Product version of reciprocal degree distance of composite graphs

K. Pattabiraman ${ }^{1}$
${ }^{1}$ Department of Mathematics, Annamalai University, Annamalainagar 608 002, India pramank@gmail.com

Received: 7 September 2017; Accepted: 21 October 2017
Published Online: 25 October 2017

Communicated by Ivan Gutman

Abstract

In this paper, we present the upper bounds for the product version of reciprocal degree distance of the tensor product, join and strong product of two graphs in terms of other graph invariants including the Harary index and Zagreb indices.

Keywords: Degree distance, reciprocal degree distance, composite graph
AMS Subject classification: 05C12, 05C76

1. Introduction

All the graphs considered in this paper are simple and connected. For vertices $u, v \in$ $V(G)$, the distance between u and v in G, denoted by $d_{G}(u, v)$, is the length of a shortest (u, v)-path in G and let $d_{G}(v)$ be the degree of a vertex $v \in V(G)$. For two simple graphs G and H their tensor product, denoted by $G \times H$, has vertex set $V(G) \times V(H)$ in which $\left(g_{1}, h_{1}\right)$ and $\left(g_{2}, h_{2}\right)$ are adjacent whenever $g_{1} g_{2}$ is an edge in G and $h_{1} h_{2}$ is an edge in H. Note that if G and H are connected graphs, then $G \times H$ is connected only if at least one of the graph is non-bipartite. The strong product of graphs G and H, denoted by $G \boxtimes H$, is the graph with vertex set $V(G) \times V(H)=\{(u, v): u \in V(G), v \in V(H)\}$ and $(u, x)(v, y)$ is an edge whenever (i) $u=v$ and $x y \in E(H)$, or (ii) $u v \in E(G)$ and $x=y$, or (iii) $u v \in E(G)$ and $x y \in E(H)$. The join $G+H$ of graphs G and H is obtained from the disjoint union of the graphs G and H, where each vertex of G is adjacent to each vertex of H.
A topological index of a graph is a real number related to the graph; it does not depend
on labeling or pictorial representation of a graph. In theoretical chemistry, molecular structure descriptors (also called topological indices) are used for modeling physicochemical, pharmacologic, toxicologic, biological and other properties of chemical compounds. There exist several types of such indices, especially those based on vertex and edge distances. One of the most intensively studied topological indices is the Wiener index; for other related topological indices see [2].
Let G be a connected graph. The Wiener index of G is defined as $W(G)=$ $\frac{1}{2} \sum_{u, v \in V(G)} d_{G}(u, v)$ where the summation goes over all pairs of distinct vertices of G. Similarly, the Harary index of G is defined as $H(G)=\frac{1}{2} \sum_{u, v \in V(G)} \frac{1}{d_{G}(u, v)}$. Gutman et al. [7, 8] were introduced the product version of Wiener index as follows $W^{*}(G)=\prod_{\{u, v\} \subseteq V(G)} d_{G}(u, v)$. Dobrynin and Kochetova [4] and Gutman [6] independently proposed a vertex-degree-weighted version of Wiener index called degree distance or Schultz molecular topological index, which is defined for a connected graph G as $D D(G)=\frac{1}{2} \sum_{u, v \in V(G)}\left(d_{G}(u)+d_{G}(v)\right) d_{G}(u, v)$, where $d_{G}(u)$ is the degree of the vertex u in G. Note that the degree distance is a degree-weight version of the Wiener index. Hua and Zhang [10] introduced a new graph invariant named reciprocal degree distance, which can be seen as a degree-weight version of Harary index, that is,

$$
H_{A}(G)=\frac{1}{2} \sum_{u, v \in V(G), u \neq v} \frac{\left(d_{G}(u)+d_{G}(v)\right)}{d_{G}(u, v)} .
$$

Hua and Zhang [10] have obtained lower and upper bounds for the reciprocal degree distance of graph in terms of other graph invariants including the degree distance, Harary index, the first Zagreb index, the first Zagreb coindex, pendent vertices, independence number, chromatic number and vertex and edge-connectivity. In this sequence, the product version of reciprocal degree distance is defined as

$$
H_{A}^{*}(G)=\prod_{\{u, v\} \subseteq V(G), u \neq v} \frac{d_{G}(u)+d_{G}(v)}{d_{G}(u, v)}
$$

The first Zagreb index and second Zagerb index are defined as

$$
M_{1}(G)=\sum_{u \in V(G)} d_{G}(u)^{2} \quad \text { and } \quad M_{2}(G)=\sum_{u v \in E(G)} d_{G}(u) d_{G}(v) .
$$

Similarly, the first Zagreb coindex and second Zagerb coindex are defined as

$$
\bar{M}_{1}(G)=\sum_{u v \notin E(G)}\left(d_{G}(u)+d_{G}(v)\right) \quad \text { and } \quad \bar{M}_{2}(G)=\sum_{u v \notin E(G)} d_{G}(u) d_{G}(v) .
$$

The Zagreb indices are found to have applications in QSPR and QSAR studies as well, see [3]. Various topological indices on tensor product, strong product have been studied by several authors $[1,5,9,11-15]$.
In this paper, we present upper bounds for the product version of reciprocal degree distance of the tensor product, join and strong product of two graphs in terms of other graph invariants including the Harary index and Zagreb indices.

