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Abstract: Let k ≥ 1 be an integer, and let G be a graph. A k-rainbow dominating

function (or a k-RDF) of G is a function f from the vertex set V (G) to the family of
all subsets of {1, 2, . . . , k} such that for every v ∈ V (G) with f(v) = ∅, the condition⋃

u∈NG(v) f(u) = {1, 2, . . . , k} is fulfilled, where NG(v) is the open neighborhood of

v. The weight of a k-RDF f of G is the value ω(f) =
∑

v∈V (G) |f(v)|. A k-rainbow

dominating function f in a graph with no isolated vertex is called a total k-rainbow
dominating function if the subgraph of G induced by the set {v ∈ V (G) | f(v) 6= ∅} has
no isolated vertices. The total k-rainbow domination number of G, denoted by γtrk(G),

is the minimum weight of a total k-rainbow dominating function on G. The total 1-
rainbow domination is the same as the total domination. In this paper we initiate the
study of total k-rainbow domination number and we investigate its basic properties. In

particular, we present some sharp bounds on the total k-rainbow domination number

and we determine the total k-rainbow domination number of some classes of graphs.
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1. Introduction and preliminaries

For terminology and notation on graph theory not given here, the reader is referred

to [7, 8]. In this paper, G is a simple graph without isolated vertices, with vertex

set V = V (G) and edge set E = E(G). The order |V | of G is denoted by n = n(G)

and the size |E| of G is denoted by m = m(G). For every vertex v ∈ V , the open

neighborhood N(v) is the set {u ∈ V | uv ∈ E} and the closed neighborhood of v is the

set N [v] = N(v) ∪ {v}. The degree of a vertex v ∈ V is degG(v) = deg(v) = |N(v)|.
The minimum degree and the maximum degree of a graph G are denoted by δ = δ(G)

and ∆ = ∆(G), respectively. A leaf is a vertex of degree one and a stem is a vertex

adjacent to a leaf. The open neighborhood of a set S ⊆ V is the set N(S) = ∪v∈SN(v),

and the closed neighborhood of S is the set N [S] = N(S) ∪ S. The complement G

of G is the simple graph with vertex set V (G) defined by uv ∈ E(G) if and only if

uv 6∈ E(G). We write Kn for the complete graph of order n, Cn for a cycle of order n

and Pn for a path of order n. A matching M of a graph G is a subset of the edges

E, such that no two edges in M have a common vertex. The matching number α′(G)

of G is the maximum cardinality of a matching in G.

Let k ≥ 1 be an integer, and set [k] := {1, 2, . . . , k}. A function f : V (G) → 2[k]

is a k-rainbow dominating function (or a k-RDF) of G if for every vertex v ∈ V (G)

with f(v) = ∅, the condition
⋃
u∈NG(v) f(u) = [k] is fulfilled. The weight of a k-RDF

f on G is the value ω(f) :=
∑
v∈V (G) |f(v)|. The k-rainbow domination number of

G, denoted by γrk(G), is the minimum weight of a k-RDF on G. A k-RDF f on G

is called a γrk-function if ω(f) = γrk(G). This concept was introduced by Brešar,

Henning and Rall [1] and has been studied by several authors [2–6, 13, 15–20].

A set S of vertices of a graph G with minimum degree δ(G) > 0 is a total dominating

set if N(S) = V (G). The minimum cardinality of a total dominating set, denoted by

γt(G), is called the total domination number of G. A γt(G)-set is a total dominating

set of G of cardinality γt(G). The literature on this subject has been surveyed in

[10, 11].

In a graph G if we think of each vertex x as the possible location for a guard capable

of protecting each vertex in its closed neighborhood N [x], then the total domination

concept in a graph represents situations in which every location requires the presence

of one guard in a neighboring location.

Here we assume a more complex situation that, for example, there are different types

of guards and it is required that each location which is occupied by no guard has all

types of guards in its neighborhood and every location which is occupied by at least

one guard requires the presence of one guard in a neighboring location. Here, we

introduced the total k-rainbow domination concept to consider such situation. A k-

rainbow dominating function f on G, is called a total k-rainbow dominating function

(or a Tk-RDF) if the subgraph of G induced by the set {v ∈ V (G) | f(v) 6= ∅} has no

isolated vertex. The total k-rainbow domination number of G, denoted by γtrk(G), is

the minimum weight of a Tk-RDF of G. A Tk-RDF f of G is a γtrk-function if ω(f) =

γtrk(G). Note that γtr1(G) is equal to the classical total domination number, denoted

by γt(G). If G1, G2, . . . , Gs are the components of G, then γtrk(G) =
∑s
i=1 γtrk(Gi).
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Hence, it is sufficient to study γtrk(G) for connected graphs.

