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Abstract: A set S ⊆ V (G) is a semitotal dominating set of a graph G if it is a
dominating set of G and every vertex in S is within distance 2 of another vertex of S.

The semitotal domination number γt2(G) is the minimum cardinality of a semitotal
dominating set of G. We show that the semitotal domination problem is APX-complete

for bounded-degree graphs, and the semitotal domination problem in any graph of

maximum degree ∆ can be approximated with an approximation ratio of 2+ln(∆−1).
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1. Terminology and introduction

In this paper, we shall only consider graphs without multiple edges or loops or isolated

vertices. For a graph G, S ⊆ V (G), v ∈ V (G), the open neighborhood of v in S is

denoted by NS(v) (or simply N(v)), i.e. NS(v) = {u : uv ∈ E(G), u ∈ S}.
Domination and its variations in graphs have attracted considerable attention [3, 5, 6].

A set S ⊆ V (G) is a dominating set of a graph G if every vertex in V (G) \ S is

adjacent to a vertex in S. The domination number γ(G) is the minimum cardinality

of a dominating set of G. A set S ⊆ V (G) is a semitotal dominating set of a graph

G if it is a dominating set of G and every vertex in S is within distance 2 of another

vertex of S. The semitotal domination number γt2(G) is the minimum cardinality of

a semitotal dominating set of G.

The semitotal domination problem consists of finding the semitotal domination num-

ber of a graph G. It has been proved to be NP-complete and was claimed that there
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is a linear-time algorithm for trees [4]. Henning studied the semitotal domination

in cubic claw-free graphs and proposed a conjecture, and soon the conjecture was

confirmed in [8]. In this paper, we continue studying the complexity of the semitotal

domination problem and extend these studies by investigating the approximation

hardness of the semitotal domination problem in graphs.

2. NP-completeness of semitotal domination

Goddard et al. proved that the semitotal domination problem is NP-complete for

general graphs, where the semitotal domination problem is stated as follows.

Semitotal Domination Problem

Input: A graph G, and an integer k.

Question: Is there a semitotal dominating set of G with cardinality

at most k ?

We show that it is NP-complete for bipartite, or chordal, or planar graphs via reduc-

tion from the dominating set problem.

Theorem 1. The semitotal domination problem is NP-complete for bipartite, or chordal,
or planar graphs.

Proof. It is clear the semitotal domination problem is in NP, since it is easy to verify

a yes instance of the semitotal domination problem in polynomial time. Now let us

show how to transform any instance (G, k) of DOM into an instance (G′, k′) of the

semitotal domination problem so that G has a dominating set of order k if and only

if G′ has a semitotal dominating set of order k′.

Let G be an arbitrary graph, we construct a graph G′ as follows. For each vertex

v ∈ V (G), we build a star Kv
1,4 = {wv,1, wv,2, wv,3, wv,4} centered at wv,1, and add the

star Kv
1,4 and connect wv,1 to v. That is to say, V (G′) = V (G)∪{wv,1, wv,2, wv,3, wv,4 :

v ∈ V (G)}, and E(G′) = E(G) ∪ {wv,1wv,2, wv,1wv,3, wv,1wv,4, wv,1v : v ∈ V (G)}.
Suppose that G has a dominating set of D, then we have D′ = D∪{wv,1 : v ∈ V (G)}
is a semitotal dominating set of G′. It can be seen that |D′| = |D|+ |V (G)|.
Conversely, suppose that G′ has a semitotal dominating set D′. Then we can obtain

a semitotal dominating set D′′ such that |D′′| ≤ |D′| and D′′ ⊇ {wv,1 : v ∈ V (G)}
and D′′ ∩ {wv,2, wv,3, wv,4 : v ∈ V (G)} = ∅. Now, we claim that D = D′′ \ {wv,1 : v ∈
V (G)} is a dominating set of G. It can be seen that |D| = |D′′| − |V (G)|.
Since G is bipartite (resp. chordal, planar), G′ is also bipartite (resp. chordal, planar).

Note that the dominating set problem is NP-complete for bipartite, or chordal, or

planar graphs, so the semitotal dominating set problem is also NP-complete for such

graphs.



Z. Shao and P. Wu 145

3. APX-completeness of semitotal domination

The notation of L-reduction can be found in [1, 2, 7]. Given two NP optimization

problems G1 and G2 and a polynomial time transformation h from instances of G1 to

instances of G2, h is said to be an L-reduction if there are positive constants α and

β such that for every instance x of G1, we have

(1) optG1(h(x)) ≤ α · optG2(x);

(2) for every feasible solution y of h(x) with objective value mG(h(x), y) = c2 we

can in polynomial time find a solution y of x with mG1(x, y) = c1 such that

|optG1
(x)− c1| ≤ β · |optG2

(h(x))− c2|.

To show that a problem P ∈ APX is APX-complete, we need to show that there is

an L-reduction from some APX-complete problem to P. The following problem was

proved to be APX-complete (see [2]):

MIN DOM SET-B

Input: A graph G = (V,E) with degree at most B.

