∈ {1, 2}. Note that if A1, A2

are any two distinct members of V1, then Ai = Ii × R2 for some proper ideal Ii of

R1 for each i ∈ {1, 2}. It is clear that I1 6= I2. Since R1 is a chained ring, it follows

that either I1 ⊂ I2 or I2 ⊂ I1 and so, either A1 ⊂ A2 or A2 ⊂ A1. Hence, A1 and

A2 are not adjacent in INC(R). Similarly, using the hypothesis that R2 is a chained

ring, it can be shown that no distinct members of V2 are adjacent in INC(R). Let

A ∈ V1 and B ∈ V2. Then A and B are adjacent in C (R) and so, they are adjacent

in INC(R). Hence, it follows that INC(R) is a complete bipartite graph with vertex

partition V1 and V2.

Corollary 1. Let (Ri,mi) be a quasilocal ring for each i ∈ {1, 2}. Let R = R1 × R2.
Then the following statements are equivalent:
(i) INC(R) is a star graph.
(ii) C (R) = INC(R) is a star graph.
(iii) Ri is a chained ring for each i ∈ {1, 2} with Ri is a field for at least one i ∈ {1, 2}.

Proof. Note that C (R) is a complete bipartite graph with vertex partition V1

and V2, where V1 = {I × R2 | I is a proper ideal of R1} and V2 = {R1 × J |
J is a proper ideal of R2}.
(i) ⇒ (ii) Since any star graph is a bipartite graph, it follows from (i) ⇒ (ii) of

Proposition 3 that C (R) = INC(R) is a star graph.

(ii)⇒ (iii) We know from (ii) ⇒ (iii) of Proposition 3 that Ri is a chained ring for

each i ∈ {1, 2}. Since C (R) is a star graph, it follows that |Vi| = 1 for at least one

i ∈ {1, 2}. Without loss of generality, we can assume that |V1| = 1. Then we obtain

that (0) is the only proper ideal of R1 and so, R1 is a field.

(iii) ⇒ (i) It is shown in (iii) ⇒ (i) of Proposition 3 that INC(R) is a complete

bipartite graph with vertex partition V1 and V2. Without loss of generality, we can

assume that R1 is a field. Hence, |V1| = 1 and so, INC(R) is a star graph.

Let R be a ring such that |Max(R)| ≥ 2. In Proposition 4, we characterize such rings

R whose INC graph is a star graph.

Proposition 4. Let R be a ring such that |Max(R)| ≥ 2. Then the following statements
are equivalent:
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(i) INC(R) is a star graph.
(ii) R ∼= R1 × R2 as rings, where Ri is a chained ring for each i ∈ {1, 2} with Ri is a field
for at least one i ∈ {1, 2}.

Proof. (i) ⇒ (ii) We know from the proof of (i) ⇒ (ii) of Proposition 2 that

|Max(R)| = 2 and C (R) = INC(R). Let {m1,m2} denote the set of all maximal

ideals of R and let V1, V2 be as in the statement of Lemma 3. As C (R) is a star

graph with vertex partition V1 and V2, we can assume without loss of generality that

|V1| = 1. Therefore, V1 = {m1}. Let a ∈ m1\m2. Then Ra,Ra2 ∈ V1 and so,

m1 = Ra = Ra2. Let r ∈ R be such that a = ra2. Then e = ra is a nontrivial

idempotent element of R. Hence, the mapping f : R → Re × R(1 − e) defined by

f(x) = (xe, x(1 − e)) is an isomorphism of rings. Let us denote the ring Re by R1

and R(1 − e) by R2. Since |Max(R)| = 2, it follows that R1 and R2 are quasilocal

rings. Let us denote the ring R1 × R2 by T . As INC(T ) is a star graph, it follows

from (i)⇒ (iii) of Corollary 1 that Ri is a chained ring for each i ∈ {1, 2} with Ri is

a field for at least one i ∈ {1, 2}.
(ii)⇒ (i) Let us denote the ring R1×R2 by T . We know from (iii)⇒ (i) of Corollary

1 that INC(T ) is a star graph. It follows from R ∼= T as rings that INC(R) is a star

graph.

Let R be a ring and let m ∈Max(R). Let f : R→ Rm denote the ring homomorphism

given by f(r) = r
1 . For any ideal I of R, f−1(Im) is called the saturation of I with

respect to the multiplicatively closed set R\m and is denoted by the notation Sm(I).

It is well-known that for any ideal I of R, I = ∩m∈Max(R)Sm(I). Let R be a ring with

|Max(R)| ≥ 2. Suppose that dimR = 0. In Proposition 5, we characterize such rings

R whose INC graph is a bipartite graph.

Remark 2. Let R be a semiquasilocal ring with |Max(R)| = n ≥ 2. Suppose that
dimR = 0. Then R ∼= R1 × R2 × · · · × Rn as rings, where (Ri, ni) is a quasilocal ring for
each i ∈ {1, 2, . . . , n}.

Proof. Let {mi | i ∈ {1, 2, . . . , n}} denote the set of all maximal ideals of R. Let i ∈
{1, 2, . . . , n}. Since dimR = 0, it follows that

√
(0)mi

= (mi)mi
and so,

√
Smi

((0)) =

mi. Hence, we obtain from [[5], Proposition 4.2] that Smi((0)) is a mi-primary ideal

of R. Let us denote the ideal Smi
((0)) by qi for each i ∈ {1, 2, . . . , n}. Observe that

(0) = q1 ∩ q2 ∩ · · · ∩ qn. From mi + mj = R for all distinct i, j ∈ {1, 2, . . . , n}, we

obtain from [[5], Proposition 1.16] that qi + qj = R. It now follows from the Chinese

remainder theorem [[5], Proposition 1.10(ii) and (iii)] that R ∼= R
q1
× R

q2
× · · · × R

qn
.

For each i with 1 ≤ i ≤ n, let us denote the ring R
qi

by Ri. Note that Ri is quasilocal

with ni = mi

qi
as its unique maximal ideal and R ∼= R1 ×R2 × · · · ×Rn as rings.