Since every Tk-RDF f of a graph G is a kRDF of G, we have

γrk(G) ≤ γtrk(G). (1)

In this paper, we initiate the study of the total k-rainbow domination number and

we investigate its basic properties. In particular, we present some sharp bounds for

the total k-rainbow domination number and determine its value for some classes of

graphs.

For any graph G with δ(G) ≥ 1 and any γtrk-function f on G, let V fi = {v : |f(v)| =
i} for each i = 0, 1, . . . , k.

Observation 1. Let G be a graph of order n and let f be a γtrk-function on G. Then
the following holds.

(i) n =
∑k

i=0 |V
f
i |,

(ii) γtrk(G) =
∑k

i=1 i|V
f
i |, and

(iii) |V f
0 | ≥

∑k
i=2(i− 1)|V f

i |.

Figure 1. The graph F

Theorem A. ([9]) If G is a planar graph with daim(G) = 2, then γ(G) ≤ 2 or G = F
where F is the graph illustrated in Figure 1.

2. Basic properties and bounds

In this section we present basic properties of the total k-rainbow domination number

of a graph and give some sharp bounds on the total k-rainbow domination number.

First, we study the relation between total domination number and total k-rainbow

domination number.
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Theorem 2. Let k ≥ 2 be an integer and let G be a connected graph of order n ≥ k.
Then

γt(G) ≤ γtrk(G) ≤ kγt(G).

Moreover,

(a) The left equality holds if and only if G has a γt(G)-set D such that the induced subgraph
G[D] is 1-regular and D can be partitioned into k nonempty subsets D1, D2, . . . , Dk

so that V (G)−D ⊆ N(Di) for i = 1, 2, . . . , k.

(b) The right equality holds if and only if G has a γtrk(G)-function f such that for each
v ∈ V (G), either f(v) = {1, 2, . . . , k} or f(v) = ∅.

Proof. To prove the lower bound, let f be a γtrk(G)-function and let V0 = {v ∈
V (G) | f(v) = ∅}. It is easy to verify that V (G) − V0 is a total dominating set of G

and so γt(G) ≤ |V (G)− V0| ≤ ω(f) = γtrk(G). To prove the upper bound, let S be a

γt(G)-set and define g : V (G) → 2[k] by g(x) = {1, 2, . . . , k} for x ∈ S and g(x) = ∅
for x ∈ V (G)−S. Obviously g is a Tk-RDF of G and hence γtrk(G) ≤ ω(g) = kγt(G).

(a) Assume that γt(G) = γtrk(G). If γt(G) = γtrk(G) = n, then it is not hard to

see that G is a 1-regular graph and the assertion is trivial. We may assume,

therefore, that γt(G) = γtrk(G) < n. Let f be a γtrk(G)-function, D0 = {v ∈
V (G) | f(v) = ∅} Di = {v ∈ V (G) | f(v) = {i}} for each i ∈ {1, . . . , k} and

Dk+1 = V (G) \
⋃k
i=0Di. Since γtrk(G) < n, we have D0 6= ∅. It is easy to see

that D = ∪k+1
i=1Di is a total dominating set of G and so

γt(G) ≤
k+1∑
i=1

|Di| ≤
k∑
i=1

|Di|+ 2|Dk+1| ≤ ω(f) = γtrk(G). (2)

Since γt(G) = γtrk(G), we have equality throughout the inequality chain (2).

Hence |Dk+1| = 0 and γt(G) =
∑k
i=1 |Di| implying that D is a γt(G)-set. There-

fore every vertex in D0 has at least one neighbor in Di for each i ∈ {1, 2, . . . , k}.
Thus Di 6= ∅ and D0 = V (G) \ D ⊆ N(Di) for each i ∈ {1, 2, . . . , k}. If the

subgraph of G induced by D, G[D], has a component of order at least 3, say

G1, then for any leaf v ∈ V (G1) in some spanning tree of G1, D−{v} is a total

dominating set of G that leads to a contradiction. Thus G[D] is 1-regular graph

and the assertion holds.

Conversely, let G has a γt(G)-set D such that the induced subgraph G[D] is

1-regular and D can be partitioned into k nonempty subsets D1, D2, . . . , Dk so

that V (G) − D ⊆ N(Di) for each i = 1, 2, . . . , k. Define g : V (G) → 2[k] by

g(x) = {i} for each x ∈ Di (i = 1, 2, . . . , k) and g(x) = ∅ otherwise. Clearly g

is a total k-rainbow dominating function of G of weight |D| and so γtrk(G) ≤
γt(G). On the other hand, as proven earlier, γt(G) ≤ γtrk(G). It follows that

γt(G) = γtrk(G).
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(b) Assume that γtrk(G) = kγt(G). Let D be a γt(G)-set and define f : V (G)→ 2[k]

by f(x) = {1, 2, . . . , k} for each x ∈ D and f(x) = ∅ otherwise. Obviously f is

a total k-rainbow dominating function of G of weight kγt(G). This implies that

f is a γtrk(G)-function such that for each v ∈ V (G), either f(v) = {1, 2, . . . , k}
or f(v) = ∅.