Solution: A dominating set S of G.

Measure: Cardinality of the dominating set S.

Now we consider the following problem with B ∈ {3, 4}:

SEMITOTAL DOM-B

Input: A graph G = (V,E) with degree at most B.

Solution: A semitotal dominating set S of G.

Measure: Cardinality of the semitotal dominating set S.

Theorem 2.
i) SEMITOTAL DOM-4 is APX-complete;
ii) SEMITOTAL DOM-3 is APX-complete.

Proof. i) It is clear that SEMITOTAL DOM-4 ∈ APX, and so we just have to show

SEMITOTAL DOM-4 is APX-hard. We will construct an L-reduction f from MIN

DOM-3 for cubic graphs to SEMITOTAL DOM-4 for graphs with maximum degree

4. Given a cubic graph G, we construct a graph G′ with maximum degree 4 in the

following way. For each vertex v with N(v) = {a, b, c}, we split the vertex v and

transform to the gadget depicted in Fig. 1 (b).
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Let D is a dominating set of G, we construct a vertex set TD of G′ in the following

way:

• If v ∈ D, then v2, v4, v6 are put to TD.

• If v /∈ D, then we have that one of {a, b, c} is in D and thus v2, v6 are put to TD.

It can be checked that TD is a semitotal dominating set of G′ and |TD| = |D| +
2|V (G)|. In particular, we have |TD∗| ≤ |D∗| + 2|V (G)|, where TD∗ is a minimum

semitotal dominating set of G′ and D∗ is a minimum dominating set of G. It is

well known that γ(G) ≥ |V (G)|
∆+1 , so we have |V (G)| ≤ 5|D∗|. Therefore, we have

|TD∗| ≤ |D∗|+ 2|V (G)| ≤ 11|D∗|.
Let TD′ be a semitotal dominating set of G′. We construct a vertex set D′ of G

as follows. Let T (v) = {v1, v2, v3, v4, v5, v6} for any v ∈ V (G) and s(v) = |T (v) ∩
TD′|. If s(v) = 3, we put v to D′. We claim that D′ is a dominating set of G.

|D′| ≤ |TD′| − 2|V (G)|. In particular, we have |D∗| ≤ |TD∗| − 2|V (G)| and thus

|D∗| = |TD∗| − 2|V (G)|. In addition, |D| − |D∗| ≤ |TD′| − |TD∗|. As a result, f is

an L-reduction with α = 11 and β = 1.

ii) It is clear that SEMITOTAL DOM-3 ∈ APX, and so we just have to show SEMI-

TOTAL DOM-3 is APX-hard. Since we have shown that SEMITOTAL DOM-4

is APX-complete, we now consider the following L-reduction g from SEMITOTAL

DOM-4 to SEMITOTAL DOM-3.

Given a graph G with maximum degree 4, we construct a graph G′ with maximum

degree 3 in the following way. For each vertex u with degree 4 and N(u) = {a, b, c, d},
we split the vertex u and transform to the gadget depicted in Fig. 1 (a). Let TD1 be

a semitotal dominating set of G, we construct a vertex set TD2 of G′ in the following

way:

• If u ∈ TD1 and d(u) ≤ 3, then u is put to TD2.

• If u ∈ TD1 and d(u) = 4, then u1, u3, u5 are put to TD2.

• If u /∈ TD1 and d(u) = 4, then u2, u3 are put to TD2.

It can be checked that TD2 is a semitotal dominating set of G′ and |TD2| = |TD1|+
2k, where k is the number of vertices with degree 4 in G. In particular, |TD2∗| =
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|TD1∗| + 2k, where TD1∗ is a minimum semitotal dominating set of G and TD2∗

is a minimum semitotal dominating set of G′. Since ∆(G) ≤ 4, we have 5|TD1| ≥
|V (G)| ≥ k, and so |TD2| ≤ |TD1|+ 2k ≤ 11|TD1|.
Let TD2 be a semitotal dominating set of G′. We construct a vertex set TD1 of

G as follows. For any u ∈ V (G) with d(u) = 4, let T (u) = {u1, u2, u3, u4, u5}
and s(u) = |T (u) ∩ TD2|. For any u ∈ V (G) with d(u) ≤ 3, let T (u) = {u} and

s(u) = |T (u) ∩ TD2|. If s(u) = 3 or s(u) = 1, we put u to TD1. We claim that TD1

is a semitotal dominating set of G. |TD1| ≤ |TD2| − 2k, where k is the number of

vertices with degree 4 in G. In particular, we have |TD1∗| ≤ |TD2∗| − 2k and thus

|TD1∗| = |TD2∗| − 2k In addition, |TD1| − |TD1∗| ≤ |TD2| − |TD2∗|. As a result, g

is an L-reduction with α = 11 and β = 1.