Proposition 5. Let R be a ring such that |Max(R)| ≥ 2 and let dimR = 0. Then the
following statements are equivalent:
(i) INC(R) is a bipartite graph.
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(ii) R ∼= R1×R2 as rings, where (Ri, ni) is a chained ring with dimRi = 0 for each i ∈ {1, 2}.

Proof. (i) ⇒ (ii) Assume that INC(R) is a bipartite graph. Then we know from

Lemma 5 that |Max(R)| = 2. Since dimR = 0, we know from Remark 2 that

R ∼= R1 × R2 as rings, where (Ri, ni) is a quasilocal ring for each i ∈ {1, 2}. Let us

denote the ring R1×R2 by T . Since R ∼= T as rings, we get that INC(T ) is a bipartite

graph. Hence, we obtain from (i) ⇒ (iii) of Proposition 3 that Ri is a chained ring

for each i ∈ {1, 2}. Since dimR = 0, it is clear that dimRi = 0 for each i ∈ {1, 2}.
(ii)⇒ (i) This follows from (iii)⇒ (i) of Proposition 3.

We provide an example in Example 1 to illustrate that (i) ⇒ (ii) of Proposition 5

can fail to hold if the hypothesis dimR = 0 is omitted.

Lemma 6. Let R be a principal ideal domain with |Max(R)| ≥ 2. The following
statements are equivalent:
(i) C (R) = INC(R).
(ii) |Max(R)| = 2.

Proof. (i) ⇒ (ii) Assume that C (R) = INC(R). Then we obtain from Lemma 4

that |Max(R)| = 2. (For this part of the proof, we do not need the assumption that

R is a principal ideal domain.)

(ii) ⇒ (i) Assume that R is a principal ideal domain with |Max(R)| = 2. Let

{m1 = Rp,m2 = Rq} denote the set of all maximal ideals of R. It is already noted

in the introduction that for any ring T with |Max(T )| ≥ 2, C (T ) is a spanning

subgraph of INC(T ). Observe that V (INC(R)) = V1∪V2, where V1 = {I ∈ I(R) | I ⊆
Rp but I 6⊆ Rq} and V2 = {J ∈ I(R) | J ⊆ Rq but J 6⊆ Rp}. Let I1, I2 ∈ V (INC(R))

be such that I1 and I2 are adjacent in INC(R). We assert that I1 + I2 = R. Suppose

that I1 + I2 6= R. Then either I1 + I2 ⊆ Rp or I1 + I2 ⊆ Rq. Without loss of

generality, we can assume that I1 + I2 ⊆ Rp. Note that Ii ∈ V1 for each i ∈ {1, 2}.
Hence, I1 = Rpn and I2 = Rpm for some n,m ∈ N. Therefore, I1 and I2 are

comparable under the inclusion relation and so, I1 and I2 are not adjacent in INC(R).

This is in contradiction to the assumption that I1 and I2 are adjacent in INC(R).

Therefore, I1 + I2 = R and so, I1 and I2 are adjacent in C (R). This proves that

C (R) = INC(R).

Example 1 mentioned below was mentioned in [[17], Example 4.10] to illustrate that

[[17], Proposition 4.7] can fail to hold if the hypothesis R satisfies d.c.c on principal

ideals is omitted.

Example 1. Let p, q be distinct prime numbers. Let R = S−1Z, where S = Z\(pZ∪ qZ).
Then INC(R) is a complete bipartite graph but the statement (ii) of Proposition 5 does not
hold.
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Proof. Note that R is a principal ideal domain with |Max(R)| = 2 and {Rp,Rq}
is the set of all maximal ideals of R. Hence, we obtain from (ii) ⇒ (i) of Lemma 6

that C (R) = INC(R). We know from (3)⇒ (1) of [[17], Theorem 4.5] that C (R) is a

complete bipartite graph. Therefore, INC(R) is a complete bipartite graph. As R is

an integral domain, R has no nontrivial idempotent element. Hence, the statement

(ii) of Proposition 5 does not hold.

In Example 2, we provide another example to illustrate that (i)⇒ (ii) of Proposition

5 can fail to hold if the hypothesis dimR = 0 is omitted.

Example 2. Let V = Q[[X]] be the power series ring in one variable X over Q. Let us
denote V X by m. Let T = R + m, where R is as in Example 1. Then INC(T ) is a complete
bipartite graph but the statement (ii) of Proposition 5 does not hold.

Proof. Observe that V = Q + m is a discrete valuation ring. We know from [[7],

Theorem 2.1(c)] that each ideal of T compares with m under inclusion. As Max(R) =

{Rp,Rq}, it follows from [[7], Theorem 2.1(d)] that Max(T ) = {m1 = Rp + m,m2 =

Rq + m}. Let V1 = {I ∈ I(T ) | M(I) = {m1}} and let V2 = {J ∈ I(T ) | M(J) =

{m2}}. Observe that V (INC(T )) = V1 ∪ V2. Let I1, I2 ∈ V1 be such that I1 6= I2. Let

i ∈ {1, 2}. It is not hard to verify that Ii = Ai+m for some Ai ∈ I(R)\{(0)} such that

M(Ai) = {Rp}. It is clear that A1 6= A2. Observe that there exist distinct n,m ∈ N
such that I1 = Rpn + m and I2 = Rpm + m. Hence, I1 and I2 are comparable

under the inclusion relation and so, they are not adjacent in INC(T ). Similarly,

if J1, J2 are any two distinct members of V2, then Ji = Bi + m for some distinct

B1, B2 ∈ I(R)\{(0)} such that M(Bi) = {Rq} for each i ∈ {1, 2}. Hence, there exist

distinct k, t ∈ N such that J1 = Rqk +m and J2 = Rqt +m. Therefore, it follows that

J1 and J2 are comparable under the inclusion relation and so, they are not adjacent

in INC(T ). If I ∈ V1 and J ∈ V2, then I + J = T and so, they are adjacent in

INC(T ). This shows that INC(T ) is a complete bipartite graph. We know from [[7],

Theorem 2.1(f)] that dimT = dimV + dimR = 1 + 1 = 2. Indeed, it follows from

[[7], Theorem 2.1 (c), (d), (e)] and the fact that (0) and m are the only prime ideals

of V that {(0),m, Rp+m, Rq +m} is the set of all prime ideals of T . Hence, (0) ⊂ m,

(0) ⊂ m ⊂ Rp + m, and (0) ⊂ m ⊂ Rq + m are the only chains of prime ideals of T

of positive length and so, dimT = 2. Since T is an integral domain, we obtain that

T has no nontrivial idempotent. Hence, the statement (ii) of Proposition 5 does not

hold.

