Classification of rings with toroidal annihilating-ideal graph

K. Selvakumar* and P. Subbulakshmi
Department of Mathematics, Manonmaniam Sundaranar University Tirunelveli 627 012, Tamil Nadu, India
selva_158@yahoo.co.in

Received: 20 October 2017; Accepted: 2 April 2018
Published Online: 5 April 2018

Communicated by Seyed Mahmoud Sheikholeslami

Abstract

Let R be a non-domain commutative ring with identity and $\mathbb{A}^{*}(R)$ be the set of non-zero ideals with non-zero annihilators. We call an ideal I_{1} of R, an annihilating-ideal if there exists a non-zero ideal I_{2} of R such that $I_{1} I_{2}=(0)$. The annihilating-ideal graph of R is defined as the graph $\mathbb{A} \mathbb{G}(R)$ with the vertex set $\mathbb{A}^{*}(R)$ and two distinct vertices I_{1} and I_{2} are adjacent if and only if $I_{1} I_{2}=(0)$. In this paper, we characterize all commutative Artinian non-local rings R for which $\mathbb{A} \mathbb{G}(R)$ has genus one.

Keywords: Annihilating-ideal, planar graph, genus, local ring, annihilating-ideal graph

AMS Subject classification: 13A15, 05C75, 13M05, 05C10

1. Terminology and introduction

The study of algebraic structures, using the properties of graphs, became an exciting research topic in the past twenty years, leading to many fascinating results and questions. In the literature, there are many papers assigning graphs to rings, groups and semigroups, see $[3-7,11,17,22]$. For related graph, see the annihilator graph as in $[9,10]$. For recent survey article on the zero-divisor graph see [6]. In ring theory, the structure of a ring R is closely tied to ideal's behavior more than elements, and so it is deserving to define a graph with vertex set as ideals instead of elements. Recently M. Behboodi and Z. Rakeei $[12,13]$ have introduced and investigated the annihilatingideal graph of a commutative ring. For a non-domain commutative ring R, let $\mathbb{A}^{*}(R)$

[^0]be the set of non-zero ideals with non-zero annihilators. We call an ideal I_{1} of R, an annihilating-ideal if there exists a non-zero ideal I_{2} of R such that $I_{1} I_{2}=(0)$. The annihilating-ideal graph of R is defined as the graph $\mathbb{A} \mathbb{G}(R)$ with the vertex set $\mathbb{A}^{*}(R)$ and two distinct vertices I_{1} and I_{2} are adjacent if and only if $I_{1} I_{2}=(0)$. Several properties of $\mathbb{A} \mathbb{G}(R)$ were studied by the authors in $[1,2,12,13,15,19]$. In this paper, we characterize all commutative Artinian non-local rings R for which $\mathbb{A} \mathbb{G}(R)$ has genus one.
By a graph $G=(V, E)$, we mean an undirected simple graph with vertex set V and edge set E. A graph in which each pair of distinct vertices is joined by the edge is called a complete graph. We use K_{n} to denote the complete graph with n vertices. An r-partite graph is one whose vertex set can be partitioned into r subsets so that no edge has both ends in any one subset. A complete r-partite graph is one in which each vertex is joined to every vertex that is not in the same subset. The complete bipartite graph (2-partite graph) with part sizes m and n is denoted by $K_{m, n}$. The girth of G is the length of a shortest cycle in G and is denoted by $\operatorname{gr}(G)$. If G has no cycles, we define the girth of G to be infinite. A graph G is said to be planar if it can be drawn in the plane so that its edges intersect only at their ends. A subdivision of a graph is a graph obtained from it by replacing edges with pairwise internally-disjoint paths. A remarkably simple characterization of planar graphs was given by Kuratowski in 1930. Kuratowski's Theorem says that a graph G is planar if and only if it contains no subdivision of K_{5} or $K_{3,3}($ see [14, p.153]).
A minor of G is a graph obtained from G by contracting edges in G or deleting edges and isolated vertices in G. A classical theorem due to K. Wagner [21] states that a graph G is planar if and only if G does not have K_{5} or $K_{3,3}$ as a minor. It is well known that if G^{\prime} is a minor of G, then $\gamma\left(G^{\prime}\right) \leq \gamma(G)$. For $x y \in E(G)$, we denote the contracted edge by the vertex $[x, y]$. Also if H is a subgraph of G and H^{\prime} is a minor of H, then we call H^{\prime} as a minor subgraph of G.
The main objective of topological graph theory is to embed a graph into a surfaces. By a surfaces, we mean a connected two-dimensional real manifold, i.e., a connected topological space such that each point has a neighborhood homeomorphic to an open disk. It is well known that any compact surfaces is either homeomorphic to a sphere, or to a connected sum of g tori, or to a connected sum of k projective planes (see [18, Theorem 5.1]). We denote S_{g} for the surfaces formed by a connected sum of g tori. The number g is called the genus of the surfaces S_{g}. When considering the orientability, the surfaces S_{g} and sphere are among the orientable class. In this paper, we mainly focus on the orientable cases.
A simple graph which can be embedded in S_{g} but not in S_{g-1} is called a graph of genus g. The notations $\gamma(G)$ is denoted for the genus. It is easy to see that $\gamma(H) \leq \gamma(G)$ for all subgraph H of G. For details on the notion of embedding of graphs in surfaces, one can refer to A. T. White [23].
The following results about the planarity are very useful in the subsequent sections.

Theorem 1. [19] Let R be a commutative Artinian ring with identity. Then $\mathbb{A} \mathbb{G}(R)$ is planar if and only if one of the following condition holds:
(i) $R \cong F_{1} \times F_{2}$ or $R \cong F_{1} \times F_{2} \times F_{3}$ where $F_{i}, i=1,2,3$ are Fields.
(ii) $R \cong R_{1} \times R_{2}$ where $\left(R_{i}, \mathfrak{m}_{i}\right), i=1,2$ is a local ring with $\mathfrak{m}_{i} \neq\{0\}$ and one of the following condition holds:
(a) $n_{1}=2, n_{2}=3$ and \mathfrak{m}_{1} is the only non-trivial ideal in R_{1} and $\mathfrak{m}_{2}, \mathfrak{m}_{2}^{2}$ are the only non-trivial ideals in R_{2}.
(b) $n_{1}=3, n_{2}=2$ and $\mathfrak{m}_{1}, \mathfrak{m}_{1}^{2}$ are the only non-trivial ideals in R_{1} and \mathfrak{m}_{2} is the only non-trivial ideal in R_{2}.
(c) $n_{1}=n_{2}=2$ and \mathfrak{m}_{1} and \mathfrak{m}_{2} are the only non-trivial ideal in R_{1} and R_{2} respectively.
(iii) $R=R_{1} \times F_{1} \times F_{2}, n_{1}=2$ and \mathfrak{m}_{1} is the only non-trivial ideal in R_{1}.
(iv) $R=R_{1} \times F_{1}$ and one of the following holds:
(a) $n_{1}=2$ and \mathfrak{m}_{1} is the only non-trivial ideal in R_{1}.
(b) $n_{1}=3$ and $\mathfrak{m}_{1}, \mathfrak{m}_{1}^{2}$ are the only non-trivial ideals in R_{1}.
(c) $n_{1}=4$ and $\mathfrak{m}_{1}, \mathfrak{m}_{1}^{2}, \mathfrak{m}_{1}^{3}$ are the only non-trivial ideals in R_{1}.

The following results about the genus are very useful in the subsequent sections.

Lemma 1. [23] $\gamma\left(K_{n}\right)=\left\lceil\frac{1}{12}(n-3)(n-4)\right\rceil$, where $\lceil x\rceil$ is the least integer that is greater than or equal to x. In particular, $\gamma\left(K_{n}\right)=1$ if $n=5,6,7$.

Lemma 2. [23] $\gamma\left(K_{m, n}\right)=\left\lceil\frac{1}{4}(m-2)(n-2)\right\rceil$, where $\lceil x\rceil$ is the least integer that is greater than or equal to x. In particular, $\gamma\left(K_{4,4}\right)=\gamma\left(K_{3, n}\right)=1$ if $n=3,4,5,6$.

Lemma 3. [16] Suppose that H and H^{\prime} are two subgraphs of a graph G such that H and H^{\prime} are isomorphic to $K_{3,3}$ or K_{5}. If $H \cap H^{\prime}=\{v\}$, where v is a vertex of G, then $\gamma(G)>1$.

Lemma 4. [23] (Euler formula) If G is a finite connected graph with n vertices, m edges, and genus γ, then $n-m+f=2-2 \gamma$, where f is the number of faces created when G is minimally embedded on a surfaces of genus γ.

Lemma 5. [8] If G is a graph with n vertices, m edges, girth $\operatorname{gr}(G)$, and genus γ, then

$$
\frac{m(g r(G)-2)}{2 g r(G)}-\frac{n}{2}+1 \leq \gamma .
$$

2. Genus of annihilating-ideal graph

The main goal of this section is to determine all commutative Artinian non-local rings R for which $\mathbb{A} \mathbb{G}(R)$ has genus one.

Theorem 2. Let $R=F_{1} \times F_{2} \times \cdots \times F_{n}$ be a commutative ring with identity where each F_{i} is a field and $n \geq 2$. Then $\gamma(\mathbb{A} \mathbb{G}(R))=1$ if and only if $n=4$.

Proof. Assume that $\gamma(\mathbb{A} \mathbb{G}(R))=1$. Suppose $n>4$. Consider the non-trivial ideals $u_{1}=F_{1} \times(0) \times(0) \times(0) \times(0) \times \cdots \times(0), u_{2}=(0) \times F_{2} \times(0) \times(0) \times(0) \times \cdots \times(0)$, $u_{3}=F_{1} \times F_{2} \times(0) \times(0) \times(0) \times \cdots \times(0), v_{1}=(0) \times(0) \times F_{3} \times(0) \times(0) \times \cdots \times(0)$, $v_{2}=(0) \times(0) \times(0) \times F_{4} \times(0) \times \cdots \times(0), v_{3}=(0) \times(0) \times(0) \times(0) \times F_{5} \times \cdots \times(0)$, $v_{4}=(0) \times(0) \times F_{3} \times F_{4} \times(0) \times \cdots \times(0), v_{5}=(0) \times(0) \times F_{3} \times(0) \times F_{5} \times \cdots \times(0)$, $v_{6}=(0) \times(0) \times(0) \times F_{4} \times F_{5} \times \cdots \times(0), v_{7}=(0) \times(0) \times F_{3} \times F_{4} \times F_{5} \times \cdots \times(0)$ in R. Then $u_{i} v_{j}=(0)$ for every i, j and so $K_{3,7}$ is a subgraph of $\mathbb{A} \mathbb{G}(R)$. By Lemma 2, $\gamma(\mathbb{A} \mathbb{G}(R))>1$, a contradiction. Hence by Theorem $1, n=4$.

Fig 2.1: Torus embedding of $\mathbb{A} \mathbb{G}\left(F_{1} \times F_{2} \times F_{3} \times F_{4}\right)$
Converse follows from Fig 2.1.
The following two results are very useful in the subsequent sections.
Lemma 6. [20] Let (R, \mathfrak{m}) be a local ring. If $\operatorname{dim}\left(\mathfrak{m} / \mathfrak{m}^{2}\right)=1$ and for some positive integer $t, \mathfrak{m}^{t}=(0)$, then the set of all non-trivial ideals of R is the set $\left\{\mathfrak{m}^{i}: 1 \leq i<t\right\}$.

Proposition 1. [20] If (R, \mathfrak{m}) is a local ring and there is an ideal I of R such that $I \neq \mathfrak{m}^{i}$ for every i, then R has at least three distinct non-trivial ideals J, K and L such that J, K, $L \neq \mathfrak{m}^{i}$ for every i.

Theorem 3. Let $R=R_{1} \times R_{2} \times \cdots \times R_{n}$ be a commutative ring with identity where each $\left(R_{i}, \mathfrak{m}_{i}\right)$ is a local ring with $\mathfrak{m}_{i} \neq\{0\}$ and $n \geq 2$. Let n_{i} be the nilpotency of \mathfrak{m}_{i}. Then $\gamma(\mathbb{A} \mathbb{G}(R))=1$ if and only if $n=2$ and one of the following condition holds:
(i) $n_{1}=2, n_{2}=4, \mathfrak{m}_{1}$ is the only non-trivial ideal in R_{1} and $\mathfrak{m}_{2}, \mathfrak{m}_{2}^{2}, \mathfrak{m}_{2}^{3}$ are the only non-trivial ideals in R_{2};
(ii) $n_{1}=4, n_{2}=2, \mathfrak{m}_{1}, \mathfrak{m}_{1}^{2}, \mathfrak{m}_{1}^{3}$ are the only non-trivial ideals in R_{1} and \mathfrak{m}_{2} is the only non-trivial ideal in R_{2}.

Proof. Assume that $\gamma(\mathbb{A} \mathbb{G}(R))=1$. Suppose that $n>2$. Consider the non-trivial ideals $u_{1}=\mathfrak{m}_{1}^{n_{1}-1} \times(0) \times(0) \times \cdots \times(0), u_{2}=(0) \times \mathfrak{m}_{2}^{n_{2}-1} \times(0) \times \cdots \times(0), u_{3}=\mathfrak{m}_{1}^{n_{1}-1} \times$
$\mathfrak{m}_{2}^{n_{2}-1} \times \cdots \times(0), v_{1}=(0) \times(0) \times \mathfrak{m}_{3} \times(0) \cdots \times(0), v_{2}=\mathfrak{m}_{1} \times(0) \times \mathfrak{m}_{3} \times(0) \times \cdots \times(0)$, $v_{3}=(0) \times \mathfrak{m}_{2} \times \mathfrak{m}_{3} \times(0) \times \cdots \times(0), v_{4}=\mathfrak{m}_{1} \times \mathfrak{m}_{2} \times \mathfrak{m}_{3} \times(0) \times \cdots \times(0), v_{5}=(0) \times(0) \times$ $R_{3} \times(0) \times \cdots \times(0), v_{6}=\mathfrak{m}_{1} \times(0) \times R_{3} \times(0) \times \cdots \times(0), v_{7}=(0) \times \mathfrak{m}_{2} \times R_{3} \times(0) \times \cdots \times(0)$ in R. Then $u_{i} v_{j}=(0)$ for every i, j and so $K_{3,7}$ is a subgraph of $\mathbb{A} \mathbb{G}(R)$. Hence by Lemma $2, \gamma(\mathbb{A} \mathbb{G}(R))>1$, a contradiction. Hence $n=2$.
Suppose that $n_{i} \geq 3$ for every $i=1,2$. Consider the subgraph G of $\mathbb{A} \mathbb{G}(R)$ induced by the non-trivial ideals $u_{1}=(0) \times \mathfrak{m}_{2}^{n_{2}-1}, u_{2}=\mathfrak{m}_{1}^{n_{1}-1} \times(0), u_{3}=\mathfrak{m}_{1}^{n_{1}-1} \times \mathfrak{m}_{2}^{n_{2}-1}$, $v_{1}=\mathfrak{m}_{1}^{n_{1}-2} \times(0), v_{2}=(0) \times \mathfrak{m}_{2}^{n_{2}-2}, v_{3}=\mathfrak{m}_{1}^{n_{1}-2} \times \mathfrak{m}_{2}^{n_{2}-2}, v_{4}=\mathfrak{m}_{1}^{n_{1}-1} \times \mathfrak{m}_{2}^{n_{2}-2}$, $v_{5}=\mathfrak{m}_{1}^{n_{1}-2} \times \mathfrak{m}_{2}^{n_{2}-1}, x_{1}=R_{1} \times(0), x_{2}=(0) \times R_{2}, x_{3}=R_{1} \times \mathfrak{m}_{2}^{n_{2}-1}, x_{4}=$ $\mathfrak{m}_{1}^{n_{1}-1} \times R_{2}, x_{5}=R_{1} \times \mathfrak{m}_{2}^{n_{2}-2}, x_{6}=\mathfrak{m}_{1}^{n_{1}-2} \times R_{2}$ of R. Let $G^{\prime}=G-\left\{x_{3}, x_{4}, x_{5}, x_{6}\right\}-$ $\left\{u_{1} u_{2}, u_{2} u_{3}, u_{1} u_{3}, v_{1} v_{2}, v_{1} v_{4}, v_{2} v_{5}, v_{4} v_{5}\right\}$ and $G^{\prime \prime}=G^{\prime}-\left\{x_{1}, x_{2}\right\}$. Then $G^{\prime \prime} \cong K_{3,5}$ and so $\gamma\left(G^{\prime \prime}\right)=1$. Since $\gamma(G)=1$ and $\gamma\left(G^{\prime \prime}\right) \leq \gamma\left(G^{\prime}\right) \leq \gamma(G)$, we get $\gamma\left(G^{\prime}\right)=1$. Note that $\left|V\left(G^{\prime}\right)\right|=10,\left|E\left(G^{\prime}\right)\right|=20$. Then by Euler's formula, there are 10 faces when drawing G^{\prime} on a torus. Fix a representation of G^{\prime} and let $\left\{F_{1}^{\prime}, \ldots, F_{10}^{\prime}\right\}$ be the set of faces of G^{\prime} corresponding to the representation. Let $\left\{F_{1}^{\prime \prime}, \ldots, F_{n}^{\prime \prime}\right\}$ be the set of faces of $G^{\prime \prime}$ obtained by deleting x_{1}, x_{2} and all the edges incident with x_{1}, x_{2} from the representation of G^{\prime}. Notice that $G^{\prime \prime} \cong K_{3,5}$. From the fact that $n-m+f=2-2 g$, $K_{3,5}$ has 7 faces, six with 4 boundary edges and one with 6 boundary edges. So $n=7$. Moreover, for every i, each boundary of $F_{i}^{\prime \prime}$ cannot have consecutive repetition of a single edge. Therefore in $K_{3,5}$, the only way to have a closed walk of length 6 without consecutive repetition of single edge is to have 6 -cycle. Then in $K_{3,5}$, all faces boundaries are 4 -cycles but with one 6 -cycle. We may assume that the boundary of $F_{7}^{\prime \prime}$ is 6 . Now $\left\{F_{1}^{\prime}, \ldots, F_{10}^{\prime}\right\}$ can be recovered by inserting x_{1}, x_{2} and all the edges incident with x_{1}, x_{2} into the representation corresponds to $\left\{F_{1}^{\prime \prime}, \ldots, F_{7}^{\prime \prime}\right\}$.

