Double Roman domination and domatic numbers of graphs

Lutz Volkmann

1 Lehrstuhl II für Mathematik, RWTH Aachen University, 52056 Aachen, Germany
volkm@math2.rwth-aachen.de

Received: 17 November 2017; Accepted: 6 March 2018
Published Online: 8 March 2018

Communicated by Seyed Mahmoud Sheikholeslami

Abstract: A double Roman dominating function on a graph G with vertex set $V(G)$ is defined in [4] as a function $f : V(G) \rightarrow \{0, 1, 2, 3\}$ having the property that if $f(v) = 0$, then the vertex v must have at least two neighbors assigned 2 under f or one neighbor w with $f(w) = 3$, and if $f(v) = 1$, then the vertex v must have at least one neighbor u with $f(u) \geq 2$. The weight of a double Roman dominating function f is the sum $\sum_{v \in V(G)} f(v)$, and the minimum weight of a double Roman dominating function on G is the double Roman domination number $\gamma_{dR}(G)$ of G.

A set $\{f_1, f_2, \ldots, f_d\}$ of distinct double Roman dominating functions on G with the property that $\sum_{i=1}^{d} f_i(v) \leq 3$ for each $v \in V(G)$ is called in [12] a double Roman dominating family (of functions) on G. The maximum number of functions in a double Roman dominating family on G is the double Roman domatic number of G.

In this note we continue the study of the double Roman domination and domatic numbers. In particular, we present a sharp lower bound on $\gamma_{dR}(G)$, and we determine the double Roman domination and domatic numbers of some classes of graphs.

Keywords: Domination; Double Roman domination number; Double Roman domatic number

AMS Subject classification: 05C69

1. Terminology and introduction

For notation and graph theory terminology, we in general follow Haynes, Hedetniemi and Slater [7]. Specifically, let G be a graph with vertex set $V(G) = V$ and edge set $E(G) = E$. The integers $n = n(G) = |V(G)|$ and $m = m(G) = |E(G)|$ are the order and the size of the graph G, respectively. The open neighborhood of vertex v is $N_G(v) = N(v) = \{u \in V(G) | uv \in E(G)\}$, and the closed neighborhood of v is $N_G[v] = N[v] = N(v) \cup \{v\}$. The degree of a vertex v is $d_G(v) = d(v) = |N(v)|$. The
minimum and maximum degree of a graph G are denoted by $\delta(G) = \delta$ and $\Delta(G) = \Delta$, respectively. The complement of a graph G is denoted by \overline{G}. Let K_n be the complete graph of order n and $K_{p,q}$ the complete bipartite graph with partite sets X and Y, where $|X| = p$ and $|Y| = q$. Recall that the join $G + H$ of two graphs G and H is a graph formed from disjoint copies of G and H by connecting each vertex of G to each vertex of H.

In this paper, we continue the study of Roman dominating functions and Roman domatic numbers in graphs (see, for example, [4–6, 9–12]). A double Roman dominating function (DRD function) on a graph G is defined by Beeler, Haynes and Hedetniemi in [4] as a function $f : V(G) \to \{0, 1, 2, 3\}$ having the property that if $f(v) = 0$, then the vertex v must have at least two neighbors assigned 2 under f or one neighbor w with $f(w) = 3$, and if $f(v) = 1$, then the vertex v must have at least one neighbor u with $f(u) \geq 2$. The weight of a DRD function f is the value $\omega(f) = f(V(G)) = \sum_{v \in V(G)} f(v)$. The double Roman domination number $\gamma_{dR}(G)$ equals the minimum weight of a double Roman dominating function on G, and a double Roman dominating function of G with weight $\gamma_{dR}(G)$ is called a $\gamma_{dR}(G)$-function of G. Further results on the double Roman domination number can be found in [1–3, 8]. A set $\{f_1, f_2, \ldots, f_d\}$ of distinct double Roman dominating functions on G with the property that $\sum_{i=1}^{d} f_i(v) \leq 3$ for each $v \in V(G)$ is called in [12] a double Roman dominating family (of functions) on G. The maximum number of functions in a double Roman dominating family (DRD family) on G is the double Roman domatic number of G, denoted by $d_{dR}(G)$. The double Roman domatic number is well-defined and $d_{dR}(G) \geq 1$ for each graph G since the set consisting of any DRD function forms a DRD family on G.

In this work, we study the double Roman domination and domatic numbers. In particular, we prove the lower bound $\gamma_{dR}(G) \geq \left\lceil \frac{3n(G)}{\Delta(G)+1} \right\rceil$ for each graph G with $\Delta(G) \geq 1$. Furthermore, we present some Nordhaus-Gaddum type results on the double Roman domatic number. In addition, we determine the double Roman domination and domatic numbers for some special classes of graphs.