In Proposition 6, we determine girth(INC(R)), where R is a ring with |Max(R)| ≥ 2

and moreover, we characterize such rings R which satisfies girth(INC(R)) =∞.

Proposition 6. Let R be a ring with |Max(R)| ≥ 2. Then girth(INC(R)) ∈ {3, 4,∞}.
Moreover, girth(INC(R)) =∞ if and only if R ∼= R1 × R2 as rings, where R1 is a field and
R2 is a chained ring.
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Proof. Suppose that |Max(R)| ≥ 3. Let {m1,m2,m3} ⊆ Max(R) . Note that

m1 − m2 − m3 − m1 is a cycle of length three in C (R) and hence, a cycle of length

three in INC(R). Therefore, girth(INC(R)) = 3.

Suppose that |Max(R)| = 2. Let {m1,m2} denote the set of all maximal ideals of R.

Let V1, V2 be as in the statement of Lemma 3. We consider the following cases.

Case 1. |Vi| ≥ 2 for each i ∈ {1, 2}.
Let I ∈ V1\{m1} and let J ∈ V2\{m2}. Observe that I + m2 = I + J = R and so,

m1 − m2 − I − J − m1 is a cycle of length four in C (R) and hence, a cycle of length

four in INC(R). Therefore, girth(INC(R)) ≤ 4.

Case 2. |Vi| = 1 for at least one i ∈ {1, 2}.
In such a case, it follows as in the proof of (i) ⇒ (ii) of Proposition 4 that there

exist quasilocal rings R1 and R2 such that at least one between R1 and R2 is a

field and R ∼= R1 × R2 as rings. Without loss of generality, we can assume that

R1 is a field. Let us denote the ring R1 × R2 by T . Note that INC(T ) contains a

cycle if and only if there are at least two distinct nonzero proper ideals J1 and J2
of R2 such that J1 and J2 are not comparable under the inclusion relation. Hence,

(0)×R2 −R1 × J1 −R1 × J2 − (0)×R2 is a cycle of length three in INC(T ). From

R ∼= T as rings, it follows that girth(INC(R)) = girth(INC(T )) = 3. Observe that

INC(T ) (equivalently, INC(R)) does not contain any cycle if and only if the set of

ideals of R2 is linearly ordered by inclusion, that is, R2 is a chained ring.

It is clear from the above discussion that girth(INC(R)) ∈ {3, 4,∞} and

girth(INC(R)) = ∞ if and only if R ∼= R1 × R2 as rings, where R1 is a field and

R2 is a chained ring. Now, it is clear that girth of any star graph equals∞. It follows

from (ii) ⇒ (i) of Proposition 4 that if girth(INC(R)) = ∞, then INC(R) is a star

graph.

In Example 3, we provide some examples to illustrate Proposition 6.

Example 3. (i) Let T = Z2[X,Y ] be the polynomial ring in two variables X,Y over Z2.
Let m = TX + TY . Let R = F × T

m2 , where F is a field. Then girth(INC(R)) = 3.
(ii) Let p, q be distinct prime numbers and let R = S−1Z, where S = Z\(pZ ∪ qZ). Then
girth(INC(R)) = 4.
(iii) Let p be a prime number and let R = F×ZpZ, where F is a field. Then girth(INC(R)) =
∞.

Proof. (i) Note that T
m2 is a local ring with m

m2 as its unique maximal ideal. It is clear

that |Max(R)| = 2 and Max(R) = {(0)× T
m2 , F × m

m2 }. It is convenient to denote T
m2

by T1, X+m2 by x, and Y +m2 by y. Note that (0)×T1−F×T1x−F×T1y−(0)×T1

is a cycle of length three in INC(R) and so, girth(INC(R)) = 3.

(ii) We know from Example 1 that INC(R) is a complete bipartite graph with vertex

partition V1 and V2, where V1 = {Rpn | n ∈ N} and V2 = {Rqn | n ∈ N}. As |Vi| ≥ 2

for each i ∈ {1, 2}, we obtain that girth(INC(R)) = 4.
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(iii) We know from [[5], Example (1), page 94] that ZpZ is a discrete valuation ring

and so, it is a chained ring. It follows from the moreover part of Proposition 6 that

girth(INC(R)) =∞.

3. When is INC(R) a split graph?

The aim of this section is to characterize rings R with |Max(R)| ≥ 2 such that INC(R)

is a split graph. Let R be a ring such that |Max(R)| ≥ 2. Note that INC(R) is a

split graph if and only if there exist nonempty subsets K,S of V (INC(R)) such that

V (INC(R)) = K∪S, K∩S = ∅, satisfying the property that the subgraph of INC(R)

induced on K is a clique and S is an independent set of INC(R). Throughout this

section, whenever we consider rings R with INC(R) is a split graph, we use K and S

with the above mentioned properties.

Let R be a ring with |Max(R)| ≥ 2. In Proposition 7, we determine a necessary

condition on |Max(R)| in order that INC(R) is a split graph. In Theorem 2, we

characterize such rings R whose INC graph is a split graph.

Lemma 7. Let R be a ring with |Max(R)| ≥ 3. If INC(R) is a split graph with
V (INC(R)) = K ∪ S, then Max(R) = K.

Proof. As distinct maximal ideals of R are not comparable under the inclusion

relation, it follows that distinct maximal ideals of R are adjacent in INC(R). Since S

is an independent set of INC(R), we obtain that |S ∩Max(R)| ≤ 1. By hypothesis,

|Max(R)| ≥ 3. Hence, there exist distinct m1,m2 ∈ Max(R) such that mi ∈ K for

each i ∈ {1, 2}. It follows from |Max(R)| ≥ 3 that m1 ∩ m2 ∈ V (INC(R)) = K ∪ S.