Fig 2.2
Note that $x_{1} x_{2} \in E\left(G^{\prime}\right)$. Hence x_{1}, x_{2} should be inserted to the same face say $F_{m}^{\prime \prime}$ of $G^{\prime \prime}$ to avoid crossing. Also note that $x_{1} u_{1}, x_{1} v_{2}, x_{2} u_{2}, x_{2} v_{1} \in E\left(G^{\prime}\right)$ and therefore $u_{1}, v_{2}, u_{2}, v_{1}$ are the boundary vertices of $F_{m}^{\prime \prime}$. Consider the following edges of G : $e_{1}=x_{1} u_{1}, e_{2}=x_{1} v_{2}, e_{3}=x_{2} u_{2}, e_{4}=x_{2} v_{1}, e_{5}=x_{1} x_{2}, e_{6}=u_{1} u_{2}, e_{7}=v_{1} v_{2}$. After inserting x_{1}, x_{2} and $e_{i}, i=1$ to 5 into the face $F_{m}^{\prime \prime}, m \neq 7$, we obtain Fig 2.2(a) as above. Then the edge e_{6} can be inserted into the face $F_{7}^{\prime \prime}$. But there is no other face with v_{1} and v_{2} as the boundary vertices and so there is no way to insert the edge e_{7} without crossing in the embedding of G. After inserting x_{1}, x_{2} and $e_{i}, i=1$ to 5 into the face $F_{7}^{\prime \prime}$, we obtain Fig $2.2(b)$ as above. Then the edge e_{6} can be inserted into the face $F_{m}^{\prime \prime}$ where $m \neq 7$. But there is no other face with v_{1} and v_{2} as the
boundary vertices and so there is no way to insert the edge e_{7} without crossing in the embedding of G. Hence we conclude that $\gamma(\mathbb{A} \mathbb{G}(R))>1$, a contradiction. Hence $n_{i}=2$ for some i.
Without loss of generality, assume that $n_{1}=2$. Suppose that $n_{2}>4$. Consider the non-trivial ideals $u_{1}=(0) \times \mathfrak{m}_{2}^{n_{2}-1}, u_{2}=\mathfrak{m}_{1} \times \mathfrak{m}_{2}^{n_{2}-1}, u_{3}=\mathfrak{m}_{1} \times(0), v_{1}=(0) \times \mathfrak{m}_{2}$, $v_{2}=(0) \times \mathfrak{m}_{2}^{n_{2}-2}, v_{3}=(0) \times \mathfrak{m}_{2}^{n_{2}-3}, v_{4}=\mathfrak{m}_{1} \times \mathfrak{m}_{2}, v_{5}=\mathfrak{m}_{1} \times \mathfrak{m}_{2}^{n_{2}-2}, v_{6}=\mathfrak{m}_{1} \times \mathfrak{m}_{2}^{n_{2}-3}$ in R. Then $u_{i} v_{j}=(0)$ for every i, j so $K_{3,6}$ is a subgraph of $\mathbb{A} \mathbb{G}(R)$. Further, the subgraph K of $\mathbb{A} \mathbb{G}(R)$ induced by the vertices $\left\{u_{1}, u_{2}, u_{3}\right\}$ is $K_{3}, V(K) \subset V\left(K_{3,6}\right)$ and $E(K) \cap E\left(K_{3,6}\right)=\emptyset$. Since K_{3} cannot be embedded in the torus along with an embedding with only rectangle as faces, one cannot have an embedding of K and $K_{3,6}$ together in a torus. This implies that $\gamma(\mathbb{A} \mathbb{G}(R))>1$, a contradiction. Hence $n_{2} \leq 4$. Suppose that $n_{2}=4$. Let J_{1} be any non-trivial ideal in R_{2} such that $J_{1} \neq \mathfrak{m}_{2}^{i}$ for $i=1,2,3$. Consider the non-trivial ideals $u_{1}=(0) \times \mathfrak{m}_{2}^{3}, u_{2}=\mathfrak{m}_{1} \times \mathfrak{m}_{2}^{3}, u_{3}=\mathfrak{m}_{1} \times(0)$, $v_{1}=(0) \times \mathfrak{m}_{2}^{2}, v_{2}=\mathfrak{m}_{1} \times \mathfrak{m}_{2}^{2}, v_{3}=(0) \times \mathfrak{m}_{2}, v_{4}=\mathfrak{m}_{1} \times \mathfrak{m}_{2}, v_{5}=(0) \times J_{1}, v_{6}=\mathfrak{m}_{1} \times J_{1}$ in R. Then $u_{i} v_{j}=(0)$ for every i, j and so $K_{3,6}$ is a subgraph of $\mathbb{A} \mathbb{G}(R)$. Further, the subgraph H of $\mathbb{A} \mathbb{G}(R)$ induced by the vertices $\left\{u_{1}, u_{2}, u_{3}\right\}$ is $K_{3}, V(H) \subset V\left(K_{3,6}\right)$ and $E(H) \cap E\left(K_{3,6}\right)=\emptyset$. Since K_{3} cannot be embedded in the torus along with an embedding with only rectangle as faces, one cannot have an embedding of H and $K_{3,6}$ together in a torus. This implies that $\gamma(\mathbb{A} G(R))>1$, a contradiction. Hence $\mathfrak{m}_{2}, \mathfrak{m}_{2}^{2}, \mathfrak{m}_{2}^{3}$ are the only non-trivial ideal in R_{2}.
Let I_{1} be any non-trivial ideal in R_{1} such that $I_{1} \neq \mathfrak{m}_{1}$. Consider the non-trivial ideals $u_{1}=(0) \times \mathfrak{m}_{2}^{3}, u_{2}=\mathfrak{m}_{1} \times \mathfrak{m}_{2}^{3}, u_{3}=I_{1} \times \mathfrak{m}_{2}^{3}, v_{1}=(0) \times \mathfrak{m}_{2}^{2}, v_{2}=\mathfrak{m}_{1} \times \mathfrak{m}_{2}^{2}$, $v_{3}=I_{1} \times \mathfrak{m}_{2}^{2}, v_{4}=\mathfrak{m}_{1} \times(0), v_{5}=\mathfrak{m}_{1} \times \mathfrak{m}_{2}, v_{6}=I_{1} \times \mathfrak{m}_{2}, v_{7}=(0) \times \mathfrak{m}_{2}$ in R. Then $u_{i} v_{j}=(0)$ for every i, j and so $K_{3,7}$ is a subgraph of $\mathbb{A} \mathbb{G}(R)$. By Lemma 2, $\gamma(\mathbb{A} \mathbb{G}(R))>1$, a contradiction. Hence \mathfrak{m}_{1} is the only non-trivial ideal in R_{1}.

Fig 2.3: Torus embedding of $\mathbb{A} \mathbb{G}\left(R_{1} \times R_{2}\right)$ with $n_{1}=2$ and $n_{2}=4$

Suppose that $n_{2}=3$. Let J_{1}, J_{2}, J_{3} be the distinct non-trivial ideals in R_{2} such that
$J_{i} \neq \mathfrak{m}_{1}, \mathfrak{m}_{1}^{2},(i=1,2)$. Consider the non-trivial ideals $u_{1}=(0) \times \mathfrak{m}_{2}^{2}, u_{2}=\mathfrak{m}_{1} \times(0)$, $u_{3}=\mathfrak{m}_{1} \times \mathfrak{m}_{2}^{2}, v_{1}=(0) \times \mathfrak{m}_{2}, v_{2}=\mathfrak{m}_{1} \times \mathfrak{m}_{2}, v_{3}=(0) \times J_{1}, v_{4}=\mathfrak{m}_{1} \times J_{1}, v_{5}=(0) \times J_{2}$, $v_{6}=\mathfrak{m}_{1} \times J_{2}, v_{7}=(0) \times J_{3}$ in R. Then $u_{i} v_{j}=(0)$ for every i, j and so $K_{3,7}$ is a subgraph of $\mathbb{A} \mathbb{G}(R)$. By Lemma $2, \gamma(\mathbb{A} \mathbb{G}(R))>1$, a contradiction. Hence by Proposition 1 and Lemma $6, \mathfrak{m}_{2}, \mathfrak{m}_{2}^{2}$ are the only non-trivial ideals in R_{2}.
Let I_{1} be any non-trivial ideal in R_{1} such that $I_{1} \neq \mathfrak{m}_{1}$. Consider the non-trivial ideals $u_{1}=(0) \times \mathfrak{m}_{2}^{2}, u_{2}=\mathfrak{m}_{1} \times(0), u_{3}=I_{1} \times(0), v_{1}=(0) \times \mathfrak{m}_{2}, v_{2}=\mathfrak{m}_{1} \times \mathfrak{m}_{2}, v_{3}=I_{1} \times \mathfrak{m}_{2}$, $v_{4}=\mathfrak{m}_{1} \times \mathfrak{m}_{2}^{2}, v_{5}=I_{1} \times \mathfrak{m}_{2}^{2}, v_{6}=\left[R_{1} \times(0),(0) \times R_{2}\right]$ in R. Then $u_{i} v_{j}=(0)$ for every i, j and so $K_{3,6}$ is a subgraph of $\mathbb{A} \mathbb{G}(R)$. Further, the subgraph H of $\mathbb{A} \mathbb{G}(R)$ induced by the vertices $\left\{u_{1}, u_{2}, u_{3}\right\}$ is $K_{3}, V(H) \subset V\left(K_{3,6}\right)$ and $E(H) \cap E\left(K_{3,6}\right)=\emptyset$. Since K_{3} cannot be embedded in the torus along with an embedding with only rectangle as faces, one cannot have an embedding of H and $K_{3,6}$ together in a torus. This implies that $\gamma(\mathbb{A} \mathbb{G}(R))>1$, a contradiction. Hence \mathfrak{m}_{1} is the only non-trivial ideal in R_{1}. Therefore by Theorem $1, \gamma(\mathbb{A} G(R))=0$, a contradiction.
Suppose that $n_{2}=2$. By Proposition $1, R_{2}$ has at least 3 non-trivial ideals different from \mathfrak{m}_{2}. Let J_{1}, J_{2}, J_{3} be the distinct non-trivial ideals in R_{2} such that $J_{i} \neq \mathfrak{m}_{2}$ for all i. Consider the non-trivial ideals $u_{1}=(0) \times \mathfrak{m}_{2}, u_{2}=(0) \times J_{1}, u_{3}=(0) \times J_{2}$, $v_{1}=\mathfrak{m}_{1} \times(0), v_{2}=\mathfrak{m}_{1} \times \mathfrak{m}_{2}, v_{3}=\mathfrak{m}_{1} \times J_{1}, v_{4}=\mathfrak{m}_{1} \times J_{2}, v_{5}=R_{1} \times(0), v_{6}=R_{1} \times \mathfrak{m}_{2}$, $v_{7}=R_{1} \times J_{1}$ in R. Then $u_{i} v_{j}=(0)$ for every i, j and so $K_{3,7}$ is a subgraph of $\mathbb{A G}(R)$. By Lemma $2, \gamma(\mathbb{A} \mathbb{G}(R))>1$, a contradiction. Hence by Lemma $6, \mathfrak{m}_{2}$ is the only non-trivial ideal in R_{2}. Similarly one can prove that \mathfrak{m}_{1} is the only non-trivial ideal in R_{1}. Hence by Theorem $1, \gamma(\mathbb{A} \mathbb{G}(R))=0$, a contradiction. Similar argument for other possibilities also.
Converse follows from Fig 2.3.

Theorem 4. Let $R=R_{1} \times R_{2} \times F_{1}$ be a commutative ring with identity, where each $\left(R_{i}, \mathfrak{m}_{i}\right)$ is a local ring with $\mathfrak{m}_{i} \neq\{0\}$ and each F_{1} is a field. Let n_{i} be the nilpotency of \mathfrak{m}_{i}. Then $\gamma(\mathbb{A} \mathbb{G}(R))>1$.

Proof. Suppose that $n_{i}>2$ for some i. Let us assume that $n_{2}>2$. Consider the non-trivial ideals $u_{1}=(0) \times(0) \times F_{1}, u_{2}=\mathfrak{m}_{1}^{n_{1}-1} \times(0) \times F_{1}, u_{3}=(0) \times \mathfrak{m}_{2}^{n_{2}-1} \times F_{1}$, $u_{4}=\mathfrak{m}_{1}^{n_{1}-1} \times \mathfrak{m}_{2}^{n_{2}-1} \times F_{1}, v_{1}=\mathfrak{m}_{1} \times(0) \times(0), v_{2}=(0) \times \mathfrak{m}_{2}^{n_{2}-1} \times(0), v_{3}=$ $\mathfrak{m}_{1} \times \mathfrak{m}_{2}^{n_{2}-1} \times(0), v_{4}=(0) \times \mathfrak{m}_{2} \times(0), v_{5}=\mathfrak{m}_{1} \times \mathfrak{m}_{2} \times(0)$ in R. Then $u_{i} v_{j}=(0)$ for every i, j and so $K_{4,5}$ is a subgraph of $\mathbb{A} \mathbb{G}(R)$. By Lemma $2, \gamma(\mathbb{A} \mathbb{G}(R))>1$. Similarly one can prove that $\gamma(\mathbb{A} \mathbb{G}(R))>1$ in other possibilities also.
Suppose that $n_{1}=2$ and $n_{2}=2$. Assume that \mathfrak{m}_{1} and \mathfrak{m}_{2} are the only non-trivial ideal in R_{1} and R_{2} respectively. Consider the non-trivial ideals $u_{1}=\mathfrak{m}_{1} \times(0) \times(0)$, $u_{2}=(0) \times \mathfrak{m}_{2} \times(0), u_{3}=\mathfrak{m}_{1} \times \mathfrak{m}_{2} \times(0), v_{1}=(0) \times(0) \times F_{1}, v_{2}=\mathfrak{m}_{1} \times(0) \times F_{1}$, $v_{3}=(0) \times \mathfrak{m}_{2} \times F_{1}, v_{4}=\mathfrak{m}_{1} \times \mathfrak{m}_{2} \times F_{1}, x_{1}=R_{1} \times(0) \times(0), x_{2}=(0) \times R_{2} \times(0)$, $x_{3}=\mathfrak{m}_{1} \times R_{2} \times(0), x_{4}=R_{1} \times \mathfrak{m}_{2} \times(0), x_{5}=(0) \times R_{2} \times F_{1}, x_{6}=R_{1} \times(0) \times F_{1}$, $x_{7}=\mathfrak{m}_{1} \times R_{2} \times F_{1}, x_{8}=R_{1} \times \mathfrak{m}_{2} \times F_{1}, x_{9}=R_{1} \times R_{2} \times(0)$ of R. Let $G=\mathbb{A} \mathbb{G}(R)$, $G^{\prime}=G-\left\{x_{3}, x_{4}, x_{7}, x_{8}, x_{9}\right\}-\left\{u_{1} u_{2}, u_{2} u_{3}, u_{1} u_{3}\right\}$ and $G^{\prime \prime}=G^{\prime}-\left\{x_{1}, x_{2}, x_{5}, x_{6}\right\}$. Then $G^{\prime \prime} \cong K_{3,4}$ and so $\gamma\left(G^{\prime \prime}\right)=1$. Since $\gamma(G)=1$ and $\gamma\left(G^{\prime \prime}\right) \leq \gamma\left(G^{\prime}\right) \leq \gamma(G)$, we get $\gamma\left(G^{\prime}\right)=1$. Note that $\left|V\left(G^{\prime}\right)\right|=11,\left|E\left(G^{\prime}\right)\right|=23$. Then by Euler's formula, there are