2. A lower bound on $\gamma_{dR}(G)$

In this section, we present a lower bound on the double Roman domination number and a consequence.

Theorem 1. If G is a graph of order n and maximum degree $\Delta \geq 1$, then

$$\gamma_{dR}(G) \geq \left\lceil \frac{3n}{\Delta + 1} \right\rceil.$$

Proof. If $\Delta = 1$, then $G = pK_2 \cup qK_1$ with $p \geq 1$ and so $\gamma_{dR}(G) = 3p + 2q$. Since
\[n = 2p + q, \text{ we obtain} \]
\[
\gamma_{dR}(G) = 3p + 2q \geq \left\lceil \frac{6p + 3q}{2} \right\rceil = \left\lceil \frac{3n}{\Delta + 1} \right\rceil.
\]

Assume now that \(\Delta \geq 2 \), and let \(f \) be a \(\gamma_{dR}(G) \)-function. According to [4], we can assume, without loss of generality, that \(f(x) \in \{0, 2, 3\} \) for each vertex \(x \in V(G) \). If \(V_i \) is the set of vertices assigned \(i \) by the function \(f \), then \(\gamma_{dR}(G) = 2|V_2| + 3|V_3| \) and \(n = |V_0| + |V_2| + |V_3| \). Since each vertex of \(V_0 \) is adjacent to at least one vertex of \(V_3 \) or to at least two vertices of \(V_2 \), we deduce that
\[
|V_0| \leq \frac{\Delta}{2}|V_2| + \Delta|V_3|.
\]

It follows that
\[
(\Delta + 1)\gamma_{dR}(G) = (\Delta + 1)(2|V_2| + 3|V_3|)
\]
\[
= 3\Delta|V_3| + \frac{3\Delta}{2}|V_2| + 3|V_3| + \left(\frac{\Delta}{2} + 2\right)|V_2|
\]
\[
\geq 3|V_0| + 3|V_3| + 3|V_2| + \left(\frac{\Delta}{2} - 1\right)|V_2|
\]
\[
= 3n + \left(\frac{\Delta}{2} - 1\right)|V_2| \geq 3n,
\]

and this leads to the desired bound. \(\square \)

For the following corollary, we use the next proposition, which can be found in [3].

Proposition 1. Let \(G \) be a connected graph of order \(n \geq 3 \). Then

1. \(\gamma_{dR}(G) = 3 \) if and only if \(\Delta(G) = n - 1 \).

2. \(\gamma_{dR}(G) = 4 \) if and only if \(G = \overline{K}_2 + H \), where \(H \) is a graph with \(\Delta(H) \leq |V(H)| - 2 \).

3. \(\gamma_{dR}(G) = 5 \) if and only if \(\Delta(G) = n - 2 \) and \(G \neq \overline{K}_2 + H \) for any graph \(H \) of order \(n - 2 \).

Corollary 1. Let \(G = K_{n_1,n_2,...,n_r} \) be the complete \(r \)-partite graph with \(r \geq 2 \) and \(n_1 \leq n_2 \leq \ldots \leq n_r \).

1. If \(n_1 = 1 \), then \(\gamma_{dR}(G) = 3 \).

2. If \(n_1 = 2 \), then \(\gamma_{dR}(G) = 4 \).

3. If \(n_1 \geq 3 \), then \(\gamma_{dR}(G) = 6 \).
Proof. Statement (a) follows from Proposition 1 (1), and Statement (b) follows from Proposition 1 (2).

(c) Assume now that \(n_1 \geq 3 \). Proposition 1 (3) implies that \(\gamma_{dR}(G) \geq 6 \). Let \(X_1, X_2, \ldots, X_r \) be the partite sets of \(G \), and let \(v_1 \in X_1 \) and \(v_2 \in X_2 \). Define the function \(f \) by \(f(v_1) = f(v_2) = 3 \) and \(f(x) = 0 \) for \(x \in V(G) \setminus \{v_1, v_2\} \). Then \(f \) is a DRD function on \(G \) of weight 6 and hence \(\gamma_{dR}(G) \leq 6 \) and thus \(\gamma_{dR}(G) = 6 \). \(\square \)

If \(G = K_{n_1, n_2, \ldots, n_r} \) with \(r \geq 2 \) and \(2 = n_1 \leq n_2 \leq \ldots \leq n_r \), then

\[
\left\lceil \frac{3n(G)}{\Delta(G)+1} \right\rceil = \left\lceil \frac{3(n(G) - 1) + 3}{n(G) - 1} \right\rceil = 4,
\]

and thus Corollary 1 (b) shows that Theorem 1 is sharp.