Conversely, let G have a γtrk(G)-function f such that for each v ∈ V (G),

either f(v) = {1, 2, . . . , k} or f(v) = ∅. Let D = {v ∈ V (G) | f(v) =

{1, 2, . . . , k}}. Then clearly γtrk(G) = k|D| and D is a total dominating set

of G. Hence kγt(G) ≤ k|D| = γtrk(G). On the other hand, as proven earlier,

γtrk(G) ≤ kγt(G). Hence kγt(G) = γtrk(G) and the proof is complete.

Proposition 1. Let k ≥ 1 be an integer. If G is a connected graph of order n ≥ 2, then

min{k, n} ≤ γtrk(G) ≤ n.

In particular, γtrn(G) = n.

Proof. Let f be a γtrk(G)-function. If there exists a vertex v such that f(v) = ∅,
then the definition yields to f(N(v)) = [k] and thus k ≤ γtrk(G). If |f(v)| ≥ 1 for all

vertices v ∈ V (G), then n ≤ γtrk(G), and the first inequality is proved.

Now consider the function g, defined by g(v) = {1} for each v ∈ V (G). Clearly, g is

a total k-rainbow dominating function of weight n, and so γtrk(G) ≤ n.

Next result provide a sufficient condition to have γtrk(G) = n.

Theorem 3. Let G be a graph of order n ≥ 2 with k > ∆(G)2−∆(G). Then γtrk(G) = n.

Proof. Suppose, to the contrary, that γtrk(G) < n. Let f be a γtrk(G)-function such

that |V (G)−V f0 | is as small as possible. Since γtrk(G) < n, there is a vertex v ∈ V (G)

such that f(v) = ∅. We conclude from k > ∆(G)2 −∆(G) and
⋃
w∈NG(v) f(w) = [k]

that v has a neighbor u for which |f(u)| ≥ ∆(G). Suppose without loss of generality

that {1, 2, . . . ,∆(G)} ⊆ f(u). Let N(u) = {u1, u2 . . . , udeg(u)} where u1 = v. Since

f is a Tk-RDF, we may assume f(udeg(u)) 6= ∅. Define the function g : V (G) → 2[k]

by g(ui) = f(ui) ∪ {i} for 1 ≤ i ≤ deg(u) − 1, g(u) = f(u) \ {1, 2, . . . ,deg(u) − 1},
and g(x) = f(x) otherwise. Clearly, g is a Tk-RDF of G contradicting the choice of

f . Therefore, γtrk(G) = n.

Next result is an immediate consequence of Theorem 3.

Corollary 1. If k ≥ 3, then γtrk(Cn) = γtrk(Pn) = n.

Now we characterize all graphs G with γtrk(G) = k.
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Theorem 4. Let k ≥ 1 be an integer, and let G be a graph of order n ≥ k. Then
γtrk(G) = k if and only if n = k or n > k and there exists a set A = {v1, v2, . . . , vt} ⊂ V (G)
with 2 ≤ t ≤ k such that the induced subgraph G[A] has no isolated vertex and V (G)−A ⊆
N(vi) for 1 ≤ i ≤ t.

Proof. Suppose that γtrk(G) = k. Let f be a γtrk(G)-function, and let V0 = {v :

|f(v)| = 0}. If V0 = ∅, then n = k. If V0 6= ∅, then let v ∈ V0. By definition,

we have
⋃
u∈N(v) f(u) = [k]. Now let v1, v2, . . . , vt ∈ N(v) be all vertices in N(v)

with the property that |f(vi)| 6= 0 for 1 ≤ i ≤ t. Then the condition γtrk(G) = k

implies that
∑t
i=1 |f(vi)| = k, 2 ≤ t ≤ k, G[{v1, v2, . . . , vt}] has no isolated vertex,

and V (G)− {v1, v2, . . . , vt} ⊆ N(vi) for each i ∈ {1, 2, . . . , t}.
Conversely, letG satisfies in the condition. Applying Proposition 1, we have γtrk(G) ≥
k. If n = k, then obviously γtrk(G) = k. Now let n > k. Define the function

f : V (D)→ 2[k] by f(vi) = {i} for 1 ≤ i ≤ t−1, f(vt) = {t, t+1, . . . , k} and f(x) = ∅
otherwise. Clearly, f is a total k-rainbow dominating function on G of weight k and

so γtrk(G) ≤ k. Thus γtrk(G) = k and the proof is complete.