12 faces when drawing G^{\prime} on a torus. Fix a representation of G^{\prime} and let $\left\{F_{1}^{\prime}, \ldots, F_{12}^{\prime}\right\}$ be the set of faces of G^{\prime} corresponding to the representation. Let $\left\{F_{1}^{\prime \prime}, \ldots, F_{n}^{\prime \prime}\right\}$ be the set of faces of $G^{\prime \prime}$ obtained by deleting $x_{1}, x_{2}, x_{5}, x_{6}$ and all the edges incident with $x_{1}, x_{2}, x_{5}, x_{6}$ from the representation of G^{\prime}. Notice that $G^{\prime \prime} \cong K_{3,4}$. From the fact that $n-m+f=2-2 g, K_{3,4}$ has 5 faces, one octagonal face and 4 rectangular faces, or two hexagonal faces and 3 rectangular faces. So $n=5$. Moreover, for every i, each boundary of $F_{i}^{\prime \prime}$ cannot have consecutive repetition of a single edge. Therefore in $K_{3,4}$, the only way to have a closed walk of length 6 without consecutive repetition of single edge is to have 6 -cycle and the only way to have a closed walk of length 8 without consecutive repetition of single edge is to have $8-$ cycle. Then in $K_{3,4}$, all faces boundaries are 4 -cycles but with two 6 -cycle or one 8 -cycle. Now $\left\{F_{1}^{\prime}, \ldots, F_{12}^{\prime}\right\}$ can be recovered by inserting $x_{1}, x_{2}, x_{5}, x_{6}$ and all the edges incident with $x_{1}, x_{2}, x_{5}, x_{6}$ into the representation corresponds to $\left\{F_{1}^{\prime \prime}, \ldots, F_{5}^{\prime \prime}\right\}$.

(a)

(b)

Fig 2.4

Note that $x_{1} x_{2} \in E\left(G^{\prime}\right)$. Hence x_{1}, x_{2} should be inserted to the same faces say $F_{m}^{\prime \prime}$ of $G^{\prime \prime}$ to avoid crossing. Also note that $x_{1} u_{2}, x_{1} v_{1}, x_{1} v_{3}, x_{2} u_{1}, x_{2} v_{1}, x_{2} v_{2} \in E\left(G^{\prime}\right)$ and therefore $u_{1}, u_{2}, v_{1}, v_{2}, v_{3}$ are the boundary vertices of $F_{m}^{\prime \prime}$. Consider the following edges of G. Let $e_{1}=x_{1} x_{2}, e_{2}=x_{1} u_{2}, e_{3}=x_{1} v_{1}, e_{4}=x_{1} v_{3}, e_{5}=x_{2} u_{1}, e_{6}=x_{2} v_{1}$, $e_{7}=x_{2} v_{2}, e_{8}=x_{2} x_{6}, e_{9}=x_{6} u_{2}, e_{10}=x_{1} x_{5}, e_{11}=x_{5} u_{1}$. From this, it is clear that $x_{1}, x_{2}, x_{5}, x_{6}$ should be inserted into the same face. Suppose if we insert x_{1}, x_{2}, x_{6} and $e_{i}, i=1$ to 9 in the octagonal face $F_{m}^{\prime \prime}$, then we obtain the Fig 2.4(a). However from Fig $2.4(a)$, it is clear that there is no way to insert the vertex x_{5} into the faces $F_{m}^{\prime \prime}$ without crossing in the embedding of G^{\prime}. Suppose if we insert x_{1}, x_{2}, x_{6} and e_{i}, $i=1$ to 9 in the hexagonal face $F_{n}^{\prime \prime}$, then we obtain the Fig 2.4(b). However from Fig $2.4(b)$, it is clear that there is no way to insert x_{5} into the face $F_{n}^{\prime \prime}$ without crossing in the embedding of G^{\prime}. Hence we conclude that $\gamma(\mathbb{A} \mathbb{G}(R))>1$.

Corollary 1. Let $R=R_{1} \times R_{2} \times \cdots \times R_{n} \times F_{1} \times F_{2} \times \cdots \times F_{m}$ be a commutative ring with identity, where each $\left(R_{i}, \mathfrak{m}_{i}\right)$ is a local ring with $\mathfrak{m}_{i} \neq\{0\}$ and $n \geq 2$ and each F_{j} is a field with $m \geq 1$. Let n_{i} be the nilpotency of \mathfrak{m}_{i}. Then $\gamma(\mathbb{A} \mathbb{G}(R))>1$.

Fig 2.5

Theorem 5. Let $R=R_{1} \times F_{1} \times F_{2} \times \cdots \times F_{m}$ be a commutative ring with identity, where $\left(R_{1}, \mathfrak{m}_{1}\right)$ is a local ring with $\mathfrak{m}_{1} \neq\{0\}$ and each F_{j} is a field with $m \geq 3$. Let n_{1} be the nilpotency of \mathfrak{m}_{1}. Then $\gamma(\mathbb{A} \mathbb{G}(R))>1$.

Proof. Assume that $m>2$. Consider the set $\Omega=\left\{u_{1}, u_{2}, u_{3}, v_{1}, v_{2}, v_{3}, x_{1}, x_{2}, y_{1}\right.$, $\left.y_{2}, y_{3}\right\}$ where $u_{1}=(0) \times(0) \times F_{2} \times(0) \times \cdots \times(0), u_{2}=(0) \times(0) \times(0) \times F_{3} \times \cdots \times(0)$, $u_{3}=(0) \times(0) \times F_{2} \times F_{3} \times \cdots \times(0), v_{1}=R_{1} \times(0) \times(0) \times(0) \times \cdots \times(0), v_{2}=(0) \times F_{1} \times(0) \times$ $(0) \times \cdots \times(0), v_{3}=R_{1} \times F_{1} \times(0) \times(0) \times \cdots \times(0), x_{1}=\mathfrak{m}_{1}^{n_{1}-1} \times(0) \times(0) \times(0) \times \cdots \times(0)$, $x_{2}=\mathfrak{m}_{1}^{n_{1}-1} \times F_{1} \times(0) \times(0) \times \cdots \times(0), y_{1}=\mathfrak{m}_{1} \times(0) \times F_{2} \times(0) \times \cdots \times(0)$, $y_{2}=\mathfrak{m}_{1} \times(0) \times(0) \times F_{3} \times \cdots \times(0), y_{3}=\mathfrak{m}_{1} \times(0) \times F_{2} \times F_{3} \times \cdots \times(0)$ are the non-trivial ideals in R. Then the subgraph induced by Ω contains two blocks, both isomorphic to $K_{3,3}$ as in Fig 2.5 and by Lemma 2, $\gamma\left(K_{3,3}\right)=1$. Hence by Lemma 3, $\gamma(\mathbb{A} \mathbb{G}(R))>1$.

Theorem 6. Let $R=R_{1} \times F_{1} \times F_{2}$ be a commutative ring with identity, where (R_{1}, \mathfrak{m}_{1}) is a local ring with $\mathfrak{m}_{1} \neq\{0\}$ and F_{1}, F_{2} are fields. Let n_{1} be the nilpotency of \mathfrak{m}_{1}. Then $\gamma(\mathbb{A} \mathbb{G}(R))=1$ if and only if $n_{1}=3$ and $\mathfrak{m}_{1}, \mathfrak{m}_{1}^{2}$ are the only non-trivial ideals in R_{1}.

Proof. Assume that $\gamma(\mathbb{A} \mathbb{G}(R))=1$. Suppose that $n_{1}>3$. Consider the set $\Omega_{1}=$ $\left\{u_{1}, u_{2}, u_{3}, v_{1}, v_{2}, v_{3}, x_{1}, x_{2}, y_{1}, y_{2}, y_{3}\right\}$ where $u_{1}=(0) \times F_{1} \times(0), u_{2}=(0) \times(0) \times F_{2}$, $u_{3}=(0) \times F_{1} \times F_{2}, v_{1}=R_{1} \times(0) \times(0), v_{2}=\mathfrak{m}_{1}^{n_{1}-1} \times(0) \times(0), v_{3}=\mathfrak{m}_{1} \times(0) \times(0), x_{1}=$ $\mathfrak{m}_{1}^{n_{1}-1} \times(0) \times F_{2}, x_{2}=\mathfrak{m}_{1}^{n_{1}-2} \times(0) \times F_{2}, y_{1}=\mathfrak{m}_{1}^{n_{1}-1} \times F_{1} \times(0), y_{2}=\mathfrak{m}_{1}^{n_{1}-2} \times F_{1} \times(0)$, $y_{3}=\mathfrak{m}_{1}^{n_{1}-2} \times(0) \times(0)$ are non-trivial ideals in R. Then the subgraph induced by Ω_{1} contains two blocks, both isomorphic to $K_{3,3}$ as in Fig 2.5 and by Lemma 2, $\gamma\left(K_{3,3}\right)=1$. Hence by Lemma 3, $\gamma(\mathbb{A} \mathbb{G}(R))>1$, a contradiction. Hence $n_{1} \leq 3$.
Suppose $n_{1}=3$. Let I be any non-trivial ideal in R_{1} such that $I \neq \mathfrak{m}_{1}, \mathfrak{m}_{1}^{2}$. Consider the non-trivial ideals $u_{1}=\mathfrak{m}_{1} \times(0) \times(0), u_{2}=\mathfrak{m}_{1} \times(0) \times F_{2}, u_{3}=I \times(0) \times F_{2}$, $v_{1}=\mathfrak{m}_{1}^{2} \times F_{1} \times(0), v_{2}=\mathfrak{m}_{1}^{2} \times(0) \times(0), v_{3}=(0) \times F_{1} \times(0), x_{1}=\mathfrak{m}_{1}^{2} \times(0) \times F_{2}$, $x_{2}=(0) \times(0) \times F_{2}, y_{1}=\mathfrak{m}_{1} \times F_{1} \times(0), y_{2}=I \times F_{1} \times(0), y_{3}=I \times(0) \times(0)$ in R. Then the subgraph induced by $\Omega_{2}=\left\{u_{1}, u_{2}, u_{3}, v_{1}, v_{2}, v_{3}, x_{1}, x_{2}, y_{1}, y_{2}, y_{3}\right\}$ contains two blocks, both isomorphic to $K_{3,3}$ as in Fig 2.5 and by Lemma 2, $\gamma\left(K_{3,3}\right)=1$. Hence by Lemma 3, $\gamma(\mathbb{A} \mathbb{G}(R))>1$, a contradiction. Hence $\mathfrak{m}_{1}, \mathfrak{m}_{1}^{2}$ are the only non-trivial ideals in R_{1}.

Suppose $n_{1}=2$. By Proposition 1, R_{1} has at least three distinct non-trivial ideals different from \mathfrak{m}_{1}. Let I_{1}, I_{2}, I_{3} be the distinct non-trivial ideals in R_{1} such that $I_{i} \neq \mathfrak{m}_{1}$ for all i. Consider the non-trivial ideals $u_{1}=\mathfrak{m}_{1} \times(0) \times(0), u_{2}=\mathfrak{m}_{1} \times F_{1} \times(0)$, $u_{3}=I_{1} \times F_{1} \times(0), u_{4}=(0) \times F_{1} \times(0), v_{1}=I_{1} \times(0) \times(0), v_{2}=\mathfrak{m}_{1} \times(0) \times F_{2}$, $v_{3}=I_{1} \times(0) \times F_{2}, v_{4}=(0) \times(0) \times F_{2}, v_{5}=I_{2} \times(0) \times(0), v_{6}=I_{3} \times(0) \times(0)$. Then $u_{i} v_{j}=(0)$ for every i, j and so $K_{4,5}$ is a subgraph of $\mathbb{A} \mathbb{G}(R)$. By Lemma 2, $\gamma(\mathbb{A} \mathbb{G}(R))>1$, a contradiction. Hence by Lemma $6, \mathfrak{m}_{1}$ is the only non-trivial ideal in R_{1}. Then by Theorem $1, \gamma(\mathbb{A} \mathbb{G}(R))=0$, a contradiction.

Fig 2.6: Torus embedding of $\mathbb{A} \mathbb{G}\left(R_{1} \times F_{1} \times F_{2}\right)$ with $n_{1}=3$

Converse follows from Fig 2.6.
Theorem 7. Let $R=R_{1} \times F_{1}$ be a commutative ring with identity, where each (R_{1}, \mathfrak{m}_{1}) is a local ring with $\mathfrak{m}_{1} \neq\{0\}$ and each F_{1} is a field. Let n_{1} be the nilpotency of \mathfrak{m}_{1}. Then $\gamma(\mathbb{A} \mathbb{G}(R))=1$ if and only if one of the following condition holds:
(i) $n_{1}=3$ and one of the following condition holds:
(a) R_{1} has exactly 7 distinct non-trivial ideals, say $\mathfrak{m}_{1}, \mathfrak{m}_{1}^{2}, I_{1}, I_{2}, I_{3}, I_{4}, I_{5}$ with $I_{i} \mathfrak{m}_{1} \neq(0)$ for every i and $I_{j} I_{k}=(0)$ for at most one $k \neq j$.
(b) R_{1} has exactly 6 distinct non-trivial ideals, say $\mathfrak{m}_{1}, \mathfrak{m}_{1}^{2}, I_{1}, I_{2}, I_{3}, I_{4}$ with $I_{i} \mathfrak{m}_{1} \neq$ (0) for every i and $I_{j} I_{k}=(0)$ for some $k \neq j$.
(c) R_{1} has exactly 5 distinct non-trivial ideals, say $\mathfrak{m}_{1}, \mathfrak{m}_{1}^{2}, I_{1}, I_{2}, I_{3}$ with $I_{i} \mathfrak{m}_{1}=(0)$ for some i and $I_{j} I_{k} \neq(0)$ for $k \neq j \neq i$.
(d) R_{1} has exactly 5 distinct non-trivial ideals, say $\mathfrak{m}_{1}, \mathfrak{m}_{1}^{2}, I_{1}, I_{2}, I_{3}$ with $I_{i} \mathfrak{m}_{1} \neq(0)$ for every i and $I_{j} I_{k}=(0)$ for every $k \neq j$.
(ii) $n_{1}=4$ and one of the following condition holds:
(a) R_{1} has exactly 7 distinct non-trivial ideals, say $\mathfrak{m}_{1}, \mathfrak{m}_{1}^{2}, \mathfrak{m}_{1}^{3}, I_{1}, I_{2}, I_{3}, I_{4}$ with $I_{i} \mathfrak{m}_{1} \neq(0)$ for every i and $I_{1} \mathfrak{m}_{1}^{2}=(0), I_{j} \mathfrak{m}_{1}^{2} \neq(0)$ for every $j \neq 1$ and $I_{1} I_{k} \neq(0)$ for every $k \neq 1, I_{s} I_{t}=(0)$ for at most one $t \neq s,(s, t \neq 1)$.
(b) R_{1} has exactly 7 distinct non-trivial ideals, say $\mathfrak{m}_{1}, \mathfrak{m}_{1}^{2}, \mathfrak{m}_{1}^{3}, I_{1}, I_{2}, I_{3}, I_{4}$ with $I_{i} \mathfrak{m}_{1} \neq(0), I_{i} \mathfrak{m}_{1}^{2} \neq(0)$ for every i and $I_{j} I_{k}=(0)$ for at most one $k \neq j$.
(c) R_{1} has exactly 6 distinct non-trivial ideals, say $\mathfrak{m}_{1}, \mathfrak{m}_{1}^{2}, \mathfrak{m}_{1}^{3}, I_{1}, I_{2}, I_{3}$ with $I_{i} \mathfrak{m}_{1} \neq$ (0) for every i and $I_{1} \mathfrak{m}_{1}^{2}=I_{2} \mathfrak{m}_{1}^{2}=(0), I_{3} \mathfrak{m}_{1}^{2} \neq(0)$ and $I_{1} I_{2} \neq(0), I_{j} I_{3}=(0)$ for some $j \neq 3$.
(d) R_{1} has exactly 6 distinct non-trivial ideals, say $\mathfrak{m}_{1}, \mathfrak{m}_{1}^{2}, \mathfrak{m}_{1}^{3}, I_{1}, I_{2}, I_{3}$ with $I_{i} \mathfrak{m}_{1} \neq$ (0) for every i and $I_{1} \mathfrak{m}_{1}^{2}=(0), I_{2} \mathfrak{m}_{1}^{2} \neq(0), I_{3} \mathfrak{m}_{1}^{2} \neq(0)$ and $I_{j} I_{k}=(0)$ for some $k \neq j$.
(e) R_{1} has exactly 6 distinct non-trivial ideals, say $\mathfrak{m}_{1}, \mathfrak{m}_{1}^{2}, \mathfrak{m}_{1}^{3}, I_{1}, I_{2}, I_{3}$ with $I_{i} \mathfrak{m}_{1} \neq$ (0), $I_{i} \mathfrak{m}_{1}^{2} \neq(0)$ for every i and $I_{j} I_{k}=(0)$ for some $k \neq j$.
(iii) $n_{1}=5$ and one of the following condition holds:
(a) R_{1} has exactly 7 distinct non-trivial ideals, say $\mathfrak{m}_{1}, \mathfrak{m}_{1}^{2}, \mathfrak{m}_{1}^{3}, \mathfrak{m}_{1}^{4}, I_{1}, I_{2}, I_{3}$ with $I_{i} \mathfrak{m}_{1}^{j} \neq(0)$ for every $i, j=1,2,3$ and $I_{k} I_{l}=(0)$ for at most one $k \neq l$.
(b) R_{1} has exactly 4 distinct non-trivial ideals, say $\mathfrak{m}_{1}, \mathfrak{m}_{1}^{2}, \mathfrak{m}_{1}^{3}, \mathfrak{m}_{1}^{4}$.
(iv) $n_{1}=6$ and R_{1} has exactly 5 distinct non-trivial ideals, say $\mathfrak{m}_{1}, \mathfrak{m}_{1}^{2}, \mathfrak{m}_{1}^{3}, \mathfrak{m}_{1}^{4}, \mathfrak{m}_{1}^{5}$.