Since m1 ∩ m2 ⊂ m1, we get that m1 and m1 ∩ m2 are not adjacent in INC(R). As

m1 ∈ K, it follows that m1 ∩ m2 ∈ S. Let m ∈ Max(R)\{m1,m2}. It is clear that

m 6⊆ m1 ∩ m2 and from [[5], Proposition 1.11(ii)], it follows that m1 ∩ m2 6⊆ m. This

shows that m and m1 ∩ m2 are adjacent in INC(R). Since m1 ∩ m2 ∈ S, we obtain

that m ∈ K. This proves that Max(R) ⊆ K. Let I ∈ K. Note that there exists

m ∈ Max(R) such that I ⊆ m. If I 6= m, then I and m are not adjacent in INC(R).

This is in contradiction to the fact that the subgraph of INC(R) induced on K is

complete. Therefore, I = m ∈Max(R) and so, we obtain that Max(R) = K.

Proposition 7. Let R be a ring such that |Max(R)| ≥ 2. If INC(R) is a split graph,
then |Max(R)| = 2.

Proof. Let V (INC(R)) = K ∪ S. Suppose that |Max(R)| ≥ 3. Then we know from

Lemma 7 that Max(R) = K. Let {mi | i ∈ {1, 2, 3}} ⊆ Max(R). Now, mi ∈ K

for each i ∈ {1, 2, 3}. Let us denote m1 ∩ m2 by A and m2 ∩ m3 by B. From the

assumption that |Max(R)| ≥ 3, it is clear that A,B ∈ V (INC(R)). As A ⊂ m1, it

follows that A and m1 are not adjacent in INC(R) and so, from m1 ∈ K, we get that

A ∈ S. Similarly, as B ⊂ m2 and m2 ∈ K, it follows that B ∈ S. Now, it follows
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from [[5], Proposition 1.11(ii)] that A 6⊆ m3 and B 6⊆ m1. Therefore, we obtain that

A 6⊆ B and B 6⊆ A. Hence, A and B are adjacent in INC(R). This is impossible since

A,B ∈ S. Therefore, |Max(R)| ≤ 2 and so, |Max(R)| = 2.

Lemma 8. Let R be a ring with |Max(R)| = 2. Let {m1,m2} denote the set of all
maximal ideals of R. Let V1, V2 be as in the statement of Lemma 3. If INC(R) is a split
graph, then |Vi| = 1 for at least one i ∈ {1, 2}.

Proof. Let V (INC(R)) = K∪S. Since m1 and m2 are adjacent in INC(R), it follows

that |S ∩Max(R)| ≤ 1. We consider the following cases.

Case 1. Max(R) ⊆ K.

Suppose that |Vi| ≥ 2 for each i ∈ {1, 2}. Let I ∈ V1\{m1} and let J ∈ V2\{m2}.
Since I ⊂ m1, it follows that I and m1 are not adjacent in INC(R) and so, I ∈ S.

Similarly, since J ⊂ m2, it follows that J ∈ S. As I + J = R, we obtain that I and J

are adjacent in C (R) and so, they are adjacent in INC(R). This is impossible, since

I, J ∈ S. Therefore, |Vi| = 1 for at least one i ∈ {1, 2}.
Case 2. |S ∩Max(R)| = 1.

Without loss of generality, we can assume that m1 ∈ S. Then m2 ∈ K. We claim

that |V2| = 1. Suppose that |V2| ≥ 2. Let J ∈ V2\{m2}. Since J ⊂ m2 and m2 ∈ K,

we obtain that J /∈ K and so, J ∈ S. As J + m1 = R, it follows that J and m1 are

adjacent in INC(R). This is impossible, since J,m1 ∈ S. Therefore, |V2| = 1.

This proves that |Vi| = 1 for at least one i ∈ {1, 2}.

Proposition 8. Let (Ri,mi) be a quasilocal ring for each i ∈ {1, 2} and let R = R1×R2.
The following statements are equivalent:
(i) INC(R) is a split graph.
(ii) Ri is a field for at least one i ∈ {1, 2} and if Ri is not a field for some i ∈ {1, 2}, then
either Ri is a chained ring or I(Ri) = W1 ∪W2, where |Wk| ≥ 2 for each k ∈ {1, 2} with the
property that W1 ∩W2 = ∅, W1 is a chain under the inclusion relation, and no two distinct
members of W2 are comparable under the inclusion relation.

Proof. (i)⇒ (ii) We are assuming that INC(R) is a split graph. Let V (INC(R)) =

K∪S. Note that V (INC(R)) = V1∪V2, where V1 = {I×R2 | I is a proper ideal of R1}
and V2 = {R1×J | J is a proper ideal of R2}. It follows from Lemma 8 that |Vi| = 1

for at least one i ∈ {1, 2}. Without loss of generality, we can assume that |V1| = 1.

Hence, we obtain that R1 is a field. We can assume that R2 is not a field. Now,

V (INC(R)) = V1 ∪ V2 = K ∪ S. We consider the following cases.

Case 1. Max(R) ⊆ K.

Note that (0) × R2 and R1 × m2 ∈ K. Let J1, J2 be any two distinct proper ideals

of R2. We claim that J1 and J2 are comparable under the inclusion relation. This

is clear if either J1 = m2 or J2 = m2. Hence, we can assume that Ji 6= m2 for each

i ∈ {1, 2}. As R1×m2 ∈ K, we obtain that R1×Ji ∈ S for each i ∈ {1, 2}. Since S is

an independent set of INC(R), we obtain that R1×J1 and R1×J2 are not adjacent in
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INC(R). Hence, J1 and J2 are comparable under the inclusion relation. This proves

that R2 is a chained ring.

Case 2. |Max(R) ∩ S| = 1.

If (0) × R2 ∈ S, then R1 × m2, R1 × (0) ∈ K. This is impossible since R1 × m2 and

R1×(0) are not adjacent in INC(R). Therefore, (0)×R2 /∈ S and so, R1×m2 ∈ S. We

can assume that R2 is not a chained ring. Let W1 = {J ∈ I(R2) | R1×J ∈ S} and let

W2 = {J ∈ I(R2) | R1×J ∈ K}. Note that R1×m2 ∈ S and so, W1 6= ∅. Since R2 is

not a chained ring by assumption, there exist proper ideals J1, J2 of R2 such that they

are not comparable under the inclusion relation. Let a ∈ J1\J2 and let b ∈ J2\J1.