Corollary 2. Let G be a connected graph of order n ≥ 2. Then γtr2(G) = 2 if and only
if G = K2 or G = K2 ∨H for some graph H of order n− 2.

Theorem 5. Let G be a graph of order at least two and k′ > k. Then

γtrk′(G) ≤ γtrk(G) + (k′ − k)

⌊
γtrk(G)

k

⌋
.

Proof. Let f a γtrk(G)-function. Assume ni is the number of vertices v ∈ V (G) for

which i ∈ f(v) for each 1 ≤ i ≤ k. Assume without loss of generality that n1 ≥ n2 ≥
· · · ≥ nk. Clearly the function g : V (G)→ 2[k] defined by g(v) = f(v)∪{k+1, . . . , k′}
when k ∈ f(v) and g(v) = f(v) otherwise, is a Tk′-RDF of G and so

γtrk′(G) ≤ ω(g) = γtrk(G) + (k′ − k)nk ≤ γtrk(G) + (k′ − k)

⌊
γtrk(G)

k

⌋
.

Corollary 3. Let k′ > k be two positive integers and let G be a graph of order at least
two. Then

γtrk′(G) ≤ k′
⌊
γtrk(G)

k

⌋
.

In particular, γtrk′(G) ≤ k′γt(G).

Now we present lower and upper bound on the total k-rainbow domination number

of a graph in terms of its order, minimum degree and k.



H. Abdollahzadeh Ahangar et al. 43

Proposition 2. Let k ≥ 1 be an integer. If G is a connected graph of order n ≥ 2, then

γtrk(G) ≤ n− δ(G) + k.

Proof. If δ(G) = k, then the result is true by Proposition 1. Assume that δ(G) > k.

Let v be a vertex of minimum δ(G) and let u ∈ N(v). Define f : V (G) → 2[k]

by f(u) = {1}, f(v) = [k], f(x) = ∅ if x ∈ N(v) − {u} and f(x) = {1} otherwise.

Clearly, f is a total k-rainbow dominating function of G of weight n−δ(G)+k yielding

γtrk(G) ≤ n− δ(G) + k.

Corollary 4. Let k ≥ 1 be an integer. If G is a graph of order n with γtrk(G) = n, then
k ≥ δ(G).

Theorem 6. Let k ≥ 1 be an integer. If G is a graph of order n ≥ 2, then

γtrk(G) ≥
⌈

kn

∆(G) + k − 1

⌉
.

Proof. Let f be a γtrk(G)-function, and let Vi = {v : |f(v)| = i} for i = 0, 1, . . . , k.

Then γtrk(G) = |V1| + 2|V2| + · · · + k|Vk| and n = |V0| + |V1| + · · · + |Vk|. Let

F = (V (G) − V0, V0) be the set of edges with one end point in V (G) − V0 and the

other end point in V0. Since f is a γtrk(G)-function, we have

k|V0| ≤
∑
xy∈F, x∈V (G)−V0

|f(x)|
≤ (∆(G)− 1)(|V1|+ 2|V2|+ . . .+ k|Vk|)
= γtrk(G)(∆(G)− 1).

(3)

Now it follows from (3) that

(∆(G) + k − 1)γtrk(G) = (∆(G)− 1)γtrk(G) + kγtrk(G)

≥ k|V0|+ k(|V1|+ 2|V2|+ . . .+ k|Vk|)
= k(|V0|+ |V1|+ . . .+ |Vk|) +

k(|V2|+ 2|V3|+ . . .+ (k − 1)|Vk|)
= kn+ k(|V2|+ 2|V3|+ . . .+ (k − 1)|Vk|)
≥ kn,

and this leads to the desired bound.

The special case k = 1 of Theorem 6 can be found in [11].
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Theorem 7. For every positive integer k and every connected graph G of order at least
two,

γtrk(G) ≤ (k + 1)γ(G).

Furthermore, if the equality holds then every minimum dominating set of G is an efficient
dominating set and each vertex belonging to a minimum dominating set has degree at least
k − 1.

Proof. By Proposition 1, we may assume (k+ 1)γ(G) < n. Let D = {u1, . . . , uγ(G)}
be a dominating set of G and let vi be a neighbor of ui for each i. Define the function

f : V (G) → 2[k] by f(ui) = [k], f(vi) = {1} for i = 1, . . . , γ(G) and f(x) = ∅
otherwise. It is easy to see that f is a Tk-RDF of G and so γtrk(G) ≤ ω(f) ≤
(k + 1)γ(G).