Proof. Assume that $\gamma(\mathbb{A} \mathbb{G}(R))=1$. Suppose $n_{1}>6$. Consider the non-trivial ideals $u_{1}=\mathfrak{m}_{1}^{n_{1}-1} \times(0), u_{2}=\mathfrak{m}_{1}^{n_{1}-2} \times(0), u_{3}=\mathfrak{m}_{1}^{n_{1}-3} \times(0), v_{1}=(0) \times F_{1}, v_{2}=\mathfrak{m}_{1}^{n_{1}-1} \times F_{1}$, $v_{3}=\mathfrak{m}_{1}^{n_{1}-2} \times F_{1}, v_{4}=\mathfrak{m}_{1}^{n_{1}-3} \times F_{1}, v_{5}=\mathfrak{m}_{1}^{n_{1}-4} \times F_{1}, v_{6}=\mathfrak{m}_{1}^{n_{1}-4} \times(0)$ in R. Then $u_{i} v_{j}=(0)$ for every i, j and so $K_{3,6}$ is a subgraph of $\mathbb{A} \mathbb{G}(R)$. Recall that the genus of $K_{3,6}$ is one and hence one can fix an embedding of $K_{3,6}$ on the surfaces of torus. By Euler's formula, there are 9 faces in the embedding of $K_{3,6}$, say $\left\{F_{1}, \ldots, F_{9}\right\}$. Let $s_{F_{i}}$ be the length of the faces F_{i}. Note that $\sum_{i=1}^{9} s_{F_{i}}=36$ and $s_{F_{i}} \geq 4$ for every i. Thus $s_{F_{i}}=4$ for every i. Further, the subgraph H of $\mathbb{A} \mathbb{G}(R)$ induced by the vertices $\left\{u_{1}, u_{2}, u_{3}\right\}$ is $K_{3}, V(H) \subset V\left(K_{3,6}\right)$ and $E(H) \cap E\left(K_{3,6}\right)=\emptyset$. Since K_{3} cannot be embedded in the torus along with an embedding with only rectangle as faces, one cannot have an embedding of H and $K_{3,6}$ together in a torus. This implies that $\gamma(\mathbb{A} \mathbb{G}(R))>1$, a contradiction. Hence $n_{1} \leq 6$.
Case 1: $n_{1}=2$.
Suppose there is an ideal I of R_{1} such that $I \neq \mathfrak{m}_{1}$. Then by Proposition $1, R_{1}$ has at least three distinct non-trivial ideals I_{1}, I_{2} and I_{3} such that $\mathfrak{m}_{1} \notin\left\{I_{1}, I_{2}, I_{3}\right\}$. Consider the non-trivial ideals $u_{1}=\mathfrak{m}_{1} \times(0), u_{2}=I_{1} \times(0), u_{3}=I_{2} \times(0), u_{4}=I_{3} \times(0)$, $v_{1}=(0) \times F_{1}, v_{2}=\mathfrak{m}_{1} \times F_{1}, v_{3}=I_{1} \times F_{1}, v_{4}=I_{2} \times F_{1}, v_{5}=I_{3} \times F_{1}$ in R. Then $u_{i} v_{j}=(0)$ for every i, j and so $K_{4,5}$ is a subgraph of $\mathbb{A} \mathbb{G}(R)$. By Lemma 2, $\gamma(\mathbb{A} \mathbb{G}(R))>1$, a contradiction. Then by Proposition 1 and Lemma $6, \mathfrak{m}_{1}$ is the only non-trivial ideal in R_{1}. Therefore by Theorem $1, \gamma(\mathbb{A} \mathbb{G}(R))=0$, a contradiction.
Case 2: $n_{1}=3$.
Suppose there is an ideal I of R_{1} such that $I \neq \mathfrak{m}_{1}, \mathfrak{m}_{1}^{2}$. Then by Proposition 1 , R_{1} has at least three distinct non-trivial ideals different from $\mathfrak{m}_{1}, \mathfrak{m}_{1}^{2}$. Suppose that
R_{1} has at least 6 non-trivial ideals $I_{1}, I_{2}, I_{3}, I_{4}, I_{5}, I_{6}$ such that $I_{i} \neq \mathfrak{m}_{1}, \mathfrak{m}_{1}^{2}$ for $1 \leq i \leq 6$. Consider the non-trivial ideals $u_{1}=(0) \times F_{1}, u_{2}=\mathfrak{m}_{1}^{2} \times F_{1}, u_{3}=\mathfrak{m}_{1}^{2} \times(0)$, $v_{1}=\mathfrak{m}_{1} \times(0), v_{2}=I_{1} \times(0), v_{3}=I_{2} \times(0), v_{4}=I_{3} \times(0), v_{5}=I_{4} \times(0), v_{6}=I_{5} \times(0)$, $v_{7}=I_{6} \times(0)$ in R. Then $u_{i} v_{j}=(0)$ for every i, j and so $K_{3,7}$ is a subgraph of $\mathbb{A} \mathbb{G}(R)$. By Lemma $2, \gamma(\mathbb{A} \mathbb{G}(R))>1$, a contradiction. Hence R_{1} has at most 5 non-trivial ideals different from $\mathfrak{m}_{1}, \mathfrak{m}_{1}^{2}$. Then by Theorem 1 and Proposition $1,5 \leq t_{1} \leq 7$, where t_{1} is the number of non-trivial ideals in R_{1}.
Subcase 2.1. Assume that R_{1} has exactly 7 distinct non-trivial ideals, say $\mathfrak{m}_{1}, \mathfrak{m}_{1}^{2}$, $I_{1}, I_{2}, I_{3}, I_{4}, I_{5}$. Suppose $I_{i} \mathfrak{m}_{1}=(0)$ for some i. Consider the non-trivial ideals $a_{1}=(0) \times F_{1}, a_{2}=\mathfrak{m}_{1}^{2} \times F_{1}, a_{3}=I_{i} \times F_{1}, b_{1}=\mathfrak{m}_{1}^{2} \times(0), b_{2}=I_{1} \times(0), b_{3}=I_{2} \times(0)$, $b_{4}=I_{3} \times(0), b_{5}=I_{4} \times(0), b_{6}=I_{5} \times(0), b_{7}=\mathfrak{m}_{1} \times(0)$ in R. Then $a_{i} b_{j}=(0)$ for every i, j and so $K_{3,7}$ is a subgraph of $\mathbb{A} \mathbb{G}(R)$. By Lemma $2, \gamma(\mathbb{A} \mathbb{G}(R))>1$, a contradiction. Hence $I_{i} \mathfrak{m}_{1} \neq(0)$ for every i.
Suppose $I_{j} I_{k}=(0)$ for some $k \neq j$. Let us assume that $I_{1} I_{2}=(0)$ and $I_{1} I_{3}=(0)$. Consider the non-trivial ideals $u_{1}=(0) \times F_{1}, u_{2}=\mathfrak{m}_{1}^{2} \times F_{1}, u_{3}=\mathfrak{m}_{1}^{2} \times(0), v_{1}=I_{4} \times(0)$, $v_{2}=I_{5} \times(0), v_{3}=I_{1} \times(0), v_{4}=I_{2} \times(0), v_{5}=I_{3} \times(0), v_{6}=\mathfrak{m}_{1} \times(0), x_{1}=\mathfrak{m}_{1} \times F_{1}$, $x_{2}=I_{4} \times F_{1}, x_{3}=I_{1} \times F_{1}, x_{4}=I_{2} \times F_{1}, x_{5}=I_{3} \times F_{1}, x_{6}=I_{5} \times F_{1}, x_{7}=R_{1} \times(0)$ in R. Let $G=\mathbb{A} \mathbb{G}(R), G^{\prime}=G-\left\{x_{1}, x_{2}, x_{6}, x_{7}\right\}-\left\{u_{1} u_{3}, u_{2} u_{3}, v_{3} v_{4}, v_{3} v_{5}\right\}$ and $G^{\prime \prime}=G^{\prime}-\left\{x_{3}, x_{4}, x_{5}\right\}$. Then $G^{\prime \prime} \cong K_{3,6}$ and so $\gamma\left(G^{\prime \prime}\right)=1$. Since $\gamma(G)=1$ and $\gamma\left(G^{\prime \prime}\right) \leq \gamma\left(G^{\prime}\right) \leq \gamma(G)$, we get $\gamma\left(G^{\prime}\right)=1$. Note that $\left|V\left(G^{\prime}\right)\right|=12,\left|E\left(G^{\prime}\right)\right|=25$. Then by Euler's formula, there are 13 faces when drawing G^{\prime} on a torus. Fix a representation of G^{\prime} and let $\left\{F_{1}^{\prime}, \ldots, F_{13}^{\prime}\right\}$ be the set of faces of G^{\prime} corresponding to the representation. Let $\left\{F_{1}^{\prime \prime}, \ldots, F_{n}^{\prime \prime}\right\}$ be the set of faces of $G^{\prime \prime}$ obtained by deleting x_{3}, x_{4}, x_{5} and all the edges incident with x_{3}, x_{4}, x_{5} from the representation of G^{\prime}. Notice that $G^{\prime \prime} \cong K_{3,6}$. By Euler formula, $K_{3,6}$ has 9 faces. So $n=9$. Let $s_{F_{i}}$ be the length of the faces F_{i}. Note that $\sum_{i=1}^{9} s_{F_{i}}=36$ and $s_{F_{i}} \geq 4$ for every i. Thus $s_{F_{i}}=4$ for every i. Moreover, for every i, each boundary of $F_{i}^{\prime \prime}$ cannot have consecutive repetition of a single edge. Therefore in $K_{3,6}$, the only way to have a closed walk of length 4 without consecutive repetition of single edge is to have 4 -cycle. Then in $K_{3,6}$, all faces boundaries are 4 -cycles. Now $\left\{F_{1}^{\prime}, \ldots, F_{13}^{\prime}\right\}$ can be recovered by inserting x_{3}, x_{4}, x_{5} and all the edges incident with x_{3}, x_{4}, x_{5} into the representation corresponds to $\left\{F_{1}^{\prime \prime}, \ldots, F_{9}^{\prime \prime}\right\}$.

Fig 2.7
Consider the following edges of G. Let $e_{1}=x_{3} u_{3}, e_{2}=x_{3} v_{4}, e_{3}=x_{3} v_{5}, e_{4}=x_{4} u_{3}$, $e_{5}=x_{4} v_{3}, e_{6}=x_{5} u_{3}, e_{7}=x_{5} v_{3}, e_{8}=v_{3} v_{5}, e_{9}=v_{3} v_{4}$. Now if we insert the vertices x_{3}, x_{4}, x_{5} and the edges e_{i} where $1 \leq i \leq 8$ into the faces $F_{m}^{\prime \prime}$ and $F_{n}^{\prime \prime}$ in the embedding
of G, then from Fig 2.7, it is clear that v_{3}, v_{4} are in different faces and there is no other face containing v_{3} and v_{4} as boundary vertices. So there is no way to insert the edge e_{9} without crossing in the embedding of G. Hence we conclude that $\gamma(\mathbb{A} \mathbb{G}(R))>1$, a contradiction. Hence $I_{1} I_{2}=(0)$ or $I_{1} I_{3}=(0)$. Hence $I_{j} I_{k}=(0)$ for at most one $k \neq j$.