3. Double Roman domatic number

If \(K_{p,p} \) is the complete bipartite graph with \(p \geq 3 \), then we have shown in [12] that \(d_{dR}(K_{p,p}) = p \). Using the next theorem, we prove a more general result.

Theorem 2. Let \(G \) be a graph of order \(n \). If \(G \) contains \(p \geq 2 \) vertices of degree less or equal \(n-2 \), then \(d_{dR}(G) \leq n - \lceil \frac{p}{2} \rceil \).

Proof. Let \(\{f_1, f_2, \ldots, f_d\} \) be a DRD family on \(G \) with \(d = d_{dR}(G) \). According to [4], we can assume, without loss of generality, that \(f_i(x) \in \{0, 2, 3\} \) for each \(x \in V(G) \) and \(1 \leq i \leq d \). Let \(A_i \) be the set of vertices such that \(f_i(x) \geq 2 \) for \(x \in A_i \) and \(1 \leq i \leq d \). Since \(\{f_1, f_2, \ldots, f_d\} \) is a DRD family on \(G \), we note that \(A_j \cap A_k = \emptyset \) for \(1 \leq j \neq k \leq d \). The hypothesis that \(G \) has \(p \geq 2 \) vertices of degree less or equal \(n-2 \) shows that there are at most \(n-p \) vertex sets \(A_i \) with \(|A_i| = 1 \) and all other such vertex sets are of cardinality at least two. This leads to

\[
d_{dR}(G) \leq n - p + \left\lceil \frac{p}{2} \right\rceil = n - \left\lceil \frac{p}{2} \right\rceil.
\]

\(\square \)

Example 1. Let \(M \) be a matching of the complete graph \(K_n \) such that \(|M| = k \) and \(2k \leq n \). Let \(H = K_n - M \), and let \(u_1, u_2, \ldots, u_{n-2k} \) be the vertices of degree \(n-1 \) in \(H \). If

\[
M = \{x_{n-2k+1}y_{n-2k+1}, x_{n-2k+2}y_{n-2k+2}, \ldots, x_{n-k}y_{n-k}\},
\]

then define the functions \(f_i(u_i) = 3 \) and \(f_i(x) = 0 \) for \(x \in V(H) \setminus \{u_i\} \) for \(1 \leq i \leq n-2k \) and \(f_i(x_i) = f_i(y_i) = 2 \) and \(f_i(x) = 0 \) for \(x \in V(H) \setminus \{x_i, y_i\} \) for \(n-2k+1 \leq i \leq n-k \). Then \(\{f_1, f_2, \ldots, f_{n-k}\} \) is a DRD family on \(H \) and therefore \(d_{dR}(H) \geq n-k \). Applying
Theorem 2, we deduce that $d_{dR}(H) = n - k$. This example shows that Theorem 2 is sharp for p even.

For odd p, let M be a matching and T be the edges of a triangle of K_n such that the edges of M and T are not adjacent. Now $K_n - (M \cup T)$ shows that Theorem 2 is also sharp for p odd.

Theorem 3. Let $G = K_{n_1, n_2, \ldots, n_r}$ be the complete r-partite graph with $r \geq 2$ and $n_1 = n_2 = \ldots = n_r = q \geq 2$. Then $d_{dR}(G) = \lfloor \frac{rq}{2} \rfloor$.

Proof. Applying Theorem 2, we obtain $d_{dR}(G) \leq \lfloor \frac{rq}{2} \rfloor$. Let X_1, X_2, \ldots, X_r be the partite sets of G, and let v_1, v_2, \ldots, v_{rq} be the vertex set of G such that $v_{jr + i} \in X_i$ for $0 \leq j \leq q - 1$ and $1 \leq i \leq r$. Now define the function f_i by $f_i(v_{2i - 1}) = f_i(v_{2i}) = 3$ and $f_i(x) = 0$ for $x \neq v_{2i - 1}, v_{2i}$ for $1 \leq i \leq \lfloor \frac{rq}{2} \rfloor$. Then f_i is a DRD function on G for $1 \leq i \leq \lfloor \frac{rq}{2} \rfloor$ such that $f_1(x) + f_2(x) + \ldots + f_{\lfloor \frac{rq}{2} \rfloor}(x) \leq 3$ for each vertex $x \in V(G)$. Therefore $\{f_1, f_2, \ldots, f_{\lfloor \frac{rq}{2} \rfloor}\}$ is a double Roman dominating family on G and thus $d_{dR}(G) \geq \lfloor \frac{rq}{2} \rfloor$. This yields to $d_{dR}(G) = \lfloor \frac{rq}{2} \rfloor$. \hfill \Box

In [12], we have proved the following two results.

Theorem 4. If G is a graph, then $d_{dR}(G) \leq \delta(G) + 1$.