Now let γtrk(G) = (k + 1)γ(G). Suppose D = {u1, . . . , uγ(G)} is a γ(G)-set. Let vi
be a neighbor of ui for each i. If there exists an edge uiuj ∈ E(G), then the function

g : V (G) → 2[k] defined by g(vi) = g(vj) = ∅, g(v) = [k] for v ∈ D, g(vl) = {1} for

l ∈ {1, . . . , γ(G)} − {i, j} and g(x) = ∅ otherwise, is a Tk-RDF of G of weight less

than γtrk(G), a contradiction. So D is independent. If there is a vertex z ∈ V (G) \D
with two neighbors in D, say ui, uj , then the function h : V (G) → 2[k] defined by

h(z) = {1}, h(v) = [k] for v ∈ D, h(vl) = {1} for l ∈ {1, . . . , γ(G)} − {i, j} and

h(x) = ∅ otherwise, is a Tk-RDF of G of weight less than γtrk(G), a contradiction.

Thus D is an efficient dominating set of G.

On the other hand, if a vertex ui ∈ D has degree at most k − 2, then the function

f : V (G) → 2[k] defined by f(x) = {1} for x ∈ N [ui], f(uj) = [k], f(vj) = {1} for

j ∈ {1, . . . , γ(G)} − {i}, and f(x) = ∅ otherwise, is a Tk-RDF of G of weight less

than γtrk(G), a contradiction. This completes the proof.

Let G be the graph obtained from a cycle Cr = (u1u2 . . . ur) and r copies of K1,k+1

by joining ui to the central vertex of ith copy of K1,k+1. It is easy to verify that

γ(G) = r and γtrk(G) = r(k + 1). This example shows that the upper bound of

Theorem 7 is sharp.

For planar graphs with diameter two or graphs having two disjoint minimum domi-

nating sets, we will improve the upper bound given in Theorem 7.

Theorem 8. If G is a connected planar graph with diam(G) = 2 different from F , then

γtrk(G) ≤ min{n, 2k + 1}.

Proof. Let G be a planar graph with diam(G) = 2 different from F . Then γ(G) ≤ 2

by Proposition A. By Proposition 1, it is enough to prove γtrk(G) ≤ 2γ(G) + 1. Let

D = {x, y} be a minimum dominating set. Since diam(G) = 2, we have d(x, y) ≤ 2.

Define the function f : V (G) → 2[k] by f(x) = f(y) = [k] and f(x) = ∅ otherwise if

d(x, y) = 1, and by f(x) = f(y) = [k], f(z) = {1} for a vertex z ∈ N(x) ∩N(y) and

f(x) = ∅ otherwise when d(x, y) = 2. It is easy to see that f is a Tk-RDF of G and

so γtrk(G) ≤ ω(f) = 2k + 1.
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Let G be a graph without isolated vertices and let D be a γ-set of G. By the well

known Ore’s Theorem [14], V (G) − D contains a dominating set D′ of G. Any

dominating set D′ ⊆ V (G) − D is called an inverse dominating set with respect to

D. The minimum cardinality of all inverse dominating sets of G is called the inverse

domination number and is denoted by γ′(G). An inverse dominating set D′ is called

a γ′-set of G if |D′| = γ′(G). Clearly, γ(G) ≤ γ′(G). The inverse domination number

was introduced by Kulli and Sigarkanti [12].

Theorem 9. Let G be a graph without isolated vertices. Then

γtrk(G) ≤ (k − 1)γ(G) + γ′(G).

Proof. Let D1 be a γ-set of G and D2 a γ′-set of G with respect to D1. Define

the function f : V (G) → 2[k] by f(v) = [k − 1] for v ∈ D1, f(v) = {k} for v ∈ D2

and f(x) = ∅ otherwise. Clearly f is a Tk-RDF of G. Therefore γtrk(G) ≤ ω(f) =

(k − 1)|D1|+ |D2| = (k − 1)γ(G) + γ′(G).

This bound is sharp for Kn (n ≥ 2) and Km,n (m ≥ n ≥ 2).

Corollary 5. For every positive integer k and every graphG having two disjoint minimum
dominating sets,

γtrk(G) ≤ kγ(G).

Next, we present an upper bound on the total k-rainbow domination number in terms

of k-rainbow domination number.

Proposition 3. Let k ≥ 2 be an integer and G be a connected graph of order at least
two. Then

γtrk(G) ≤ 2γrk(G)− 1.