Fig 2.8: Torus embedding of $\mathbb{A G}\left(R_{1} \times F_{1}\right)$ with $n_{1}=3, I_{i} \mathfrak{m}_{1} \neq(0) \forall i, I_{1} I_{2}=(0), I_{3} I_{4}=(0)$
Subcase 2.2. Assume that R_{1} has exactly 6 distinct non-trivial ideals, say \mathfrak{m}_{1}, $\mathfrak{m}_{1}^{2}, I_{1}, I_{2}, I_{3}, I_{4}$. Suppose $I_{i} \mathfrak{m}_{1}=(0)$ for some i. Consider the non-trivial ideals $a_{1}=(0) \times F_{1}, a_{2}=\mathfrak{m}_{1}^{2} \times F_{1}, a_{3}=I_{i} \times F_{1}, a_{4}=\mathfrak{m}_{1}^{2} \times(0), b_{1}=I_{1} \times(0), b_{2}=I_{2} \times(0)$, $b_{3}=I_{3} \times(0), b_{4}=I_{4} \times(0), b_{5}=\mathfrak{m}_{1} \times(0)$ in R. Then $a_{i} b_{j}=(0)$ for every i, j and so $K_{4,5}$ is a subgraph of $\mathbb{A} \mathbb{G}(R)$. By Lemma $2, \gamma(\mathbb{A} \mathbb{G}(R))>1$, a contradiction. Hence $I_{i} \mathfrak{m}_{1} \neq(0)$ for every i.
Suppose $I_{j} I_{k}=(0)$ for every $k \neq j$. Let us assume that $I_{1} I_{2}=I_{1} I_{3}=I_{1} I_{4}=I_{2} I_{3}=$ $I_{2} I_{4}=(0)$. Consider the non-trivial ideals $u_{1}=(0) \times F_{1}, u_{2}=\mathfrak{m}_{1}^{2} \times F_{1}, u_{3}=\mathfrak{m}_{1}^{2} \times(0)$, $v_{1}=I_{1} \times(0), v_{2}=I_{2} \times(0), v_{3}=I_{3} \times(0), v_{4}=I_{4} \times(0), v_{5}=\mathfrak{m}_{1} \times(0), x_{1}=I_{1} \times F_{1}$, $x_{2}=I_{2} \times F_{1}, x_{3}=I_{3} \times F_{1}, x_{4}=I_{4} \times F_{1}, x_{5}=\mathfrak{m}_{1} \times F_{1}, x_{6}=R_{1} \times(0)$ of R. Let $G=\mathbb{A} \mathbb{G}(R), G^{\prime}=G-\left\{x_{3}, x_{4}, x_{5}, x_{6}\right\}-\left\{u_{1} u_{3}, u_{2} u_{3}, v_{1} v_{2}, v_{1} v_{3}, v_{1} v_{4}, v_{2} v_{3}, v_{2} v_{4}\right\}$ and $G^{\prime \prime}=G^{\prime}-\left\{x_{1}, x_{2}\right\}$. Then $G^{\prime \prime} \cong K_{3,5}$ and so $\gamma\left(G^{\prime \prime}\right)=1$. Since $\gamma(G)=1$ and $\gamma\left(G^{\prime \prime}\right) \leq \gamma\left(G^{\prime}\right) \leq \gamma(G)$, we get $\gamma\left(G^{\prime}\right)=1$. Note that $\left|V\left(G^{\prime}\right)\right|=10,\left|E\left(G^{\prime}\right)\right|=23$. Then by Euler's formula, there are 13 faces when drawing G^{\prime} on a torus. Fix a representation of G^{\prime} and let $\left\{F_{1}^{\prime}, \ldots, F_{13}^{\prime}\right\}$ be the set of faces of G^{\prime} corresponding to the representation. Let $\left\{F_{1}^{\prime \prime}, \ldots, F_{n}^{\prime \prime}\right\}$ be the set of faces of $G^{\prime \prime}$ obtained by deleting x_{1}, x_{2} and all the edges incident with x_{1}, x_{2} from the representation of G^{\prime}. Notice that $G^{\prime \prime} \cong K_{3,5}$. From the fact that $n-m+f=2-2 g, K_{3,5}$ has 7 faces, six with 4 boundary edges and one with 6 boundary edges. So $n=7$. Moreover, for every i, each boundary of $F_{i}^{\prime \prime}$ cannot have consecutive repetition of a single edge. Therefore in $K_{3,5}$, the only way to have a closed walk of length 6 without consecutive repetition of single edge is to have 6 -cycle. Then in $K_{3,5}$, all faces boundaries are 4 -cycles but with one 6 -cycle. We may assume that the boundary of $F_{7}^{\prime \prime}$ is 6 . Now $\left\{F_{1}^{\prime}, \ldots, F_{13}^{\prime}\right\}$
can be recovered by inserting x_{1}, x_{2} and all the edges incident with x_{1}, x_{2} into the representation corresponds to $\left\{F_{1}^{\prime \prime}, \ldots, F_{7}^{\prime \prime}\right\}$. Let $e_{1}=x_{1} u_{3}, e_{2}=x_{1} v_{2}, e_{3}=x_{1} v_{3}$, $e_{4}=x_{1} v_{4}$ be the edges incident with x_{1} and $e_{5}=x_{2} u_{3}, e_{6}=x_{2} v_{1}, e_{7}=x_{2} v_{3}$, $e_{8}=x_{2} v_{4}$ be the edges incident with x_{2}. Since the vertices x_{1} and x_{2} have three neighbors in common, they should be inserted in different faces in the embedding of G^{\prime}. Since x_{1} is adjacent to $u_{3}, v_{2}, v_{3}, v_{4}$ and x_{2} is adjacent to $u_{3}, v_{1}, v_{3}, v_{4}$, they should be inserted into the hexagonal faces. But $K_{3,5}$ contains only one hexagonal face. So there is no way to insert one of the vertices without crossing in the embedding of G^{\prime}. Hence we conclude that $\gamma(\mathbb{A} \mathbb{G}(R))>1$, a contradiction. Hence $I_{j} I_{k} \neq(0)$ for some $k \neq j$.

Fig 2.9: Torus embedding of $\mathbb{A} \mathbb{G}\left(R_{1} \times F_{1}\right)$ with $n_{1}=3, I_{i} \mathfrak{m}_{1} \neq(0)$

$$
\text { and } I_{1} I_{2}=I_{1} I_{3}=I_{1} I_{4}=I_{2} I_{3}=(0)
$$

Subcase 2.3. Assume that R_{1} has exactly 5 distinct non-trivial ideals, say $\mathfrak{m}_{1}, \mathfrak{m}_{1}^{2}$, I_{1}, I_{2}, I_{3}. Suppose $I_{i} \mathfrak{m}_{1}=(0)$ for some i. Let us assume that $I_{1} \mathfrak{m}_{1}=I_{2} \mathfrak{m}_{1}=(0)$. Consider the non-trivial ideals $c_{1}=(0) \times F_{1}, c_{2}=\mathfrak{m}_{1}^{2} \times F_{1}, c_{3}=I_{1} \times F_{1}, c_{4}=I_{2} \times F_{1}$, $d_{1}=\mathfrak{m}_{1}^{2} \times(0), d_{2}=I_{1} \times(0), d_{3}=I_{2} \times(0), d_{4}=I_{3} \times(0), d_{5}=\mathfrak{m}_{1} \times(0)$ in R. Then $c_{i} d_{j}=(0)$ for every i, j and so $K_{4,5}$ is a subgraph of $\mathbb{A} \mathbb{G}(R)$. By Lemma 2, $\gamma(\mathbb{A} \mathbb{G}(R))>1$, a contradiction. Hence $I_{i} \mathfrak{m}_{1}=(0)$ for at most one i.
Suppose that $I_{1} \mathfrak{m}_{1}=(0)$ and $I_{i} \mathfrak{m}_{1} \neq(0)$ for every $i \neq 1$. Suppose $I_{2} I_{3}=(0)$. Consider the non-trivial ideals $u_{1}=(0) \times F_{1}, u_{2}=\mathfrak{m}_{1}^{2} \times F_{1}, u_{3}=I_{1} \times F_{1}, v_{1}=$ $\mathfrak{m}_{1}^{2} \times(0), v_{2}=I_{1} \times(0), v_{3}=I_{2} \times(0), v_{4}=I_{3} \times(0), v_{5}=\mathfrak{m}_{1} \times(0), x_{1}=I_{2} \times F_{1}$, $x_{2}=I_{3} \times F_{1}, x_{3}=\mathfrak{m}_{1} \times F_{1}, x_{4}=R_{1} \times(0)$ in R. Let $G=\mathbb{A} \mathbb{G}(R), G^{\prime}=G-\left\{x_{3}, x_{4}\right\}-$ $\left\{v_{1} v_{2}, v_{1} v_{3}, v_{1} v_{4}, v_{1} v_{5}, v_{2} v_{3}, v_{2} v_{4}, v_{2} v_{5}, v_{3} v_{4}\right\}$ and $G^{\prime \prime}=G^{\prime}-\left\{x_{1}, x_{2}\right\}$. Then $G^{\prime \prime} \cong K_{3,5}$ and so $\gamma\left(G^{\prime \prime}\right)=1$. Since $\gamma(G)=1$ and $\gamma\left(G^{\prime \prime}\right) \leq \gamma\left(G^{\prime}\right) \leq \gamma(G)$, we get $\gamma\left(G^{\prime}\right)=1$. Note that $\left|V\left(G^{\prime}\right)\right|=10,\left|E\left(G^{\prime}\right)\right|=21$. Then by Euler's formula, there are 11 faces when drawing G^{\prime} on a torus. Fix a representation of G^{\prime} and let $\left\{F_{1}^{\prime}, \ldots, F_{11}^{\prime}\right\}$ be the set of faces of G^{\prime} corresponding to the representation. Let $\left\{F_{1}^{\prime \prime}, \ldots, F_{n}^{\prime \prime}\right\}$ be the set of faces of $G^{\prime \prime}$ obtained by deleting x_{1}, x_{2} and all the edges incident with x_{1}, x_{2} from the representation of G^{\prime}. Notice that $G^{\prime \prime} \cong K_{3,5}$. From the fact that $n-m+f=2-2 g$,
$K_{3,5}$ has 7 faces, six with 4 boundary edges and one with 6 boundary edges. So $n=7$. Moreover, for every i, each boundary of $F_{i}^{\prime \prime}$ cannot have consecutive repetition of a single edge. Therefore in $K_{3,5}$, the only way to have a closed walk of length 6 without consecutive repetition of single edge is to have 6 -cycle. Then in $K_{3,5}$, all faces boundaries are 4 -cycles but with one 6 -cycle. We may assume that the boundary of $F_{7}^{\prime \prime}$ is 6 . Now $\left\{F_{1}^{\prime}, \ldots, F_{11}^{\prime}\right\}$ can be recovered by inserting x_{1}, x_{2} and all the edges incident with x_{1}, x_{2} into the representation corresponds to $\left\{F_{1}^{\prime \prime}, \ldots, F_{7}^{\prime \prime}\right\}$. Consider the following edges of G^{\prime}. Let $e_{1}=x_{1} v_{1}, e_{2}=x_{1} v_{2}, e_{3}=x_{1} v_{4}, e_{4}=x_{2} v_{1}$, $e_{5}=x_{2} v_{2}, e_{6}=x_{2} v_{3}$. Since x_{1} is adjacent to v_{1}, v_{2}, v_{4} and x_{2} is adjacent to v_{1}, v_{2}, v_{3}, they should be inserted into the faces with 6 boundary edges. But in $K_{3,5}$, there is only one face with 6 boundary edges. So there is no way to insert one of the vertices x_{1}, x_{2} in the embedding of G^{\prime} without crossing. Hence we conclude that $\gamma(\mathbb{A} \mathbb{G}(R))>1$, a contradiction. Hence $I_{2} I_{3} \neq(0)$.

Fig 2.10: Torus embedding of $\mathbb{A G}\left(R_{1} \times F_{1}\right)$ with $n_{1}=3, I_{1} \mathfrak{m}_{1}=(0)$,

$$
I_{i} \mathfrak{m}_{1} \neq(0) \forall i \neq 1 \text { and } I_{2} I_{3} \neq(0)
$$

Clearly proof of $(i i)(d)$ follows from proof of $(i i)(b)$.
Case 3: Suppose $n_{1}=4$.
Suppose there is an ideal I of R_{1} such that $I \neq \mathfrak{m}_{1}^{i}$ for all $i=1,2$. Then by Proposition $1, R_{1}$ has at least three distinct non-trivial ideals different from \mathfrak{m}_{1}^{i} for all $i=1,2,3$. Suppose that R_{1} has at least 5 distinct non-trivial ideals $I_{1}, I_{2}, I_{3}, I_{4}, I_{5}$ such that $I_{i} \neq \mathfrak{m}_{1}^{j}$ for $i=1$ to 5 and $j=1$ to 3 . Consider the non-trivial ideals $u_{1}=(0) \times F_{1}$, $u_{2}=\mathfrak{m}_{1}^{3} \times F_{1}, u_{3}=\mathfrak{m}_{1}^{3} \times(0), v_{1}=\mathfrak{m}_{1}^{2} \times(0), v_{2}=\mathfrak{m}_{1} \times(0), v_{3}=I_{1} \times(0), v_{4}=I_{2} \times(0)$, $v_{5}=I_{3} \times(0), v_{6}=I_{4} \times(0), v_{7}=I_{5} \times(0)$ in R. Then $u_{i} v_{j}=(0)$ for every i, j and so $K_{3,7}$ is a subgraph of $\mathbb{A} \mathbb{G}(R)$. By Lemma $2, \gamma(\mathbb{A} \mathbb{G}(R))>1$, a contradiction. Hence R_{1} has at most 4 non-trivial ideals different from \mathfrak{m}_{1}^{i} for all $i=1,2,3$. Then by Theorem 1 and Proposition 1, $6 \leq t_{1} \leq 7$, where t_{1} is the number of non-trivial ideals in R_{1}.
Subcase 3.1. Suppose R_{1} has exactly 7 distinct non-trivial ideals, say $\mathfrak{m}_{1}, \mathfrak{m}_{1}^{2}$, $\mathfrak{m}_{1}^{3}, I_{1}, I_{2}, I_{3}, I_{4}$. Suppose $I_{i} \mathfrak{m}_{1}=(0)$ for some i. Consider the non-trivial ideals
$a_{1}=(0) \times F_{1}, a_{2}=\mathfrak{m}_{1}^{3} \times F_{1}, a_{3}=\mathfrak{m}_{1}^{3} \times(0), a_{4}=I_{i} \times F_{1}, b_{1}=\mathfrak{m}_{1}^{2} \times(0), b_{2}=\mathfrak{m}_{1} \times(0)$, $b_{3}=I_{1} \times(0), b_{4}=I_{2} \times(0), b_{5}=I_{3} \times(0)$ in R. Then $a_{i} b_{j}=(0)$ for every i, j and so $K_{4,5}$ is a subgraph of $\mathbb{A} \mathbb{G}(R)$. By Lemma $2, \gamma(\mathbb{A} \mathbb{G}(R))>1$, a contradiction. Hence $I_{i} \mathfrak{m}_{1} \neq(0)$ for every i.
Suppose that $I_{i} \mathfrak{m}_{1}^{2}=(0)$ for $i=1,2$ and $I_{j} \mathfrak{m}_{1}^{2} \neq(0)$ for $j=3,4$. Consider the non-trivial ideals $u_{1}=(0) \times F_{1}, u_{2}=\mathfrak{m}_{1}^{3} \times F_{1}, u_{3}=\mathfrak{m}_{1}^{3} \times(0), v_{1}=\mathfrak{m}_{1}^{2} \times(0)$, $v_{2}=I_{1} \times(0), v_{3}=I_{2} \times(0), v_{4}=I_{3} \times(0), v_{5}=I_{4} \times(0), v_{6}=\mathfrak{m}_{1} \times(0), x_{1}=\mathfrak{m}_{1}^{2} \times F_{1}$, $x_{2}=I_{1} \times F_{1}, x_{3}=I_{2} \times F_{1}, x_{4}=I_{3} \times F_{1}, x_{5}=I_{4} \times F_{1}, x_{6}=\mathfrak{m}_{1} \times F_{1}, x_{7}=R_{1} \times(0)$ of R. Let $G=\mathbb{A} \mathbb{G}(R), G^{\prime}=G-\left\{x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right\}-\left\{u_{1} u_{3}, u_{2} u_{3}, v_{1} v_{2}, v_{1} v_{3}\right\}$ and $G^{\prime \prime}=G^{\prime}-\left\{x_{1}\right\}$. Then $G^{\prime \prime} \cong K_{3,6}$ and so $\gamma\left(G^{\prime \prime}\right)=1$. Since $\gamma(G)=1$ and $\gamma\left(G^{\prime \prime}\right) \leq \gamma\left(G^{\prime}\right) \leq \gamma(G)$, we get $\gamma\left(G^{\prime}\right)=1$. Note that $\left|V\left(G^{\prime}\right)\right|=10,\left|E\left(G^{\prime}\right)\right|=22$. Then by Euler's formula, there are 12 faces when drawing G^{\prime} on a torus. Fix a representation of G^{\prime} and let $\left\{F_{1}^{\prime}, \ldots, F_{12}^{\prime}\right\}$ be the set of faces of G^{\prime} corresponding to the representation. Let $\left\{F_{1}^{\prime \prime}, \ldots, F_{n}^{\prime \prime}\right\}$ be the set of faces of $G^{\prime \prime}$ obtained by deleting x_{1} and all the edges incident with x_{1} from the representation of G^{\prime}. Notice that $G^{\prime \prime} \cong K_{3,6}$. By Euler formula, $K_{3,6}$ has 9 faces. So $n=9$. Let $s_{F_{i}}$ be the length of the faces F_{i}. Note that $\sum_{i=1}^{9} s_{F_{i}}=36$ and $s_{F_{i}} \geq 4$ for every i. Thus $s_{F_{i}}=4$ for every i. Moreover, for every i, each boundary of $F_{i}^{\prime \prime}$ cannot have consecutive repetition of a single edge. Therefore in $K_{3,6}$, the only way to have a closed walk of length 4 without consecutive repetition of single edge is to have 4 -cycle. Then in $K_{3,6}$, all faces boundaries are 4 -cycles. Now $\left\{F_{1}^{\prime}, \ldots, F_{12}^{\prime}\right\}$ can be recovered by inserting x_{1} and all the edges incident with x_{1} into the representation corresponds to $\left\{F_{1}^{\prime \prime}, \ldots, F_{9}^{\prime \prime}\right\}$. Also note that $x_{1} u_{3}, x_{1} v_{1}, x_{1} v_{2}, x_{1} v_{3} \in E\left(G^{\prime}\right)$ and so $u_{3}, v_{1}, v_{2}, v_{3}$ should be the boundary vertices of $F_{m}^{\prime \prime}$. Since $G^{\prime \prime} \cong K_{3,6}$ and $s_{F_{i}}=4$ for every i, there is no faces containing the vertices $u_{3}, v_{1}, v_{2}, v_{3}$. So there is no way to insert x_{1} without crossing in the embedding of G^{\prime}. Hence we conclude that $\gamma(\mathbb{A} \mathbb{G}(R))>1$, a contradiction. Hence $I_{i} \mathfrak{m}_{1}^{2}=(0)$ for at most one i.
Suppose $I_{1} \mathfrak{m}_{1}^{2}=(0)$ and $I_{i} \mathfrak{m}_{1}^{2} \neq(0)$ for every $i \neq 1$. Suppose that $I_{1} I_{2}=(0)$. Consider the non-trivial ideals $u_{1}=(0) \times F_{1}, u_{2}=\mathfrak{m}_{1}^{3} \times F_{1}, u_{3}=\mathfrak{m}_{1}^{3} \times(0), v_{1}=\mathfrak{m}_{1}^{2} \times$ (0), $v_{2}=I_{1} \times(0), v_{3}=I_{2} \times(0), v_{4}=I_{3} \times(0), v_{5}=I_{4} \times(0), v_{6}=\mathfrak{m}_{1} \times(0), x_{1}=\mathfrak{m}_{1}^{2} \times F_{1}$, $x_{2}=I_{1} \times F_{1}, x_{3}=I_{2} \times F_{1}, x_{4}=I_{3} \times F_{1}, x_{5}=I_{4} \times F_{1}, x_{6}=\mathfrak{m}_{1} \times F_{1}, x_{7}=R_{1} \times(0)$ of R. Let $G=\mathbb{A} G(R), G^{\prime}=G-\left\{x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right\}-\left\{u_{1} u_{3}, u_{2} u_{3}, v_{1} v_{2}, v_{2} v_{3}\right\}$ and $G^{\prime \prime}=G^{\prime}-\left\{x_{1}, x_{2}\right\}$. Then $G^{\prime \prime} \cong K_{3,6}$ and so $\gamma\left(G^{\prime \prime}\right)=1$. Since $\gamma(G)=1$ and $\gamma\left(G^{\prime \prime}\right) \leq \gamma\left(G^{\prime}\right) \leq \gamma(G)$, we get $\gamma\left(G^{\prime}\right)=1$. Note that $\left|V\left(G^{\prime}\right)\right|=11,\left|E\left(G^{\prime}\right)\right|=24$. Then by Euler's formula, there are 13 faces when drawing G^{\prime} on a torus. Fix a representation of G^{\prime} and let $\left\{F_{1}^{\prime}, \ldots, F_{12}^{\prime}\right\}$ be the set of faces of G^{\prime} corresponding to the representation. Let $\left\{F_{1}^{\prime \prime}, \ldots, F_{n}^{\prime \prime}\right\}$ be the set of faces of $G^{\prime \prime}$ obtained by deleting x_{1}, x_{2} and all the edges incident with x_{1}, x_{2} from the representation of G^{\prime}. Notice that $G^{\prime \prime} \cong K_{3,6}$. By Euler formula, $K_{3,6}$ has 9 faces. So $n=9$. Let $s_{F_{i}}$ be the length of the faces F_{i}. Note that $\sum_{i=1}^{9} s_{F_{i}}=36$ and $s_{F_{i}} \geq 4$ for every i. Thus $s_{F_{i}}=4$ for every i. Moreover, for every i, each boundary of $F_{i}^{\prime \prime}$ cannot have consecutive repetition of a single edge. Therefore in $K_{3,6}$, the only way to have a closed walk of length