4. Approximation ratio of semitotal domination

Given a graph G, let v ∈ V (G) and A be a family of subset of V (G), we define

F(A, v) = {S : S ∩N [v] 6= ∅, S ∈ A} and f(A, v) = |F(A, v)|.

Algorithm 1: GreedySemiTotalDom(G);

Output: D;

begin

1: A ← {{v1}, {v2}, · · · , {vn}};
2: B ← ∅;
3: D ← ∅;
4: i← 0;

5: Ai ← A;

6: while(A 6= ∅)
7: begin

8: find a vertex v ∈ V (G) \D which maximizes f(A, v);

9: T ← {S|S ∈ A, S ∩N [v] 6= ∅};
10: A ← A \ T ;

11: if (∀b ∈ B, b ∩N [v] = ∅)
12: A ← A∪ {N [v]};
13: endif

14: B ← B ∪ {N [v]};
15: D ← D ∪ {v};
16: i← i+ 1;

17: Ai ← A;

18: end

19: g ← i;

20:end.

Remark: Although it seems that Ai is not used in Algorithm 1, it will be used

in the analysis of the approximation ratio of Algorithm 1 for finding the semitotal
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domination number of a graph in Theorem 3.

Theorem 3. The SEMITOTAL DOM in any graph G = (V,E) of maximum degree
∆(≥ 2) can be approximated with an approximation ratio of 2 + ln(∆− 1).

Proof. We proceed with some claims.

Claim 1. |Ai+1| ≤ |Ai| − 1 and Algorithm 1 can terminate within finite steps.

Proof. If ∃b ∈ B such that b ∩ N [v] 6= ∅, then we have T 6= ∅ and thus |Ai+1| ≤
|A| − |T | ≤ |Ai| − 1.

If ∀b ∈ B, b ∩N [v] = ∅, then ∀v′ ∈ N [v] we have v′ ∈ Ai. Since |N [v]| ≥ 2, we have

|T | ≥ 2 and thus |Ai+1| ≤ |Ai| − |T |+ 1 ≤ |Ai| − 1. Therefore, we have Algorithm 1

can terminate within finite steps.

Claim 2. D is a semitotal dominating set of G.

Proof. Firstly, we have ∀v ∈ V (G), there exist v′ ∈ D such that v ∈ N [v′]. Other-

wise, {v} /∈ T for any iteration of Algorithm 1 (see lines 9 and 10), since {v} ∈ A0

we have {v} ∈ Ag, a contradiction.

Secondly, we have ∀v′ ∈ D, ∃v 6= v′ such that v ∈ D and v′ ∈ N [v]. Otherwise, we

assume the vertex v′ is selected at the i-th iteration of Algorithm 1, then N [v′] ∈
Ai+1. Since Ag = ∅, we have there exists a vertex v such that N [v] ∩ N [v′] 6= ∅, a

contradiction.

Claim 3. Algorithm 1 has approximation ratio of 2 + ln(∆− 1).

Proof. Let m be the semitotal domination number of G and U = {u1, u2, · · · , um}
be a semitotal dominating set of G with |U | = m. If |A0| ≤ 2m, we have Claim 3

holds. Now we only need to consider the case |A0| > 2m.

Note that g equals |D| which is the output of Algorithm 1, we will show that g ≤
m(2 + ln(∆− 1)).

Firstly, we show that |Ai|−|Ai+1| ≥ |Ai|
m −1 if |Ai| ≥ 2m. Since U = {u1, u2, · · · , um}

is a semitotal dominating set of G, we have there exist a j such that

f(Ai, uj) ≥
|Ai|
m

> 1.

Since f(Ai, uj) is an integer, we have |Ai|
m ≥ 2 and uj /∈ Di. Now we have

m|Ai| −m|Ai+1| ≥ |Ai| −m,
(m− 1)|Ai| ≥ m|Ai+1| −m.
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Consequently,

|Ai+1| ≤ (1− 1

m
)|Ai|+ 1,

≤ (1− 1

m
)(1− 1

m
|Ai−1|+ 1) + 1,

≤ 1 +

i∑
j=1

(1− 1

m
)j + (1− 1

m
)i+1|A0|.

Since |A0| = n, we have

|Ai+1| ≤ m
(

1− (1− 1

m
)i+1

)
+ (1− 1

m
)i+1n. (1)

Since |A0| > 2m, we have there exists an integer i such that |Ai| ≥ 2m and |Ai+1| <
2m. By inequality (1), we have

2m ≤ |Ai| ≤ m
(

1− (1− 1

m
)i
)

+ (1− 1

m
)in, (2)

and thus

2 ≤
(

1− (1− 1

m
)i
)

+ (1− 1

m
)i
n

m
. (3)

Since n
m ≤ ∆ and (1− 1

m )i ≤ e− i
m , we have

i ≤ m(ln(∆− 1)). (4)

Since |Ai+1| < 2m, we have g − (i + 1) < 2m. Since g − i is an integer, we have

g ≤ i+ 2m ≤ m(2 + ln(∆− 1)).
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