2. Tensor product

In this section, we compute the product version of the reciprocal degree distance of $G \times K_{r}$.
The proof of the following lemma follows easily from the properties and structure of $G \times K_{r}$. The lemma is used in the proof of the main theorem of this section.

Lemma 1. Let G be a connected graph on $n \geq 2$ vertices. For any pair of vertices $x_{i j}, x_{k p} \in V\left(G \times K_{r}\right), r \geq 3, i, k \in\{1,2, \ldots, n\} j, p \in\{1,2, \ldots, r\}$. Then
(i) If $u_{i} u_{k} \in E(G)$, then

$$
d_{G \times K_{r}}\left(x_{i j}, x_{k p}\right)=\left\{\begin{array}{lll}
1 & \text { if } & j \neq p, \\
2 & \text { if } & j=p \text { and } u_{i} u_{k} \text { is on a triangle of } G, \\
3 & \text { if } & j=p \text { and } u_{i} u_{k} \text { is not on a triangle of } G .
\end{array}\right.
$$

(ii) If $u_{i} u_{k} \notin E(G)$, then $d_{G \times K_{r}}\left(x_{i j}, x_{k p}\right)=d_{G}\left(u_{i}, u_{k}\right)$.
(iii) $d_{G \times K_{r}}\left(x_{i j}, x_{i p}\right)=2$.

Proof. Let $V(G)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $V\left(K_{r}\right)=\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$. Let $x_{i j}$ denote the vertex $\left(u_{i}, v_{j}\right)$ of $G \times K_{r}$. We only prove the case when $u_{i} u_{k} \notin E(G), i \neq k$ and $j=p$. The proofs for other cases are similar.
We may assume $j=1$. Let $P=u_{i} u_{s_{1}} u_{s_{2}} \ldots u_{s_{p}} u_{k}$ be the shortest path of length $p+1$ between u_{i} and u_{k} in G. From P we have a $\left(x_{i 1}, x_{k 1}\right)$-path $P_{1}=$ $x_{i 1} x_{s_{1} 2} \ldots x_{s_{p-1} 2} x_{s_{p} 3} x_{k 1}$ if the length of P is odd, and $P_{1}=x_{i 1} x_{s_{1} 2} \ldots x_{s_{p-1} 2} x_{s_{p} 2} x_{k 1}$ if the length of P is even.
Obviously, the length of P_{1} is $p+1$, and thus $d_{G \times K_{r}}\left(x_{i 1}, x_{k 1}\right) \leq p+1 \leq d_{G}\left(u_{i}, u_{k}\right)$. If there were a $\left(x_{i 1}, x_{k 1}\right)$-path in $G \times K_{r}$ that is shorter than $p+1$ then it is easy to find a $\left(u_{i}, u_{k}\right)$-path in G that is also shorter than $p+1$ in contrast to $d_{G}\left(u_{i}, u_{k}\right)=p+1$.

Remark 1. (Arithmetic Geometric Inequality) Let $a_{1}, a_{2}, \ldots, a_{n}$ be non-negative numbers. Then $\sqrt[n]{a_{1} a_{2} \ldots a_{n}} \leq \frac{a_{1}+a_{2}+\ldots+a_{n}}{n}$.

Theorem 1. Let G be a connected graph with $n \geq 2$ vertices and m edges. Then

$$
H_{A}^{*}\left(G \times K_{r}\right) \leq \frac{(r-1)^{5 n r} m^{n r}}{n^{3 n r}}\left[H_{A}(G)\left(H_{A}(G)-\frac{M_{1}(G)}{2}-t\right)\right]^{n r},
$$

where $t=\sum_{u_{i} u_{k} \in E_{2}} \frac{d_{G}\left(u_{i}\right)+d_{G}\left(u_{k}\right)}{6}$ and $r \geq 3$.

Proof. Set $V(G)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $V\left(K_{r}\right)=\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$. Let $x_{i j}$ denote the vertex $\left(u_{i}, v_{j}\right)$ of $G \times K_{r}$. The degree of the vertex $x_{i j}$ in $G \times K_{r}$ is $d_{G}\left(u_{i}\right) d_{K_{r}}\left(v_{j}\right)$, that is $d_{G \times K_{r}}\left(x_{i j}\right)=(r-1) d_{G}\left(u_{i}\right)$. By the definition of H_{A}^{*}, we have