4 without consecutive repetition of single edge is to have 4 -cycle. Then in $K_{3,6}$, all faces boundaries are 4 -cycles. Now $\left\{F_{1}^{\prime}, \ldots, F_{12}^{\prime}\right\}$ can be recovered by inserting x_{1}, x_{2} and all the edges incident with x_{1}, x_{2} into the representation corresponds to $\left\{F_{1}^{\prime \prime}, \ldots, F_{9}^{\prime \prime}\right\}$.
Consider the following edges of $G: e_{1}=x_{1} u_{3}, e_{2}=x_{1} v_{1}, e_{3}=x_{1} v_{2}, e_{4}=x_{2} u_{3}$, $e_{5}=x_{2} v_{1}, e_{6}=x_{2} v_{3}, e_{7}=v_{2} v_{3}$. After inserting x_{1}, x_{2} and $e_{i}, i=1$ to 6 into the faces $F_{m}^{\prime \prime}$ and $F_{n}^{\prime \prime}$ in the embedding of G, we obtain Fig 2.11. Then from Fig 2.11, it is clear that v_{2} and v_{3} are in different faces. So there is no way to insert the edge e_{7} without crossing in the embedding of G. Hence we conclude that $\gamma(\mathbb{A} \mathbb{G}(R))>1$, a contradiction. Hence $I_{1} I_{2} \neq(0)$. Similarly one can prove that $I_{1} I_{3} \neq(0)$ and $I_{1} I_{4} \neq(0)$.

Suppose $I_{2} I_{3}=(0)$ and $I_{2} I_{4}=(0)$. Consider the following edges of G : $e_{1}=x_{3} u_{3}$, $e_{2}=x_{3} v_{4}, e_{3}=x_{3} v_{5}, e_{4}=x_{4} u_{3}, e_{5}=x_{4} v_{3}, e_{6}=x_{5} u_{3}, e_{7}=x_{5} v_{3}, e_{8}=v_{3} v_{5}$, $e_{9}=v_{3} v_{4}$. If we insert the vertices x_{3}, x_{4}, x_{5} and the edges e_{i} where $1 \leq i \leq 8$ into the faces in the embedding of G, then from Fig 2.7, it is clear that v_{3} and v_{4} are in different faces. So there is no way to insert the edge e_{9} without crossing in the embedding of G. Hence we conclude that $\gamma(\mathbb{A} \mathbb{G}(R))>1$, a contradiction. Hence $I_{2} I_{3}=(0)$ or $I_{2} I_{4}=(0)$. By the similar argument, $I_{3} I_{4} \neq(0)$.

Fig 2.12: Torus embedding of $\mathbb{A G}\left(R_{1} \times F_{1}\right)$ with $n_{1}=4, I_{1} \mathfrak{m}_{1}^{2}=(0)$,

$$
I_{i} \mathfrak{m}_{1}^{2} \neq(0) \forall i \neq 1 \text { and } I_{2} I_{3}=(0)
$$

Suppose $I_{i} \mathfrak{m}_{1}^{2} \neq(0)$ for every i. Suppose $I_{i} I_{j}=(0)$ for some $j \neq i$. Without loss of generality, assume that $I_{1} I_{2}=(0)$ and $I_{1} I_{3}=(0)$. Consider the non-trivial ideals $u_{1}=(0) \times F_{1}, u_{2}=\mathfrak{m}_{1}^{3} \times F_{1}, u_{3}=\mathfrak{m}_{1}^{3} \times(0), v_{1}=\mathfrak{m}_{1}^{2} \times(0), v_{2}=\mathfrak{m}_{1} \times(0), v_{3}=I_{1} \times(0)$, $v_{4}=I_{2} \times(0), v_{5}=I_{3} \times(0), v_{6}=I_{4} \times(0), x_{1}=\mathfrak{m}_{1}^{2} \times F_{1}, x_{2}=\mathfrak{m}_{1} \times F_{1}, x_{3}=I_{1} \times F_{1}$, $x_{4}=I_{2} \times F_{1}, x_{5}=I_{3} \times F_{1}, x_{6}=I_{4} \times F_{1}, x_{7}=R_{1} \times(0)$ in R. Let $G=\mathbb{A} G(R)$, $G^{\prime}=G-\left\{x_{1}, x_{2}, x_{6}, x_{7}, x_{8}\right\}-\left\{u_{1} u_{3}, u_{2} u_{3}, v_{3} v_{4}, v_{3} v_{5}\right\}$ and $G^{\prime \prime}=G^{\prime}-\left\{x_{3}, x_{4}, x_{5}\right\}$. Then $G^{\prime \prime} \cong K_{3,6}$ and so $\gamma\left(G^{\prime \prime}\right)=1$. Since $\gamma(G)=1$ and $\gamma\left(G^{\prime \prime}\right) \leq \gamma\left(G^{\prime}\right) \leq \gamma(G)$, we get $\gamma\left(G^{\prime}\right)=1$. Note that $\left|V\left(G^{\prime}\right)\right|=12,\left|E\left(G^{\prime}\right)\right|=25$. Then by Euler's formula, there are 13 faces when drawing G^{\prime} on a torus. Fix a representation of G^{\prime} and let $\left\{F_{1}^{\prime}, \ldots, F_{13}^{\prime}\right\}$ be the set of faces of G^{\prime} corresponding to the representation. Let $\left\{F_{1}^{\prime \prime}, \ldots, F_{n}^{\prime \prime}\right\}$ be the set of faces of $G^{\prime \prime}$ obtained by deleting x_{3}, x_{4}, x_{5} and all the edges incident with x_{3}, x_{4}, x_{5} from the representation of G^{\prime}. Notice that $G^{\prime \prime} \cong K_{3,6}$. By Euler formula, $K_{3,6}$ has 9 faces. So $n=9$. Let $s_{F_{i}}$ be the length of the faces F_{i}. Note that $\sum_{i=1}^{9} s_{F_{i}}=36$ and $s_{F_{i}} \geq 4$ for every i. Thus $s_{F_{i}}=4$ for every i. Moreover, for every i, each boundary of $F_{i}^{\prime \prime}$ cannot have consecutive repetition of a single edge. Therefore in $K_{3,6}$, the only way to have a closed walk of length 4 without consecutive repetition of single edge is to have 4 -cycle. Then in $K_{3,6}$, all faces boundaries are $4-$ cycles. Now $\left\{F_{1}^{\prime}, \ldots, F_{13}^{\prime}\right\}$ can be recovered by inserting x_{3}, x_{4}, x_{5} and all the edges incident with x_{3}, x_{4}, x_{5} into the representation corresponds to $\left\{F_{1}^{\prime \prime}, \ldots, F_{9}^{\prime \prime}\right\}$. Consider the following edges of G : $e_{1}=x_{3} u_{3}, e_{2}=x_{3} v_{4}, e_{3}=x_{3} v_{5}, e_{4}=x_{4} u_{3}, e_{5}=x_{4} v_{3}$, $e_{6}=x_{5} u_{3}, e_{7}=x_{5} v_{3}, e_{8}=v_{3} v_{5}, e_{9}=v_{3} v_{4}$. If we insert the vertices x_{3}, x_{4}, x_{5} the edges e_{i} where $1 \leq i \leq 8$ into the faces $F_{m}^{\prime \prime}$ and $F_{n}^{\prime \prime}$ in the embedding of G, then from Fig 2.7, it is clear that v_{3} and v_{4} are in different faces. So there is no way to insert the edge e_{9} without crossing in the embedding of G. Hence we conclude that $\gamma(\mathbb{A} \mathbb{G}(R))>1$, a contradiction. Hence $I_{1} I_{2}=(0)$ or $I_{1} I_{3}=(0)$. Hence we conclude that $I_{i} I_{j}=(0)$ for at most one $j \neq i$.

Fig 2.13: Torus embedding of $\mathbb{A} \mathbb{G}\left(R_{1} \times F_{1}\right)$ with $n_{1}=4, I_{i} \mathfrak{m}_{1} \neq(0) \forall i$

$$
I_{i} \mathfrak{m}_{1}^{2} \neq(0) \forall i, I_{1} I_{2}=(0) \text { and } I_{3} I_{4}=(0)
$$

Fig 2.14
Subcase 3.2. Suppose R_{1} has exactly 6 distinct non-trivial ideals, say $\mathfrak{m}_{1}, \mathfrak{m}_{1}^{2}, \mathfrak{m}_{1}^{3}, I_{1}$, I_{2}, I_{3}. Suppose $I_{i} \mathfrak{m}_{1}=(0)$ for some i. Consider the non-trivial ideals $a_{1}=(0) \times F_{1}$, $a_{2}=\mathfrak{m}_{1}^{3} \times F_{1}, a_{3}=\mathfrak{m}_{1}^{3} \times(0), a_{4}=I_{i} \times F_{1}, b_{1}=\mathfrak{m}_{1}^{2} \times(0), b_{2}=\mathfrak{m}_{1} \times(0), b_{3}=I_{1} \times(0)$, $b_{4}=I_{2} \times(0), b_{5}=I_{3} \times(0)$ in R. Then $a_{i} b_{j}=(0)$ for every i, j and so $K_{4,5}$ is a subgraph of $\mathbb{A} \mathbb{G}(R)$. By Lemma 2, $\gamma(\mathbb{A} \mathbb{G}(R))>1$, a contradiction. Hence $I_{i} \mathfrak{m}_{1} \neq(0)$ for every i.
Suppose $I_{i} \mathfrak{m}_{1}^{2}=(0)$ for every i. Consider the set $S=\left\{c_{1}, c_{2}, c_{3}, c_{4}, d_{1}, d_{2}, d_{3}, d_{4}, d_{5}\right\}$ where $c_{1}=(0) \times F_{1}, c_{2}=\mathfrak{m}_{1}^{3} \times F_{1}, c_{3}=\mathfrak{m}_{1}^{3} \times(0), c_{4}=\mathfrak{m}_{1}^{2} \times F_{1}, d_{1}=\mathfrak{m}_{1}^{2} \times(0)$, $d_{2}=I_{1} \times(0), d_{3}=I_{2} \times(0), d_{4}=I_{3} \times(0), d_{5}=\mathfrak{m}_{1} \times(0)$ are the non-trivial ideals in R. Then the subgraph induced by S in $\mathbb{A} \mathbb{G}(R)$ contains a subgraph isomorphic to the graph given in Fig 2.14. By Lemma $5, \gamma(\mathbb{A} \mathbb{G}(R))>1$, a contradiction. Hence $I_{i} \mathfrak{m}_{1}^{2}=(0)$ for some i.
Suppose $I_{i} \mathfrak{m}_{1}^{2}=(0)$ for $i=1,2$. Suppose that $I_{1} I_{2}=(0)$. Consider the non-trivial ideals $u_{1}=(0) \times F_{1}, u_{2}=\mathfrak{m}_{1}^{3} \times F_{1}, u_{3}=\mathfrak{m}_{1}^{3} \times(0), v_{1}=\mathfrak{m}_{1}^{2} \times(0), v_{2}=I_{1} \times(0)$, $v_{3}=I_{2} \times(0), v_{4}=I_{3} \times(0), v_{5}=\mathfrak{m}_{1} \times(0), x_{1}=\mathfrak{m}_{1}^{2} \times F_{1}, x_{2}=I_{1} \times F_{1}, x_{3}=$ $I_{2} \times F_{1}, x_{4}=I_{3} \times F_{1}, x_{5}=\mathfrak{m}_{1} \times F_{1}, x_{6}=R_{1} \times(0)$ of R. Let $G=\mathbb{A} \mathbb{G}(R)$, $G^{\prime}=G-\left\{x_{3}, x_{4}, x_{5}, x_{6}\right\}-\left\{u_{1} u_{3}, u_{2} u_{3}, v_{1} v_{2}, v_{1} v_{3}, v_{2} v_{3}\right\}$ and $G^{\prime \prime}=G^{\prime}-\left\{x_{1}, x_{2}\right\}$.