Let A = R2a,B = R2b, and C = R2(a + b). It is clear that A 6⊆ B and B 6⊆ A. As

C 6⊆ J1 and C 6⊆ J2, we obtain that C 6⊆ A and C 6⊆ B. We claim that A 6⊆ C and

B 6⊆ C. For if A ⊆ C, then a = y(a+ b) for some y ∈ R2. Suppose that y ∈ m2. Then

1− y ∈ U(R2) and from a(1− y) = yb ∈ J2, we get that a = (1− y)−1yb ∈ J2. This

is impossible. If y ∈ U(R2), then from a = y(a+ b), it follows that a+ b = y−1a ∈ J1.

This is impossible. Therefore, A 6⊆ C. Similarly, it can be shown that B 6⊆ C. Hence,

R1 × A − R1 × B − R1 × C − R1 × A is a cycle of length 3 in INC(R). As S is an

independent set of INC(R), it follows that at least two among R1×A,R1×B, R1×C

must be in K. Hence, at least two among A,B,C must be in W2 and so, |W2| ≥ 2.

Observe that R1 × (0) must be in S. Thus R1 × m2, R1 × (0) ∈ S and so, |W1| ≥ 2.

It is clear that W1 ∪ W2 ⊆ I(R2). Let J ∈ I(R2). Then R1 × J ∈ V2 ⊆ K ∪ S.

If R1 × J ∈ S, then J ∈ W1 and if R1 × J ∈ K, then J ∈ W2. This proves that

I(R2) = W1 ∪W2. It follows from K ∩ S = ∅ that W1 ∩W2 = ∅.
(ii) ⇒ (i) If both R1 and R2 are fields, then INC(R) is a complete graph on two

vertices and so, INC(R) is a split graph. We can assume that R1 is a field and R2

is not a field. If R2 is a chained ring, then we know from (ii)⇒ (i) of Proposition 4

that INC(R) is a star graph and so, INC(R) is a split graph. Suppose that I(R2) =

W1∪W2, where |Wi| ≥ 2 for each i ∈ {1, 2} satisfying the property that W1∩W2 = ∅,
W1 is a chain under the inclusion relation, and no two distinct members of W2 are

comparable under the inclusion relation. Let K = {(0)×R2, R1× I | I ∈W2} and let

S = {R1×I | I ∈W1}. It is clear that V (INC(R)) = K∪S, K 6= ∅, S 6= ∅,K∩S = ∅,
the subgraph of INC(R) induced on K is a clique, and S is an independent set of

INC(R). Therefore, INC(R) is a split graph.

Theorem 2. Let R be a ring with |Max(R)| ≥ 2. The following statements are
equivalent:
(i) INC(R) is a split graph.
(ii) R ∼= R1×R2 as rings, where R1 and R2 are quasilocal rings which satisfy the conditions
mentioned in the statement (ii) of Proposition 8.

Proof. (i)⇒ (ii) We are assuming that INC(R) is a split graph. Let V (INC(R)) =

K ∪S. We know from Proposition 7 that |Max(R)| = 2. Let {m1,m2} denote the set

of all maximal ideals of R. Let V1, V2 be as in the statement of Lemma 3. It follows

from Lemma 8 that |Vi| = 1 for at least one i ∈ {1, 2}. Without loss of generality,



166 Some results on a supergraph of the comaximal ideal graph of a ring

we can assume that |V1| = 1. Now, it can be shown as in the proof of (i) ⇒ (ii) of

Proposition 4 that there exist nonzero rings R1 and R2 such that R ∼= R1 × R2 as

rings. As |Max(R)| = 2, it is clear that R1 and R2 are quasilocal rings. Let us denote

the ring R1 × R2 by T . Since INC(T ) is a split graph, we obtain from (i) ⇒ (ii) of

Proposition 8 that the rings R1, R2 satisfy the conditions mentioned in the statement

(ii) of Proposition 8.

(ii) ⇒ (i) Assume that R ∼= R1 × R2 as rings, where R1 and R2 are quasilocal rings

and they satisfy the conditions mentioned in the statement (ii) of Proposition 8. Let

us denote the ring R1 × R2 by T . We know from (ii) ⇒ (i) of Proposition 8 that

INC(T ) is a split graph. Since R ∼= T as rings, we obtain that INC(R) is a split

graph.

We provide some examples in Example 4 to illustrate Theorem 2.

Example 4. (i) Let F be a field and let T = ZpZ, where p is a prime number. Let
R = F × T . Then INC(R) is a split graph.
(ii) Let T = Z2[X,Y ] be the polynomial ring in two variables X,Y over Z2 and let m =
TX + TY . Let R = F × T

m2 , where F is a field. Then INC(R) is a split graph.
(iii) Let A = Z2[X,Y, Z] be the polynomial ring in three variables X,Y, Z over Z2 and let
m = AX +AY +AZ. Let R = F × A

m2 , where F is a field. Then INC(R) is not a split graph.

Proof. (i) We know from [[5], Example (1), page 94] that T = ZpZ is a discrete

valuation ring and so, T is a chained ring. Hence, we obtain from (ii) ⇒ (i) of

Proposition 8 that INC(R) is a split graph.

(ii) It is convenient to denote X + m2 by x and Y + m2 by y. It is clear that T
m2 is

a local ring with unique maximal ideal m
m2 . Observe that I( T

m2 ) = W1 ∪W2, where

W1 = {(0 + m2), m
m2 } and W2 = { T

m2x,
T
m2 y,

T
m2 (x + y)}. It is clear that W1 is a chain

under the inclusion relation and no two distinct members of W2 are comparable under

the inclusion relation. Hence, we obtain from (ii)⇒ (i) of Proposition 8 that INC(R)

is a split graph.