Furthermore, this bound is sharp for each k

Proof. By Proposition 1, we may assume that 2γrk(G) − 1 < n. Let f be a γrk-

function and let V (G) \ V f0 = {v1, . . . , vt}. Note that V f0 = {v | f(v) = ∅} 6= ∅.
Let B1, . . . , Br be the components of G[{v1, . . . , vt}]. Since G is connected, we can

chose a vertex wi for each i such that f(wi) = ∅ and wi has a neighbor in Bi. Define

g : V (G)→ 2[k] by g(wi) = {1} for 1 ≤ i ≤ r and g(x) = f(v) otherwise. It is easy to

see that g is a Tk-RDF of G and so

γtrk(G) ≤ ω(g) = r + γrk(G) ≤ t+ γrk(G).

If r < t or t < γrk(G), then the recent inequality chain leads to γtrk(G) ≤ 2γrk(G)−1,

as desired. Assume that r = t = γrk(G). This implies that |V (Bi)| = |f(vi)| = 1 for

each i and so each vertex of V f0 is adjacent to at least k vertices in {v1, . . . , vt}. Let
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u ∈ V f0 and let u be adjacent to v1, . . . , vk. Then the function g : V (G) → 2[k] by

g(u) = g(wi) = {1} for k + 1 ≤ i ≤ r and g(x) = f(v) otherwise, is a Tk-RDF of G

and so

γtrk(G) ≤ ω(g) = t+ (t− k) + 1 = 2t− (k − 1) = 2γrk(G)− (k − 1) ≤ 2γrk(G)− 1.

To prove the sharpness, let m ≥ 2k and let G be the graph obtained from two

complete bipartite graphs Km,k,Km,k−1 with partite sets ({x1, . . . , xk}, {y1, . . . , ym})
and ({x′1, . . . , x′k−1}, {z1, . . . , zm}), respectively, by identifying xi and x′i for i =

1, . . . , k − 1, and joining a pendant edge ziz
′
i for each 1 ≤ i ≤ m. It is not hard

to see that γrk(G) = k+m and γtrk(G) = k+ 2m+ 1 and the proof is complete.

Finally, we establish an upper bound on the total 2-rainbow domination number of

a graph in terms of its order, maximum degree and matching number. The private

neighborhood pn(v, S) of v ∈ S is defined by pn(v, S) = N(v) − N(S − {v}). Each

vertex in pn(v, S) is called a private neighbor of v.

Theorem 10. Let G be a connected graph of order n ≥ 4 different from star. Then

γtr2(G) ≤ n−∆(G) + α′(G).

Proof. Since G is not a star, we have α′(G) ≥ 2. Suppose v is a vertex of maximum

degree ∆(G) and let X = V (G) \ NG[v]. Assume that S is the set consisting of all

isolated vertices of the induced subgraph G[X]. If X = ∅, then clearly γtr2(G) = 3

and ∆(G) = n − 1. This implies that γtr2(G) ≤ n − ∆(G) + 2 as desired. Assume

that X 6= ∅. If S = ∅, then let u ∈ N(v) and define f : V (G) → 2[2] by f(v) =

{1, 2}, f(u) = {1}, f(x) = {1} for x ∈ X and f(x) = ∅ otherwise. Obviously, f is an

T2-RDF of G and so γtr2(G) ≤ n−∆(G) + 2 that leads to the desired bound..

Suppose S 6= ∅. Since δ(G) ≥ 1, every vertex s ∈ S is adjacent to at least one vertex

of N(v). Assume S′ is the smallest subset of N(v) that dominates S. By the choice of

S′, each vertex u ∈ S′ has a private neighbor u′ ∈ S with respect to S′, so |S′| ≤ |S|.
Hence M = {uu′|u ∈ S′} is a matching in G.

If S′ = N(v) and X = S, then the function f : V (G) → 2[2] defined by f(v) =

{1}, f(x) = {1, 2} for x ∈ S′ and f(x) = ∅ otherwise, is an T2-RDF of G and we have

γtr2(G) ≤ 2|S′|+ 1 ≤ |S|+ |S′|+ 1 ≤ n−∆(G)− 1 + 1 + |S′| ≤ n−∆(G) + α′(G).

If S′ = N(v) and S $ X, then let uu′ ∈ E(G[X − S]). Then M ∪ {uu′} is a

matching of G and so |S′| ≤ α′(G) − 1. Define the function f : V (G) → 2[2] by

f(v) = {1}, f(x) = {1, 2} for x ∈ S′, f(x) = {1} for x ∈ X − S and f(x) = ∅
otherwise. Clearly, f is an T2-RDF of G and this implies that

γtr2(G) ≤ 2|S′|+ 1 + n− 1−∆(G)− |S| ≤ |S′|+ n−∆(G) ≤ n−∆(G) + α′(G)− 1.