Then $G^{\prime \prime} \cong K_{3,5}$ and so $\gamma\left(G^{\prime \prime}\right)=1$. Since $\gamma(G)=1$ and $\gamma\left(G^{\prime \prime}\right) \leq \gamma\left(G^{\prime}\right) \leq \gamma(G)$, we get $\gamma\left(G^{\prime}\right)=1$. Note that $\left|V\left(G^{\prime}\right)\right|=10,\left|E\left(G^{\prime}\right)\right|=22$. Then by Euler's formula, there are 12 faces when drawing G^{\prime} on a torus. Fix a representation of G^{\prime} and let $\left\{F_{1}^{\prime}, \ldots, F_{12}^{\prime}\right\}$ be the set of faces of G^{\prime} corresponding to the representation. Let $\left\{F_{1}^{\prime \prime}, \ldots, F_{n}^{\prime \prime}\right\}$ be the set of faces of $G^{\prime \prime}$ obtained by deleting x_{1}, x_{2} and all the edges incident with x_{1}, x_{2} from the representation of G^{\prime}. Notice that $G^{\prime \prime} \cong K_{3,5}$. From the fact that $n-m+f=2-2 g, K_{3,5}$ has 7 faces, six with 4 boundary edges and one with 6 boundary edges. So $n=7$. Moreover, for every i, each boundary of $F_{i}^{\prime \prime}$ cannot have consecutive repetition of a single edge. Therefore in $K_{3,5}$, the only way to have a closed walk of length 6 without consecutive repetition of single edge is to have 6 -cycle. Then in $K_{3,5}$, all faces boundaries are 4 -cycles but with one 6 -cycle. We may assume that the boundary of $F_{7}^{\prime \prime}$ is 6 . Now $\left\{F_{1}^{\prime}, \ldots, F_{12}^{\prime}\right\}$ can be recovered by inserting x_{1}, x_{2} and all the edges incident with x_{1}, x_{2} into the representation corresponds to $\left\{F_{1}^{\prime \prime}, \ldots, F_{7}^{\prime \prime}\right\}$. Let $e_{1}=x_{1} u_{3}, e_{2}=x_{1} v_{1}, e_{3}=x_{1} v_{2}$, $e_{4}=x_{1} v_{3}$ be the edges incident with x_{1} and $e_{5}=x_{2} u_{3}, e_{6}=x_{2} v_{1}, e_{7}=x_{2} v_{3}$ be the edges incident with x_{2}. Since the vertices x_{1} and x_{2} have three neighbors in common, they should be inserted in different faces in the embedding of G^{\prime}. Since x_{1} is adjacent to $u_{3}, v_{1}, v_{2}, v_{3}$, it should be inserted into the faces $F_{7}^{\prime \prime}$ and x_{2} is adjacent to u_{3}, v_{1}, v_{3}, it should be inserted into the faces $F_{m}^{\prime \prime}$ where $m \neq 7$. Since u_{1}, u_{2}, u_{3} are in $F_{7}^{\prime \prime}$, any faces of length 4 should contain two of the $u_{i}^{\prime} s$ and so from Fig 2.15, it is clear that there is no other faces $F_{m}^{\prime \prime}$ containing the vertices u_{3}, v_{1}, v_{3}. So there is no way to insert x_{2} into a faces $F_{m}^{\prime \prime}$ without crossing in the embedding of G^{\prime}. Hence we conclude that $\gamma(\mathbb{A} \mathbb{G}(R))>1$, a contradiction. Hence $I_{1} I_{2} \neq(0)$.

Fig 2.15
Suppose $I_{3} I_{j}=(0)$ for every $j \neq 3$. Let $e_{1}=x_{1} u_{3}, e_{2}=x_{1} v_{1}, e_{3}=x_{1} v_{2}, e_{4}=x_{1} v_{3}$ be the edges incident with x_{1} and $e_{5}=x_{4} u_{3}, e_{6}=x_{4} v_{2}, e_{7}=x_{4} v_{3}$ be the edges incident with x_{4}. Since the vertices x_{1} and x_{4} have three neighbors in common, they should be inserted in different faces in the embedding of G^{\prime}. Since x_{1} is adjacent to $u_{3}, v_{1}, v_{2}, v_{3}$, it should be inserted into the faces $F_{7}^{\prime \prime}$ and x_{4} is adjacent to u_{3}, v_{2}, v_{3}, it should be inserted into the faces $F_{m}^{\prime \prime}$ where $m \neq 7$. Since u_{1}, u_{2}, u_{3} are in $F_{7}^{\prime \prime}$, any faces of length 4 should contain two of the $u_{i}^{\prime} s$ and so from Fig 2.15, it is clear that there is no other faces $F_{m}^{\prime \prime}$ containing the vertices u_{3}, v_{2}, v_{3}. So there is no way to insert x_{4} into a faces $F_{m}^{\prime \prime}$ without crossing in the embedding of G^{\prime}. Hence we conclude that $\gamma(\mathbb{A} \mathbb{G}(R))>1$, a contradiction. Hence $I_{3} I_{j}=(0)$ for some $j \neq 3$.

Fig 2.16: Torus embedding of $\mathbb{A} \mathbb{G}\left(R_{1} \times F_{1}\right)$ with $n_{1}=4$,

$$
I_{1} \mathfrak{m}_{1}^{2}=I_{2} \mathfrak{m}_{1}^{2}=(0), I_{3} \mathfrak{m}_{1}^{2} \neq(0), I_{1} I_{3}=(0)
$$

Suppose $I_{1} \mathfrak{m}_{1}^{2}=(0)$ and $I_{i} \mathfrak{m}_{1}^{2} \neq(0)$ for every $i \neq 1$. Suppose that $I_{j} I_{k}=(0)$ for every $k \neq j$. Consider the non-trivial ideals $u_{1}=(0) \times F_{1}, u_{2}=\mathfrak{m}_{1}^{3} \times F_{1}$, $u_{3}=\mathfrak{m}_{1}^{3} \times(0), v_{1}=\mathfrak{m}_{1}^{2} \times(0), v_{2}=I_{1} \times(0), v_{3}=I_{2} \times(0), v_{4}=I_{3} \times(0), v_{5}=\mathfrak{m}_{1} \times(0)$, $x_{1}=\mathfrak{m}_{1}^{2} \times F_{1}, x_{2}=I_{1} \times F_{1}, x_{3}=I_{2} \times F_{1}, x_{4}=I_{3} \times F_{1}, x_{5}=\mathfrak{m}_{1} \times F_{1}, x_{6}=R_{1} \times(0)$ of R. Let $G=\mathbb{A} \mathbb{G}(R), G^{\prime}=G-\left\{x_{5}, x_{6}\right\}-\left\{u_{1} u_{3}, u_{2} u_{3}, v_{1} v_{2}, v_{2} v_{3}, v_{2} v_{4}, v_{3} v_{4}\right\}$ and $G^{\prime \prime}=G^{\prime}-\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$. Then $G^{\prime \prime} \cong K_{3,5}$ and so $\gamma\left(G^{\prime \prime}\right)=1$. Since $\gamma(G)=1$ and $\gamma\left(G^{\prime \prime}\right) \leq \gamma\left(G^{\prime}\right) \leq \gamma(G)$, we get $\gamma\left(G^{\prime}\right)=1$. Note that $\left|V\left(G^{\prime}\right)\right|=12,\left|E\left(G^{\prime}\right)\right|=28$. Then by Euler's formula, there are 16 faces when drawing G^{\prime} on a torus. Fix a representation of G^{\prime} and let $\left\{F_{1}^{\prime}, \ldots, F_{16}^{\prime}\right\}$ be the set of faces of G^{\prime} corresponding to the representation. Let $\left\{F_{1}^{\prime \prime}, \ldots, F_{n}^{\prime \prime}\right\}$ be the set of faces of $G^{\prime \prime}$ obtained by deleting $x_{1}, x_{2}, x_{3}, x_{4}$ and all the edges incident with $x_{1}, x_{2}, x_{3}, x_{4}$ from the representation of G^{\prime}. Notice that $G^{\prime \prime} \cong K_{3,5}$. From the fact that $n-m+f=2-2 g, K_{3,5}$ has 7 faces, six with 4 boundary edges and one with 6 boundary edges. So $n=7$. Moreover, for every i, each boundary of $F_{i}^{\prime \prime}$ cannot have consecutive repetition of a single edge. Therefore in $K_{3,5}$, the only way to have a closed walk of length 6 without consecutive repetition of single edge is to have 6 -cycle. Then in $K_{3,5}$, all faces boundaries are 4 -cycles but with one 6 -cycle. We may assume that the boundary of $F_{7}^{\prime \prime}$ is 6 . Now $\left\{F_{1}^{\prime}, \ldots, F_{16}^{\prime}\right\}$ can be recovered by inserting $x_{1}, x_{2}, x_{3}, x_{4}$ and all the edges incident with $x_{1}, x_{2}, x_{3}, x_{4}$ into the representation corresponds to $\left\{F_{1}^{\prime \prime}, \ldots, F_{7}^{\prime \prime}\right\}$.

Fig 2.17

Let $e_{1}=x_{1} u_{3}, e_{2}=x_{1} v_{1}, e_{3}=x_{1} v_{2}$ be the edges incident with x_{1} and $e_{4}=x_{2} u_{3}$, $e_{5}=x_{2} v_{1}, e_{6}=x_{2} v_{3}, e_{7}=x_{2} v_{4}$ be the edges incident with x_{2} and $e_{8}=x_{3} u_{3}$, $e_{9}=x_{3} v_{2}, e_{10}=x_{3} v_{4}$ be the edges incident with x_{3} and $e_{11}=x_{4} u_{3}, e_{12}=x_{4} v_{2}$, $e_{13}=x_{4} v_{3}$ be the edges incident with x_{4}. So the vertices x_{1}, x_{3}, x_{4} and x_{2} should be inserted in different faces in the embedding of G^{\prime} and u_{3}, v_{2} are the common neighbors of x_{1}, x_{3} and x_{4}. Since x_{2} is adjacent to $u_{3}, v_{1}, v_{3}, v_{4}$, it should be inserted into the faces $F_{7}^{\prime \prime}$ and x_{1} is adjacent to u_{3}, v_{1}, v_{2} and x_{3} is adjacent to u_{3}, v_{2}, v_{4} and x_{4} is adjacent to u_{3}, v_{2}, v_{3}, they should be inserted into the faces $F_{m}^{\prime \prime}$ where $m \neq 7$. After inserting $x_{1}, x_{3}, e_{1}, e_{2}, e_{3}, e_{8}, e_{9}$ and e_{10} into the faces $F_{m}^{\prime \prime}$ and $F_{n}^{\prime \prime}$ in the embedding of $G^{\prime \prime}$, we obtain Fig 2.17. From 2.17, it is clear that there is no other face containing the boundary vertices u_{3}, v_{2}, v_{3}. So there is no way to insert the vertex x_{4} and the edges e_{11}, e_{12} and e_{13} without crossing in the embedding of G^{\prime}. Hence we conclude that $\gamma(\mathbb{A} G(R))>1$, a contradiction. Hence $I_{1} I_{2} \neq(0)$ or $I_{2} I_{3} \neq(0)$ or $I_{1} I_{3} \neq(0)$.

Fig 2.18: Torus embedding of $\mathbb{A} \mathbb{G}\left(R_{1} \times F_{1}\right)$ with $n_{1}=4, I_{i} \mathfrak{m}_{1} \neq(0) \forall i$,

$$
I_{1} \mathfrak{m}_{1}^{2}=(0), I_{i} \mathfrak{m}_{1}^{2} \neq(0) \forall i \neq 1 \text { and } I_{1} I_{2}=I_{1} I_{3}=(0)
$$

Clearly proof of (ii)(e) follows from proof of (ii)(d).
Case 4. $n_{1}=5$.
Suppose there is an ideal I of R_{1} such that $I \neq \mathfrak{m}_{1}^{i}$ for all $1 \leq i \leq 4$. Then by Proposition 1, R_{1} has at least three distinct non-trivial ideals different from \mathfrak{m}_{1}^{i} for all $1 \leq i \leq 4$. Suppose that R_{1} has at least 4 non-trivial ideals $I_{1}, I_{2}, I_{3}, I_{4}$ such that $I_{i} \neq \mathfrak{m}_{1}^{j}$ for $i=1$ to 4 and $j=1$ to 4 . Consider the non-trivial ideals $u_{1}=(0) \times F_{1}$, $u_{2}=\mathfrak{m}_{1}^{4} \times F_{1}, u_{3}=\mathfrak{m}_{1}^{4} \times(0), v_{1}=\mathfrak{m}_{1}^{3} \times(0), v_{2}=\mathfrak{m}_{1}^{2} \times(0), v_{3}=\mathfrak{m}_{1} \times(0), v_{4}=I_{1} \times(0)$, $v_{5}=I_{2} \times(0), v_{6}=I_{3} \times(0), v_{7}=I_{4} \times(0)$ in R. Then $u_{i} v_{j}=(0)$ for every i, j and so $K_{3,7}$ is a subgraph of $\mathbb{A} \mathbb{G}(R)$. By Lemma $2, \gamma(\mathbb{A} \mathbb{G}(R))>1$, a contradiction. Hence R_{1} has exactly 3 non-trivial ideals different from \mathfrak{m}_{1}^{i} for all $1 \leq i \leq 4$.
Subcase 4.1. Suppose that R_{1} has exactly 3 distinct non-trivial ideals I_{1}, I_{2}, I_{3} such that $I_{i} \neq \mathfrak{m}_{1}^{j}$ for $i=1$ to 3 and $j=1$ to 4 . Suppose that $I_{i} \mathfrak{m}_{1}=(0)$ for some i. Consider the non-trivial ideals $a_{1}=(0) \times F_{1}, a_{2}=\mathfrak{m}_{1}^{4} \times F_{1}, a_{3}=\mathfrak{m}_{1}^{4} \times(0)$, $a_{4}=I_{i} \times F_{1}, b_{1}=\mathfrak{m}_{1}^{3} \times(0), b_{2}=\mathfrak{m}_{1}^{2} \times(0), b_{3}=\mathfrak{m}_{1} \times(0), b_{4}=I_{1} \times(0), b_{5}=I_{2} \times(0)$, $b_{6}=I_{3} \times(0)$ in R. Then $a_{i} b_{j}=(0)$ for every i, j and so $K_{4,6}$ is a subgraph of $\mathbb{A G}(R)$.