(iii) It is convenient to denote X +m2 by x, Y +m2 by y, and Z +m2 by z. It is clear

that A
m2 is a local ring with m

m2 as its unique maximal ideal. It is convenient to denote
A
m2 by A1 and m

m2 by m1. Observe that I(A1) = {(0 + m2), A1x,A1y,A1z,A1(x +

y), A1(y + z), A1(z + x), A1(x + y + z), A1x + A1y,A1y + A1z,A1z + A1x,A1x +

A1(y + z), A1y + A1(x + z), A1z + A1(x + y),m1}. Note that A1 is not a field and

is not a chained ring. Let W1,W2 be subsets of I(A1) such that W1 is a chain under

the inclusion relation and no two distinct members of W2 are comparable under the

inclusion relation. We claim that I(A1) 6= W1∪W2. Suppose that I(A1) = W1∪W2. If

A1x ∈W1, then A1(x+y+z), A1y+A1(x+z) must be in W2. This is impossible since

A1(x+y+z) ⊂ A1y+A1(x+z). Hence, A1x /∈W1. If A1x ∈W2, then both A1x+A1y

and A1x+A1z must be in W1. This is impossible since A1x+A1y and A1x+A1z are

not comparable under the inclusion relation. Therefore, I(A1) 6= W1 ∪W2. Hence, it

follows from (i)⇒ (ii) of Proposition 8 that INC(R) is not a split graph.
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4. When is INC(R) complemented?

Let R be a ring with |Max(R)| ≥ 2. In this section, we try to characterize such rings

R whose INC graph is complemented.

Lemma 9. Let R be a ring such that |Max(R)| ≥ 2. Let I ∈ V (INC(R)). If J is a vertex
in INC(R) such that I ⊥ J in INC(R), then IJ ⊆ J(R).

Proof. Now, by assumption I ⊥ J in INC(R). Hence, I and J are adjacent in

INC(R) and there is no A ∈ V (INC(R)) which is adjacent to both I and J in INC(R).

Let m ∈ Max(R). We claim that IJ ⊆ m. This is clear if m ∈ {I, J}. Hence, we

can assume that m /∈ {I, J}. Since I ⊥ J , either m is not adjacent to I or m is not

adjacent to J in INC(R) . Hence, either I ⊂ m or J ⊂ m. Therefore, IJ ⊂ m. This

is true for any m ∈Max(R) and so, IJ ⊆ J(R).

Lemma 10. Let R be a ring such that |Max(R)| ≥ 2. If INC(R) is complemented, then
|Max(R)| ≤ 3.

Proof. Assume that INC(R) is complemented. Suppose that |Max(R)| ≥ 4. Let

{mi | i ∈ {1, 2, 3, 4}} ⊆ Max(R). Note that m1 ∩ m2 ∈ V (INC(R)). Let us denote

m1 ∩m2 by I. Since INC(R) is complemented, there exists J ∈ V (INC(R)) such that

I ⊥ J in INC(R). We know from Lemma 9 that IJ ⊆ J(R). It follows from [[5],

Proposition 1.11(ii)] that I 6⊆ m for any m ∈ Max(R)\{m1,m2}. From IJ ⊆ J(R),

we obtain that J ⊆ m3 ∩ m4. Since I and J are adjacent in INC(R), we get that

J 6⊆ I. Hence, either J 6⊆ m1 or J 6⊆ m2. Without loss of generality, we can assume

that J 6⊆ m1. Consider the ideal A = m1 ∩ m3. It is clear that A ∈ V (INC(R)) and

I = m1 ∩m2 6⊆ A = m1 ∩m3 and A 6⊆ I. Since A 6⊆ m4, we obtain that A 6⊆ J . From

J 6⊆ m1, it follows that J 6⊆ A. Hence, we get that A is adjacent to both I and J in

INC(R). This is in contradiction to the assumption that I ⊥ J in INC(R). Therefore,

|Max(R)| ≤ 3.

Let R be a ring such that |Max(R)| = 2. We try to characterize such rings R whose

INC graph is complemented.

Remark 3. Let R be a ring such that |Max(R)| = 2. Let Max(R) = {m1,m2}. Let
V1, V2 be as in the statement of Lemma 3. If |Vi| = 1 for each i ∈ {1, 2}, then it is verified
in the proof of (i)⇒ (ii) of Proposition 1 that R ∼= F1 × F2 as rings, where Fi is a field for
each i ∈ {1, 2} and in such a case, it is observed in (ii)⇒ (i) of Proposition 1 that INC(R) is
a complete graph on two vertices. Hence, INC(R) is complemented. Thus in characterizing
rings R with |Max(R)| = 2 whose INC graph is complemented, we assume that |Vi| ≥ 2 for
at least one i ∈ {1, 2}.

Lemma 11. Let R be a ring such that |Max(R)| = 2. Let Max(R) = {m1,m2}. Let
V1, V2 be as in the statement of Lemma 3. Suppose that |Vi| ≥ 2 for some i ∈ {1, 2}. If
INC(R) is complemented, then any I1, I2 ∈ Vi are comparable under the inclusion relation.
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Proof. Suppose that |V1| ≥ 2. Let I1 ∈ V1. We are assuming that INC(R) is

complemented. Hence, there exists J1 ∈ V (INC(R)) such that I1 ⊥ J1 in INC(R).

We know from Lemma 9 that I1J1 ⊆ J(R) = m1 ∩m2. From I1 6⊆ m2, we obtain that

J1 ⊆ m2. Hence, M(J1) = {m2} and so, J1 ∈ V2. Let I2 ∈ V1 be such that I2 6= I1.

Since I2 + J1 = R, I2 and J1 are adjacent in C (R) and hence, they are adjacent in

INC(R). As I1 ⊥ J1 in INC(R), I2 and I1 cannot be adjacent in INC(R). Therefore,

I1 and I2 are comparable under the inclusion relation. Similarly, if |V2| ≥ 2, it can be

shown that any two members of V2 are comparable under the inclusion relation.

Proposition 9. Let R be a ring such that |Max(R)| = 2. Let Max(R) = {m1,m2}.
Let V1, V2 be as in the statement of Lemma 3. Suppose that |V1| = 1 and |V2| ≥ 2. The
following statements are equivalent:
(i) INC(R) is complemented.
(ii) R ∼= R1 ×R2 as rings, where R1 is a chained ring which is not a field and R2 is a field.