Theorem 5. Let G be a graph of order n. If $G \neq K_n$ and $\overline{G} \neq K_n$, then

$$d_{dR}(G) + d_{dR}(\overline{G}) \leq n.$$

For a great family of graphs, we can improve the Nordhaus-Gaddum bound of Theorem 5.

Theorem 6. Let G be a graph of order n such that $\delta(G), \delta(\overline{G}) \geq 1$. If n is odd or if n is even and $\delta(G) \leq \frac{n}{2} - 2$ or $\delta(\overline{G}) \leq \frac{n}{2} - 2$, then

$$d_{dR}(G) + d_{dR}(\overline{G}) \leq n - 1.$$

Proof. Since $\delta(G), \delta(\overline{G}) \geq 1$, we observe that $\Delta(G), \Delta(\overline{G}) \leq n - 2$. If n is odd, then it follows from Theorem 2 that

$$d_{dR}(G) + d_{dR}(\overline{G}) \leq \left\lfloor \frac{n}{2} \right\rfloor + \left\lfloor \frac{n}{2} \right\rfloor = n - 1.$$

If n is even, then assume, without loss of generality, that $\delta(G) \leq \frac{n}{2} - 2$. Applying Theorems 2 and 4, we obtain

$$d_{dR}(G) + d_{dR}(\overline{G}) \leq \left(\frac{n}{2} - 2 \right) + 1 + \frac{n}{2} = n - 1,$$

and the proof is complete. \hfill \Box
If $G = K_{p,p}$ for $p \geq 2$, then we have $d_{dR}(G) + d_{dR}(\overline{G}) = 2p = n(G)$. This example demonstrates that Theorem 6 is not valid for n even and $\delta(\overline{G}) = \frac{n}{2} - 1$ in general. For odd n we will improve Theorem 6.

Theorem 7. Let G be a graph of odd order n. If $G, \overline{G} \neq K_n, K_n - e$, where e is an arbitrary edge of K_n, then

$$d_{dR}(G) + d_{dR}(\overline{G}) \leq n - 1.$$

Proof. If $\delta(G), \delta(\overline{G}) \geq 1$, then the result follows from Theorem 6. Assume now, without loss of generality, that $\delta(G) = 0$. Then it follows that $d_{dR}(G) = 1$. Since $\overline{G} \neq K_n, K_n - e$, there are at least two edges $e_1, e_2 \in E(G)$. Hence \overline{G} contains at least three vertices of degree less or equal $n - 2$. We deduce from Theorem 2 that $d_{dR}(\overline{G}) \leq n - 2$, and we obtain $d_{dR}(G) + d_{dR}(\overline{G}) \leq 1 + n - 2 = n - 1$. \hfill \square

Note that if $G = K_n$, then $d_{dR}(G) + d_{dR}(\overline{G}) = n + 1$, and if $G = K_n - e$, then $d_{dR}(G) + d_{dR}(\overline{G}) = (n - 1) + 1 = n$.

For some regular graphs we will improve the upper bound of Theorem 4.

Theorem 8. Let G be a δ-regular graph ($\delta \geq 2$) of order $n = p(\delta + 1) + r$ with integers $p \geq 1$ and $1 \leq r \leq \delta$. If $\frac{3r}{\delta + 1}$ is not an integer, then $d_{dR}(G) \leq \delta$.

Proof. Let $\{f_1, f_2, \ldots, f_d\}$ be a DRD family on G such that $d = d_{dR}(G)$. It follows that

$$\sum_{i=1}^{d} \omega(f_i) = \sum_{i=1}^{d} \sum_{v \in V(G)} f_i(v) = \sum_{v \in V(G)} \sum_{i=1}^{d} f_i(v) \leq \sum_{v \in V(G)} 3 = 3n. \quad (1)$$

Since $\frac{3r}{\delta + 1}$ is not an integer, Theorem 1 yields to

$$\gamma_{dR}(G) \geq \left\lceil \frac{3n}{\delta + 1} \right\rceil = \left\lceil \frac{3p(\delta + 1) + 3r}{\delta + 1} \right\rceil = 3p + \left\lceil \frac{3r}{\delta + 1} \right\rceil > 3p + \frac{3r}{\delta + 1}. \quad (2)$$

Suppose to the contrary that $d = \delta + 1$. Then we deduce from the inequality chains (1) and (2) that

$$3n \geq \sum_{i=1}^{d} \omega(f_i) \geq \sum_{i=1}^{d} \gamma_{dR}(G) > (\delta + 1) \left(3p + \frac{3r}{\delta + 1}\right) = 3p(\delta + 1) + 3r = 3n.$$

This is a contradiction and thus $d_{dR}(G) \leq \delta$. \hfill \square
References