H. Abdollahzadeh Ahangar et al. 47

If S′ $ N(v) and X = S, then M ∪ {vz} is a matching of G for each z ∈ N(v)− S′,
and so |S′| ≤ α′(G)−1. Clearly, the function f : V (G)→ 2[2] by f(v) = {1, 2}, f(x) =

{1, 2} for x ∈ S′ and f(x) = ∅ otherwise, is an T2-RDF of G and so

γtr2(G) ≤ 2|S′|+ 2 ≤ 2 + |S|+ α′(G)− 1 ≤ n−∆(G) + α′(G).

Assume now that S′ $ N(v) and S $ X. Suppose that z ∈ N(v) − S′ and uu′ ∈
E(G[X −S]). Then clearly M ∪{vz, uu′} is a matching of G and so |S′| ≤ α′(G)− 2.

Define the function f : V (G) → 2[2] by f(v) = {1, 2}, f(x) = {1, 2} for x ∈ S′,

f(x) = {1} for x ∈ X − S and f(x) = ∅ otherwise. It is easy to see that f is an

T2-RDF of G and hence

γtr2(G) ≤ 2|S′|+2+n−1−∆(G)−|S| ≤ |S′|+n−∆(G)+1 ≤ n−∆(G)+α′(G)−1,

and the proof is complete.

3. Special values of total 2-rainbow domination number

In this section we determine the total 2-rainbow domination number of some classes

of graphs including Cycles, paths and ladders. Next result shows that the bound of

Theorem 6 is sharp for the special case k = 2.

Proposition 4. For n ≥ 3, γtr2(Cn) = d 2n
3
e.

Proof. By Theorem 6, it is enough to prove γtr2(Cn) ≤ d 2n3 e. Let Cn = (v1v2 . . . vn)

and define the function f : V (Cn)→ 2[2] by f(v3i+2) = {2}, f(v3i+3) = ∅ for 0 ≤ i ≤
bn3 c−1 and f(x) = {1} otherwise. Clearly, f is an T2-RDF of Cn of weight d 2n3 e and

so γtr2(Cn) = d 2n3 e.

Proposition 5. For n ≥ 2, γtr2(Pn) = d 2n+2
3
e.

Proof. Let Pn := v1v2, . . . , vn. First we show that γtr2(Pn) ≥ d 2n+2
3 e. The result is

immediate for n = 2, 3, 4. Assume n ≥ 5 and let f be a γtr2-function on Pn such that

the cardinality of V f0 is as small as possible. Hence |f(v1)| = |f(v2)| = |f(vn−1) =

|f(vn)| = 1 and |f(vi−1)|+ |f(vi)|+ |f(vi+1)| ≥ 2 for each 2 ≤ i ≤ n−1. But then V f0
is a packing in the subpath v3, . . . , vn−3. Therefore |V f0 | ≤ d(n− 4)/3e which leads

to γtr2(Pn) ≥ n−d(n− 4)/3e = d(2n+2)/3e. To prove γtr2(Pn) ≤ d 2n+2
3 e, define the

function f : V (Pn) → 2[2] by f(v3i) = ∅ for 1 ≤ i ≤ bn3 c, f(v3i+1) = {1}, f(v3i+2) =

{2} for 0 ≤ i ≤ bn3 c if n ≡ 2 (mod 3) and by f(v3i+3) = ∅, f(v3i+1) = {1}, f(v3i+2) =

{2} for 0 ≤ i ≤ bn3 c − 2 and f(x) = {1} otherwise, when n ≡ 0 or 1 (mod 3).

Clearly, f is a T2-RDF of Pn of weight d 2n+2
3 e and so γtr2(Pn) ≤ d 2n+2

3 e. Thus

γtr2(Pn) = d(2n+ 2)/3e.
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Next, we focus on the ladder P2�Pn, where G�H is the Cartesian product of two

graphs G and H, and determine the value γtr2(P2�Pn). Our motivation derives

from Vizing’s conjecture, that for any graphs G and H, γ(G�H) ≥ γ(G)γ(H). The

conjecture is still open, and many researchers have studied some domination-like

invariants for G�H.

Throughout our argument, we write V (P2�Pn) = {vji | i = 1, 2 and 1 ≤ j ≤ n} and

assume E(P2�Pn) = {vj1v
j
2 | 1 ≤ j ≤ n} ∪ {v

j
i v
j+1
i | i = 1, 2 and 1 ≤ j ≤ n− 1}.

Theorem 11. For n ≥ 2, γtr2(P2�Pn) = n+ 1.