Proof. (i) ⇒ (ii) Let a ∈ m1\m2. It follows from |V1| = 1 that m1 = Ra = m2
1 =

Ra2. Hence, there exists a nontrivial idempotent e ∈ m1 such that m1 = Re. Note

that the mapping f : R → Re × R(1 − e) defined by f(r) = (re, r(1 − e)) is an

isomorphism of rings. Let us denote the ring Re by R1, R(1− e) by R2, and R1 ×R2

by T . Observe that f(m1) = R1 × (0) and as f(m1) ∈ Max(T ), it follows that R2 is

a field. Since R ∼= T as rings, we obtain that |Max(T )| = 2 and so, R1 is quasilocal.

Let us denote the unique maximal ideal of R1 by n1. It is clear that f(m2) = n1×R2.

Note that under the isomorphism f , V1 is mapped onto W1 = {R1 × (0)} and V2

is mapped onto W2 = {I × R2 | I ∈ I(R1)}. We are assuming that INC(R) is

complemented. Therefore, INC(T ) is complemented. From |W2| ≥ 2, it follows from

Lemma 11 that any two members of W2 are comparable under the inclusion relation.

Hence, if I1, I2 ∈ I(R1), then I1 and I2 are comparable under the inclusion relation.

Therefore, we obtain that R1 is a chained ring and it follows from |W2| ≥ 2 that R1

is not a field.

(ii) ⇒ (i) Assume that R ∼= R1 × R2 as rings, where R1 is a chained ring which is

not a field and R2 is a field. It follows from (ii)⇒ (i) of Proposition 4 that INC(R)

is a star graph and so, INC(R) is complemented.

Proposition 10. Let R be a ring such that |Max(R)| = 2. Let {m1,m2} denote the
set of all maximal ideals of R. Let V1, V2 be as in the statement of Lemma 3. Suppose that
|Vi| ≥ 2 for each i ∈ {1, 2}. Then the following statements are equivalent:
(i) INC(R) is complemented.
(ii) Any two members of Vi are comparable under the inclusion relation for each i ∈ {1, 2}.
(iii) INC(R) = C (R) is a complete bipartite graph.

Proof. (i) ⇒ (ii) We are assuming that INC(R) is complemented. By hypothesis,

|Vi| ≥ 2 for each i ∈ {1, 2}. Hence, we obtain from Lemma 11 that any two members

of Vi are comparable under the inclusion relation for each i ∈ {1, 2}.
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(ii) ⇒ (iii) Note that V (INC(R)) = V1 ∪ V2. Observe that V1 ∩ V2 = ∅. It follows

from (ii) that if I1 − I2 is an edge of INC(R), then both I1, I2 cannot be in the same

Vi for any i ∈ {1, 2}. If I ∈ V1 and J ∈ V2 , then I + J = R and so, I and J are

adjacent in INC(R). Therefore, INC(R) = C (R) is a complete bipartite graph.

(iii)⇒ (i) This is clear.

Let R be a ring with |Max(R)| = 2 satisfying the hypothesis of Proposition 10. We are

not able to characterize such rings R which satisfies the statement (ii) of Proposition

10. However, we mention one instance where the statement (ii) of Proposition 10 is

satisfied. Let R1, R2 be chained rings which are not fields and let R = R1 ×R2. Let

i ∈ {1, 2} and let mi denote the unique maximal ideal of Ri. Note that in this case,

V1 = {I × R2 | I ∈ I(R1)} and V2 = {R1 × J | J ∈ I(R2)}. Since R1 and R2 are not

fields, we obtain that |Vi| ≥ 2 for each i ∈ {1, 2}. As Ri is a chained ring for each

i ∈ {1, 2}, we obtain that R satisfies the statement (ii) of Proposition 10. Therefore,

INC(R) is complemented. In Proposition 11, we characterize zero-dimensional rings

R with |Max(R)| = 2 such that INC(R) is complemented.

Proposition 11. Let R be a ring with |Max(R)| = 2. Let dimR = 0. Let Max(R) =
{m1,m2} and let V1, V2 be as in the statement of Lemma 3. Suppose that |Vi| ≥ 2 for each
i ∈ {1, 2}. Then the following statements are equivalent:
(i) INC(R) is complemented.
(ii) R ∼= R1 ×R2 as rings, where Ri is a chained ring which is not a field for each i ∈ {1, 2}.

Proof. (i) ⇒ (ii) Since dimR = 0 and |Max(R)| = 2, we obtain from Remark 2

that R ∼= R1 × R2 as rings, where (Ri, ni) is a quasilocal ring for each i ∈ {1, 2}.
Let us denote the ring R1 × R2 by T . Note that under the isomorphism from R

onto T , V1 is mapped onto W1 = {I × R2 | I ∈ I(R1)} and V2 is mapped onto

W2 = {R1 × J | J ∈ I(R2)}. Since R ∼= T as rings, we obtain that INC(T ) is

complemented. By hypothesis, |Vi| ≥ 2 for each i ∈ {1, 2} and so, |Wi| ≥ 2 for each

i ∈ {1, 2}. Therefore, Ri is not a field for each i ∈ {1, 2}. Let i ∈ {1, 2}. We know from

Lemma 11 that any two members of Wi are comparable under the inclusion relation

and so, any two proper ideals of Ri are comparable under the inclusion relation.

Therefore, Ri is a chained ring.

(ii)⇒ (i) Let us denote the ring R1×R2 by T . It follows from (iii)⇒ (ii) of Proposi-

tion 3 that INC(T ) is a complete bipartite graph. Therefore, INC(T ) is complemented

and so, INC(R) is complemented.

Remark 4. In this Remark, we mention an example to illustrate that (i) ⇒ (ii) of
Proposition 11 can fail to hold if the hypothesis dimR = 0 is omitted in Proposition 11.
Let p, q be distinct prime numbers and let R = S−1Z, where S = Z\(pZ ∪ qZ). Note that
R is a principal ideal domain and Max(R) = {pR, qR}. It is verified in Example 1 that
C (R) = INC(R) is a complete bipartite graph. Hence, INC(R) is complemented. Since R
is an integral domain, 0 and 1 are the only idempotent elements of R. Therefore, (ii) of
Proposition 11 does not hold.
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Let R be a ring with |Max(R)| = 3. In Theorem 3, we characterize such rings R

whose INC graph is complemented.