Therefore by Lemma $2, \gamma(\mathbb{A} \mathbb{G}(R))>1$, a contradiction. Hence $I_{i} \mathfrak{m}_{1} \neq(0)$ for every i.
Suppose that $I_{i} \mathfrak{m}_{1}^{2}=(0)$ for some i. Without loss of generality, assume that $I_{1} \mathfrak{m}_{1}^{2}=$ (0). Consider the non-trivial ideals $u_{1}=(0) \times F_{1}, u_{2}=\mathfrak{m}_{1}^{4} \times F_{1}, u_{3}=\mathfrak{m}_{1}^{4} \times(0)$, $v_{1}=\mathfrak{m}_{1}^{3} \times(0), v_{2}=\mathfrak{m}_{1}^{2} \times(0), v_{3}=\mathfrak{m}_{1} \times(0), v_{4}=I_{1} \times(0), v_{5}=I_{2} \times(0), v_{6}=$ $I_{3} \times(0), x_{1}=\mathfrak{m}_{1}^{3} \times F_{1}, x_{2}=\mathfrak{m}_{1}^{2} \times F_{1}, x_{3}=\mathfrak{m}_{1} \times F_{1}, x_{4}=I_{1} \times F_{1}, x_{5}=I_{2} \times F_{1}$, $x_{6}=I_{3} \times F_{1}, x_{7}=R_{1} \times(0)$ of R. Let $G=\mathbb{A} \mathbb{G}(R), G^{\prime}=G-\left\{x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right\}-$ $\left\{u_{1} u_{3}, u_{2} u_{3}, v_{1} v_{2}, v_{1} v_{4}, v_{2} v_{4}\right\}$ and $G^{\prime \prime}=G^{\prime}-\left\{x_{1}\right\}$. Then $G^{\prime \prime} \cong K_{3,6}$ and so $\gamma\left(G^{\prime \prime}\right)=1$. Since $\gamma(G)=1$ and $\gamma\left(G^{\prime \prime}\right) \leq \gamma\left(G^{\prime}\right) \leq \gamma(G)$, we get $\gamma\left(G^{\prime}\right)=1$. Note that $\left|V\left(G^{\prime}\right)\right|=10$, $\left|E\left(G^{\prime}\right)\right|=22$. Then by Euler's formula, there are 12 faces when drawing G^{\prime} on a torus. Fix a representation of G^{\prime} and let $\left\{F_{1}^{\prime}, \ldots, F_{12}^{\prime}\right\}$ be the set of faces of G^{\prime} corresponding to the representation. Let $\left\{F_{1}^{\prime \prime}, \ldots, F_{n}^{\prime \prime}\right\}$ be the set of faces of $G^{\prime \prime}$ obtained by deleting x_{1} and all the edges incident with x_{1} from the representation of G^{\prime}. Notice that $G^{\prime \prime} \cong K_{3,6}$. From the fact that $n-m+f=2-2 g, K_{3,6}$ has 9 faces. So $n=9$. Let $s_{F_{i}}$ be the length of the faces F_{i}. Note that $\sum_{i=1}^{9} s_{F_{i}}=36$ and $s_{F_{i}} \geq 4$ for every i. Thus $s_{F_{i}}=4$ for every i. Moreover, for every i, each boundary of $F_{i}^{\prime \prime}$ cannot have consecutive repetition of a single edge. Therefore in $K_{3,6}$, the only way to have a closed walk of length 4 without consecutive repetition of single edge is to have 4 -cycle. Then in $K_{3,6}$, all faces boundaries are 4 -cycles. Now $\left\{F_{1}^{\prime}, \ldots, F_{12}^{\prime}\right\}$ can be recovered by inserting x_{1} and all the edges incident with x_{1} into the representation corresponds to $\left\{F_{1}^{\prime \prime}, \ldots, F_{9}^{\prime \prime}\right\}$. Also note that $x_{1} u_{3}, x_{1} v_{1}, x_{2} v_{2}, x_{2} v_{4} \in E\left(G^{\prime}\right)$ and so $u_{3}, v_{1}, v_{2}, v_{4}$ should be the boundary vertices of $F_{m}^{\prime \prime}$. Since $G^{\prime \prime} \cong K_{3,6}$ and $s_{F_{i}}=4$ for every i, there is no faces containing the vertices $u_{3}, v_{1}, v_{2}, v_{4}$. So there is no way to insert x_{1} without crossing in the embedding of G^{\prime}. Hence we conclude that $\gamma(\mathbb{A} \mathbb{G}(R))>1$, a contradiction. Hence $I_{i} \mathfrak{m}_{1}^{2} \neq(0)$ for every i
Suppose that $I_{i} \mathfrak{m}_{1}^{3}=(0)$ for some i. Without loss of generality, assume that $I_{1} \mathfrak{m}_{1}^{3}=$ (0). Consider the non-trivial ideals $a_{1}=(0) \times F_{1}, a_{2}=\mathfrak{m}_{1}^{4} \times F_{1}, a_{3}=\mathfrak{m}_{1}^{4} \times(0)$, $b_{1}=\mathfrak{m}_{1}^{3} \times(0), b_{2}=\mathfrak{m}_{1}^{2} \times(0), b_{3}=I_{1} \times(0), b_{4}=\mathfrak{m}_{1} \times(0), b_{5}=I_{2} \times(0), b_{6}=I_{3} \times(0)$, $c_{1}=\mathfrak{m}_{1}^{3} \times F_{1}, c_{2}=\mathfrak{m}_{1}^{2} \times F_{1}, c_{3}=\mathfrak{m}_{1} \times F_{1}, c_{4}=I_{1} \times F_{1}, c_{5}=I_{2} \times F_{1}, c_{6}=I_{3} \times F_{1}, c_{7}=$ $R_{1} \times(0)$ of R. Let $G=\mathbb{A} \mathbb{G}(R), G^{\prime}=G-\left\{c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}\right\}-\left\{a_{1} a_{3}, a_{2} a_{3}, b_{1} b_{2}, b_{1} b_{3}\right\}$ and $G^{\prime \prime}=G^{\prime}-\left\{c_{1}\right\}$. Then $G^{\prime \prime} \cong K_{3,6}$ and so $\gamma\left(G^{\prime \prime}\right)=1$. Since $\gamma(G)=1$ and $\gamma\left(G^{\prime \prime}\right) \leq \gamma\left(G^{\prime}\right) \leq \gamma(G)$, we get $\gamma\left(G^{\prime}\right)=1$. Note that $\left|V\left(G^{\prime}\right)\right|=10,\left|E\left(G^{\prime}\right)\right|=22$. Then by Euler's formula, there are 12 faces when drawing G^{\prime} on a torus. Fix a representation of G^{\prime} and let $\left\{F_{1}^{\prime}, \ldots, F_{12}^{\prime}\right\}$ be the set of faces of G^{\prime} corresponding to the representation. Let $\left\{F_{1}^{\prime \prime}, \ldots, F_{n}^{\prime \prime}\right\}$ be the set of faces of $G^{\prime \prime}$ obtained by deleting c_{1} and all the edges incident with c_{1} from the representation of G^{\prime}. Notice that $G^{\prime \prime} \cong K_{3,6}$. From the fact that $n-m+f=2-2 g, K_{3,6}$ has 9 faces. So $n=9$. Let $s_{F_{i}}$ be the length of the faces F_{i}. Note that $\sum_{i=1}^{9} s_{F_{i}}=36$ and $s_{F_{i}} \geq 4$ for every i. Thus $s_{F_{i}}=4$ for every i. Moreover, for every i, each boundary of $F_{i}^{\prime \prime}$ cannot have consecutive repetition of a single edge. Therefore in $K_{3,6}$, the only way to have a closed walk of length 4 without consecutive repetition of single edge is to have 4 -cycle. Then in $K_{3,6}$, all faces boundaries are 4 -cycles. Now $\left\{F_{1}^{\prime}, \ldots, F_{12}^{\prime}\right\}$ can be recovered by
inserting c_{1} and all the edges incident with c_{1} into the representation corresponds to $\left\{F_{1}^{\prime \prime}, \ldots, F_{9}^{\prime \prime}\right\}$. Also note that $c_{1} a_{3}, c_{1} b_{1}, c_{2} b_{2}, c_{2} b_{3} \in E\left(G^{\prime}\right)$ and so $a_{3}, b_{1}, b_{2}, b_{3}$ should be the boundary vertices of $F_{m}^{\prime \prime}$. Since $G^{\prime \prime} \cong K_{3,6}$ and $s_{F_{i}}=4$ for every i, there is no faces containing the vertices $a_{3}, b_{1}, b_{2}, b_{3}$. So there is no way to insert c_{1} without crossing in the embedding of G^{\prime}. Hence we conclude that $\gamma(\mathbb{A} \mathbb{G}(R))>1$, a contradiction. Hence $I_{i} \mathfrak{m}_{1}^{3} \neq(0)$ for every i. Therefore I_{i} is adjacent only to \mathfrak{m}_{1}^{4} for every i.
Suppose $I_{j} I_{k}=(0)$ for some $j \neq k$. Without loss of generality, assume that $I_{1} I_{2}=(0)$ and $I_{1} I_{3}=(0)$. Consider the non-trivial ideals $u_{1}=(0) \times F_{1}, u_{2}=\mathfrak{m}_{1}^{4} \times F_{1}$, $u_{3}=\mathfrak{m}_{1}^{4} \times(0), v_{1}=\mathfrak{m}_{1}^{3} \times(0), v_{2}=\mathfrak{m}_{1}^{2} \times(0), v_{3}=I_{1} \times(0), v_{4}=\mathfrak{m}_{1} \times(0)$, $v_{5}=I_{2} \times(0), v_{6}=I_{3} \times(0), x_{1}=\mathfrak{m}_{1}^{3} \times F_{1}, x_{2}=\mathfrak{m}_{1}^{2} \times F_{1}, x_{3}=\mathfrak{m}_{1} \times F_{1}, x_{4}=I_{1} \times F_{1}$, $x_{5}=I_{2} \times F_{1}, x_{6}=I_{3} \times F_{1}, x_{7}=R_{1} \times(0)$ of R. Then $u_{i} v_{j}=(0)$ for every i, j and so $K_{3,6}$ is a subgraph of $\mathbb{A} \mathbb{G}(R)$. Let $G=\mathbb{A} \mathbb{G}(R), G^{\prime}=G-\left\{x_{1}, x_{2}, x_{3}, x_{5}, x_{6}, x_{7}\right\}-$ $\left\{u_{1} u_{3}, u_{2} u_{3}, v_{1} v_{2}, v_{3} v_{5}, v_{3} v_{6}\right\}$ and $G^{\prime \prime}=G^{\prime}-\left\{x_{4}\right\}$. Then $G^{\prime \prime} \cong K_{3,6}$ and so $\gamma\left(G^{\prime \prime}\right)=1$. Since $\gamma(G)=1$ and $\gamma\left(G^{\prime \prime}\right) \leq \gamma\left(G^{\prime}\right) \leq \gamma(G)$, we get $\gamma\left(G^{\prime}\right)=1$. Note that $\left|V\left(G^{\prime}\right)\right|=10$, $\left|E\left(G^{\prime}\right)\right|=21$. Then by Euler's formula, there are 11 faces when drawing G^{\prime} on a torus. Fix a representation of G^{\prime} and let $\left\{F_{1}^{\prime}, \ldots, F_{11}^{\prime}\right\}$ be the set of faces of G^{\prime} corresponding to the representation. Let $\left\{F_{1}^{\prime \prime}, \ldots, F_{n}^{\prime \prime}\right\}$ be the set of faces of $G^{\prime \prime}$ obtained by deleting x_{4} and all the edges incident with x_{4} from the representation of G^{\prime}. Notice that $G^{\prime \prime} \cong K_{3,6}$. From the fact that $n-m+f=2-2 g, K_{3,6}$ has 9 faces. So $n=9$. Let $s_{F_{i}}$ be the length of the faces F_{i}. Note that $\sum_{i=1}^{9} s_{F_{i}}=36$ and $s_{F_{i}} \geq 4$ for every i. Thus $s_{F_{i}}=4$ for every i. Moreover, for every i, each boundary of $F_{i}^{\prime \prime}$ cannot have consecutive repetition of a single edge. Therefore in $K_{3,6}$, the only way to have a closed walk of length 4 without consecutive repetition of single edge is to have 4 -cycle. Then in $K_{3,6}$, all faces boundaries are 4 -cycles. Now $\left\{F_{1}^{\prime}, \ldots, F_{11}^{\prime}\right\}$ can be recovered by inserting x_{4} and all the edges incident with x_{4} into the representation corresponds to $\left\{F_{1}^{\prime \prime}, \ldots, F_{9}^{\prime \prime}\right\}$.

Also note that $x_{4} u_{3}, x_{4} v_{5}, x_{4} v_{6} \in E\left(G^{\prime}\right)$ and so x_{4} should be inserted into the faces $F_{m}^{\prime \prime}$ with boundary vertices u_{3}, v_{5}, v_{6}. Consider the edges in $G: e_{1}=v_{3} v_{5}, e_{2}=v_{3} v_{6}$. If we insert the edges e_{1}, e_{2} in the embedding of G, then from Fig 2.19(b) it is clear that there is no way to insert the vertices x_{4} without crossing in the embedding of G. If we insert the vertex x_{4} and the edge e_{2} in the embedding of G^{\prime}, then from Fig 2.19 (a) it is clear that the vertex v_{3} and v_{5} are in different faces. So there is no way to
insert the edges e_{1} without crossing in the embedding of G. Hence we conclude that $\gamma(\mathbb{A} \mathbb{G}(R))>1$, a contradiction. Hence $I_{1} I_{2}=(0)$ or $I_{1} I_{3}=(0)$. That is $I_{j} I_{k}=(0)$ for at most $j \neq k$.

Fig 2.20: Torus embedding of $\mathbb{A} \mathbb{G}\left(R_{1} \times F_{1}\right)$ with $n_{1}=5$ and $I_{i} \mathfrak{m}_{1}^{j} \neq(0) \forall i, j=1,2,3$ and $I_{1} I_{2}=(0)$

Proof of iii(b) follows from proof of iii(a).

Fig 2.21: Torus embedding of $\mathbb{A} \mathbb{G}\left(R_{1} \times F_{1}\right)$ with $n_{1}=6$
Case 5. $n_{1}=6$.
Suppose there is an ideal I of R_{1} such that $I \neq \mathfrak{m}_{1}^{i}$ for $1 \leq i \leq 5$. Then by Proposition $1, R_{1}$ has at least three distinct non-trivial ideals I_{1}, I_{2} and I_{3} such that I_{1}, I_{2}, $I_{3} \neq \mathfrak{m}_{1}$. Consider the set $S=\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}, b_{7}\right\}$ where $a_{1}=(0) \times F_{1}$, $a_{2}=\mathfrak{m}_{1}^{5} \times F_{1}, a_{3}=\mathfrak{m}_{1}^{5} \times(0), b_{1}=\mathfrak{m}_{1}^{4} \times(0), b_{2}=\mathfrak{m}_{1}^{3} \times(0), b_{3}=\mathfrak{m}_{1}^{2} \times(0), b_{4}=\mathfrak{m}_{1} \times(0)$, $b_{5}=I_{1} \times(0), b_{6}=I_{2} \times(0), b_{7}=I_{3} \times(0)$ are the non-trivial ideals in R. Then $a_{i} b_{j}=(0)$
for every i, j and so $K_{3,7}$ is a subgraph of $\mathbb{A} \mathbb{G}(R)$. By Lemma $2, \gamma(\mathbb{A} \mathbb{G}(R))>1$, a contradiction. Hence $\mathfrak{m}_{1}, \mathfrak{m}_{1}^{2}, \mathfrak{m}_{1}^{3}, \mathfrak{m}_{1}^{4}, \mathfrak{m}_{1}^{5}$ are the only non-trivial ideals in R_{1}.
Converse follows from embedding given in Figs 2.8, 2.9, 2.10, 2.12, 2.13, 2.16, 2.18, 2.20, and Fig. 2.21.

ACKNOWLEDGMENTS

The authors are deeply grateful to the referee for careful reading of the manuscript and helpful suggestions. The work reported here is supported by the UGC Major Research Project (F. No. 42-8/2013(SR)) awarded to K. Selvakumar by the University Grants Commission, Government of India.

References

[1] G. Aalipour, S. Akbari, R. Nikandish, M.J. Nikmehr, and F. Shaveisi, On the coloring of the annihilating-ideal graph of a commutative ring, Discrete Math. 312 (2012), no. 17, 2620-2626.
[2] , Minimal prime ideals and cycles in annihilating-ideal graphs, Rocky Mountain J. Math. 43 (2013), no. 5, 1415-1425.
[3] M. Afkhami and K. Khashyarmanesh, The cozero-divisor graph of a commutative ring., Southeast Asian Bull. Math. 35 (2011), no. 5, 753-762.
[4] S. Akbari, A. Alilou, J. Amjadi, and S.M. Sheikholeslami, The co-annihilatingideal graphs of commutative rings, Canad. Math. Bull. 60 (2017), no. 1, 3-11.
[5] D.F. Anderson, M. Axtell, and J. Stickles, Zero-divisor graphs in commutative rings: A survey, Commutative Algebra: Noetherian and Non-Noetherian Perspectives, (M. Fontana, S. E. Kabbaj, B. Olberding, I. Swanson) Springer-Verlag, New York, Springer-Verlag, New York, 2011, pp. 23-45.
[6] D.F. Anderson and A. Badawi, The zero-divisor graph of a commutative semigroup: a survey, Groups, Modules, and Model Theory-Surveys and Recent Developments, Springer, 2017, pp. 23-39.
[7] D.F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), no. 2, 434-447.
[8] D. Archdeacon, Topological graph theory: a survey, Congr. Number. 115 (1996), 5-54.
[9] A. Badawi, On the annihilator graph of a commutative ring, Comm. Algebra 42 (2014), no. 1, 108-121.
[10] _, Recent results on the annihilator graph of a commutative ring: A survey, Nearrings, Nearfields and Related Topics, edited by K. Prasad et al., World Scientific, 2017, pp. 170-184.
[11] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), no. 1, 208-226.
[12] M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative rings I, J. Algebra Appl. 10 (2011), no. 4, 727-739.
[13] _, The annihilating-ideal graph of commutative rings II, J. Algebra Appl. 10 (2011), no. 4, $741-753$.
[14] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, vol. 290, American Elsevier, New York, 1976.
[15] T.T. Chelvam and K. Selvakumar, Central sets in the annihilating-ideal graph of commutative rings, J. Combin. Math. Combin. Comput. 88 (2014), 277-288.
[16] H.-J. Chiang-Hsieh, Classification of rings with projective zero-divisor graphs, J. Algebra 319 (2008), no. 7, 2789-2802.
[17] H.R. Maimani, M. Salimi, A. Sattari, and S. Yassemi, Comaximal graph of commutative rings, J. Algebra 319 (2008), no. 4, 1801-1808.
[18] W.S. Massey, Algebraic topology: an introduction, Harcourt, Brace \& World, Inc., New York, 1967.
[19] K. Selvakumar and P. Subbulakshmi, On the crosscap of the annihilating-ideal graph of a commutative ring, Palestine J. Math. 7 (2018), no. 1, 151-160.
[20] K. Selvakumar, P. Subbulakshmi, and J. Amjadi, On the genus of the graph associated to a commutative ring, Discrete Math. Algorithms Appl. 9 (2017), no. 5, ID: 1750058 (11 pages).
[21] K. Wagner, Ü ber eine erweiterung des satzes von kuratowski, Deutsche Math. 2 (1937), 280-285.
[22] H.-J. Wang, Graphs associated to co-maximal ideals of commutative rings, J. Algebra 320 (2008), no. 7, 2917-2933.
[23] A. T. White, Graphs, Groups and Surfaces, North-Holland, Amsterdam, 1973.

[^0]: * Corresponding Author