Proof. Define the function f : V (P2�Pn) → 2[2] by f(v4j+1
1 ) = f(v4j+1

2 ) = {1}
for 0 ≤ j ≤ bn4 c, f(v4j+3

1 ) = f(v4j+3
2 ) = {2} for 0 ≤ j ≤ bn−24 c and f(x) = ∅

otherwise, when n is odd, and by f(v4j+1
1 ) = f(v4j+1

2 ) = {1} for 0 ≤ j ≤ bn−14 c,
f(v4j+3

1 ) = f(v4j+3
2 ) = {2} for 0 ≤ j ≤ bn−34 c, f(vn1 ) = {1} and f(x) = ∅ otherwise,

if n ≡ 0 (mod 4), and by f(v4j+1
1 ) = f(v4j+1

2 ) = {1} for 0 ≤ j ≤ bn−14 c, f(v4j+3
1 ) =

f(v4j+3
2 ) = {2} for 0 ≤ j ≤ bn−34 c, f(vn1 ) = {2} and f(x) = ∅ otherwise when

n ≡ 2 (mod 4). It is easy to verify that f is a T2-RDF of P2�Pn with ω(f) = n+ 1,

and hence γtr2(P2�Pn) ≤ n+ 1.

We now show that γtr2(P2�Pn) ≥ n+ 1. The proof is by induction on n. The result

is immediate for n = 2 by Proposition 4. Thus we may assume that n ≥ 3. Let

f ′ be a γtr2-function of P2�Pn, and set I = {i | 1 ≤ i ≤ n and f ′(vi1) = f ′(vi2) =

∅}. We choose f ′ so that |I| is as small as possible. First let I 6= ∅. If 1 ∈ I

(the case n ∈ I is similar), then f ′(v21) = f ′(v22) = {1, 2} and by the choice of f ′

we must have f ′(v31) = f ′(v32) = ∅. But then the function f ′1 : V (P2�Pn) → 2[2]

defined by f ′1(v21) = f ′1(v22) = ∅, f ′1(v11) = f ′1(v12) = {1}, f ′1(v31) = f ′1(v32) = {2} and

f ′1(x) = f ′(x) otherwise, is a γtr2-function of P2�Pn which leads to a contradiction.

If m ∈ I for some 2 ≤ i ≤ n − 1, then the function f ′, restricted to the components

of P2�Pn − {vm1 , vm2 } is a T2-RDF and it follows from the induction hypothesis that

ω(f ′) ≥ (m−1+1)+(n−m+1) = n+1 as desired. Henceforth, we may assume that

I = ∅. If f ′(vi1)|+ |f ′(vi2)| = 1 for each 1 ≤ i ≤ n, then we may suppose without loss

of generality that f ′(v11) = {1}, f(v12) = ∅ and this implies that f ′(v21)|+ |f ′(v22)| ≥ 2,

a contradiction. Thus f ′(vi1)| + |f ′(vi2)| ≥ 2 for some 1 ≤ i ≤ n. We now conclude

from I = ∅ that γtr2(P2�Pn) ≥ n + 1. Thus γtr2(P2�Pn) = n + 1 and the proof is

complete.

We end this section by characterizing all graphs G of order n with γt2r(G) = n. The

corona cor(H) of a graph H, is the graph obtained from H by adding a pendant edge

to each vertex of H.

Theorem 12. Let G be connected graph of order n ≥ 2 without isolated vertices. Then
γt2r(G) = n if and only if G ∈ {P2, P3} or G is the corona, cor(H), of some graph H.

Proof. If G ∈ {P2, P3} or G is the corona, cor(H), of some graph H, then clearly

γt2r(G) = n.
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Let γt2r(G) = n. If n ≤ 3, then clearly G ∈ {P2, P3} and we are done. Let n ≥ 4. If

G has a vertex x which is neither a leaf or a stem, then for any y ∈ N(x), the function

f = ({x}, {y}, V (G) − {x, y}, ∅) is a T2RDF on G of weight n − 1, a contradiction.

Hence each vertex of G is either a leaf or a stem. Since γt2r(G) = n, G is not a star.

If G has a stem u which is adjacent to t ≥ 2 leaves v1, . . . , vt and v is a non leaf

neighbor of u, then the function f = ({v1, . . . , vt}, ∅, V (G) − {u}, {u}) is a T2RDF

on G of weight n− t, a contradiction again. Therefore, each stem of G is adjacent to

at exactly one leaf. Assume H is the graph obtained from G by deleting all leaves of

G. Then G = cor(H) and the proof is complete.

4. Conclusion

In this paper, we introduced a new variant of the domination problem, called the total

k-rainbow domination problem, on graphs. We established some sharp bounds on the

total k-rainbow domination number for general graphs and determined this parameter

for some classes of graphs. As a further study, it is interesting to establish sharp lower

bounds for this parameter and to determine the value of this parameter for some well-

known classes of graphs, including complete multipartite graphs, generalized Petersen

graphs and cartesian products of various types of graphs.
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