Lemma 12. Let R be a ring such that |Max(R)| = 3. Let {mi|i ∈ {1, 2, 3}} denote
the set of all maximal ideals of R. If INC(R) is complemented, then mi = m2

i for each
i ∈ {1, 2, 3}.

Proof. We are assuming that INC(R) is complemented and Max(R) = {mi | i ∈
{1, 2, 3}}. We claim that mi = m2

i for each i ∈ {1, 2, 3}. Since INC(R) is comple-

mented, there exists J ∈ V (INC(R)) such that m2
1 ⊥ J in INC(R). It now follows

from Lemma 9 that m2
1J ⊆ J(R) = ∩3i=1mi. This implies that J ⊆ m2 ∩ m3. Let us

denote the ideal m1m3 by A. It is clear that A ∈ V (INC(R)). Observe that A 6⊆ m2,

whereas J ⊆ m2 and so, A 6⊆ J . Since J 6⊆ J(R), it follows that J 6⊆ m1. As A ⊆ m1,

we obtain that J 6⊆ A. Hence, A and J are adjacent in INC(R). Since m2
1 6⊆ m3,

whereas A ⊆ m3, we obtain that m2
1 6⊆ A. As m2

1 ⊥ J in INC(R), it follows that m2
1

and A cannot be adjacent in INC(R). Therefore, A = m1m3 ⊆ m2
1. We know from

[[5], Proposition 4.2] that m2
1 is a m1-primary ideal of R. As m3 6⊆ m1 =

√
m2

1, we

get that m1 ⊆ m2
1 and so, m1 = m2

1. Similarly, it can be shown that m2 = m2
2 and

m3 = m2
3.

Lemma 13. Let R be a ring such that |Max(R)| = 3. Let {mi | i ∈ {1, 2, 3}} denote
the set of all maximal ideals of R. If INC(R) is complemented, then Rmi is a field for each
i ∈ {1, 2, 3}.

Proof. We are assuming that INC(R) is complemented. We first verify that Rm1 is a

field. Since m1 6⊆ m2∪m3, there exists a ∈ m1\(m2∪m3). Note that Ra ∈ V (INC(R)).

As INC(R) is complemented, there exists J ∈ V (INC(R)) such that Ra ⊥ J in

INC(R). We know from Lemma 9 that (Ra)J ⊆ J(R) = ∩3i=1mi. Hence, we obtain

that J ⊆ m2∩m3. Let us denote the ideal m1m2 by A. It is clear that A ∈ V (INC(R)).

As J ⊆ m3 and A 6⊆ m3, we obtain that A 6⊆ J . Since J 6⊆ J(R), it follows that J 6⊆ m1

and so, J 6⊆ m1m2 = A. Hence, A and J are not comparable under the inclusion

relation and therefore, A and J are adjacent in INC(R). As a /∈ m2, it follows that

Ra 6⊆ A. Since Ra ⊥ J in INC(R), we obtain that Ra and A cannot be adjacent

in INC(R). Therefore, A = m1m2 ⊆ Ra. This implies that (m1m2)m1
⊆ (Ra)m1

⊆
(m1)m1

. From (m2)m1
= Rm1

, we get that (m1)m1
= Rm1

(a
1 ). We know from Lemma

12 that m1 = m2
1. Hence, we obtain that Rm1

(a
1 ) = (m1)m1

= (m2
1)m1

= Rm1
(a2

1 ).

Hence, a
1 = r

s
a2

1 for some r ∈ R and s ∈ R\m1. Therefore, a
1 ( 1

1 −
ra
s ) = 0

1 . Since Rm1

is quasilocal with (m1)m1 as its unique maximal ideal, it follows that 1
1 −

ra
s is a unit

in Rm1
, and so, we obtain that a

1 = 0
1 . Therefore, (m1)m1

= (0
1 ). This proves that

Rm1
is a field. Similarly, it can be shown that Rmi

is a field for each i ∈ {2, 3}.

Lemma 14. Let R = F1×F2×F3, where Fi is a field for each i ∈ {1, 2, 3}. Then INC(R)
is complemented.
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Proof. Note that Max(R) = {m1 = (0)×F2×F3,m2 = F1×(0)×F3,m3 = F1×F2×
(0)}. It is clear that J(R) = (0)×(0)×(0) and V (INC(R)) = {m1,m2,m3,m1∩m2,m2∩
m3,m1 ∩ m3}. It is clear that m1 ⊥ (m2 ∩ m3),m2 ⊥ (m1 ∩ m3), and m3 ⊥ (m1 ∩ m2)

in INC(R). This proves that INC(R) is complemented.

Theorem 3. Let R be a ring such that |Max(R)| = 3. The following statements are
equivalent:
(i) INC(R) is complemented.
(ii) R ∼= F1 × F2 × F3 as rings, where Fi is a field for each i ∈ {1, 2, 3}.

Proof. (i) ⇒ (ii) Assume that INC(R) is complemented. Let {m1,m2,m3} denote

the set of all maximal ideals of R. We know from Lemma 13 that Rmi
is a field for

each i ∈ {1, 2, 3}. Hence, (J(R))mi
= (mi)mi

= ( 0
1 ) for each i ∈ {1, 2, 3}. Therefore,

we obtain from (iii) ⇒ (i) of [[5], Proposition 3.8] that J(R) = (0). Thus ∩3i=1mi =

(0). As distinct maximal ideals of a ring are comaximal, it follows from the Chinese

remainder theorem [[5], Proposition 1.10(ii) and (iii)] that R ∼= R
m1
× R

m2
× R

m3
.

(ii) ⇒ (i) Let us denote the ring F1 × F2 × F3 by T . We know from Lemma 14

that INC(T ) is complemented. Since R ∼= T as rings, we obtain that INC(R) is

complemented.
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