$$
\begin{align*}
H_{A}^{*}\left(G \times K_{r}\right)= & \prod_{x_{i j}, x_{k p} \in V\left(G \times K_{r}\right)} \frac{d_{G \times K_{r}}\left(x_{i j}\right)+d_{G \times K_{r}}\left(x_{k p}\right)}{d_{G \times K_{r}}\left(x_{i j}, x_{k p}\right)} \\
= & \prod_{i=0}^{n-1} \prod_{\substack{i, p=0 \\
j \neq p}}^{r-1} \frac{d_{G \times K_{r}}\left(x_{i j}\right)+d_{G \times K_{r}}\left(x_{i p}\right)}{d_{G \times K_{r}}\left(x_{i j}, x_{i p}\right)} \times \prod_{\substack{i, k=0 \\
i \neq k}}^{n-1} \prod_{j=0}^{r-1} \frac{d_{G \times K_{r}}\left(x_{i j}\right)+d_{G \times K_{r}}\left(x_{k j}\right)}{d_{G \times K_{r}}\left(x_{i j}, x_{k j}\right)} \times \\
& \prod_{\substack{i, k=0 \\
i \neq k}}^{n-1} \prod_{\substack{j, p=0 \\
j \neq p}}^{r-1} \frac{d_{G \times K_{r}}\left(x_{i j}\right)+d_{G \times K_{r}}\left(x_{k p}\right)}{d_{G \times K_{r}}\left(x_{i j}, x_{k p}\right)} . \tag{1}
\end{align*}
$$

We shall calculate the sums of (1) are separately.
First we compute $\prod_{i=0}^{n-1} \prod_{\substack{p=0 \\ j \neq p}}^{r-1} \frac{d_{G \times K_{r}}\left(x_{i j}\right)+d_{G \times K_{r}}\left(x_{i p}\right)}{d_{G \times K_{r}}\left(x_{i j}, x_{i p}\right)}$.

$$
\begin{align*}
\prod_{i=0}^{n-1} \prod_{\substack{, p=0 \\
j \neq p}}^{r-1} \frac{d_{G \times K_{r}}\left(x_{i j}\right)+d_{G \times K_{r}}\left(x_{i p}\right)}{d_{G \times K_{r}}\left(x_{i j}, x_{i p}\right)} & =\prod_{i=0}^{n-1} \prod_{\substack{ \\
\begin{subarray}{c}{p, p=0 \\
j \neq p} }}\end{subarray}}^{r-1} \frac{2(r-1) d_{G}\left(u_{i}\right)}{2} \text { (by Lemma 1) } \\
& \leq\left[\frac{\frac{1}{2} \sum_{\substack{i=0}}^{n-1} \sum_{\substack{r, p=0 \\
j \neq p}}^{r-1}(r-1) d_{G}\left(u_{i}\right)}{n r}\right]^{n r} \text { (by Rem. 1) } \\
& =\left[\frac{2 r(r-1)^{2} m}{2 n r}\right]^{n r} \\
& =\left[\frac{(r-1)^{2} m}{n}\right]^{n r} \tag{2}
\end{align*}
$$

Next we compute $\prod_{j=0}^{r-1} \prod_{\substack{i, k=0 \\ i \neq k}}^{n-1} \frac{d_{G \times K_{r}}\left(x_{i j}\right)+d_{G \times K_{r}}\left(x_{k j}\right)}{d_{G \times K_{r}}\left(x_{i j}, x_{k j}\right)}$. By Remark 1, we have

$$
\begin{align*}
& =\left[\frac{\frac{1}{2} \sum_{j=0}^{r-1} S}{n r}\right]^{n r} . \tag{3}
\end{align*}
$$

Now we compute S. For that, let $E_{1}=\left\{u v \in E(G) \mid u v\right.$ is on a C_{3} in $\left.G\right\}$ and $E_{2}=$ $E(G)-E_{1}$.

$$
\begin{align*}
& S=\left(\sum_{\substack{i, k=0 \\
\text { itk } \\
u_{i} \neq E(G)}}^{n-1}+\sum_{\substack{i, k=0 \\
i \neq k \\
u_{i} \notin E\left(u_{k} \in E_{1}\right.}}^{n-1}+\sum_{\substack{i, k=0 \\
\text { ifk } \\
u_{i} u_{k} \in E_{2}}}^{n-1}\right)\left(\frac{d_{G \times K_{r}}\left(x_{i j}\right)+d_{G \times K_{r}}\left(x_{k j}\right)}{d_{G \times K_{r}}\left(x_{i j}, x_{k j}\right)}\right) \\
& =\left(\sum_{\substack{i, k=0 \\
i \neq k \\
\vdots=k \\
u_{i} u_{k} \notin E(G)}}^{n-1} \frac{(r-1)\left(d_{G}\left(u_{i}\right)+d_{G}\left(u_{k}\right)\right)}{d_{G}\left(u_{i}, u_{k}\right)}+\sum_{\substack{i, k=0 \\
i \neq k \\
u_{i} \\
u_{i} u_{k} \in E_{1}}}^{n-1} \frac{(r-1)\left(d_{G}\left(u_{i}\right)+d_{G}\left(u_{k}\right)\right)}{2}+\right. \\
& \left.\sum_{\substack{i, k=0 \\
i=k \\
u_{i} \in k \\
u_{i} u_{k} \in E_{2}}}^{n-1} \frac{(r-1)\left(d_{G}\left(u_{i}\right)+d_{G}\left(u_{k}\right)\right)}{3}\right) \quad \text { (by Lemma 1) } \\
& =(r-1)\left\{\left(\sum_{\substack{i, k=0 \\
i \neq k \\
u_{i} \neq k \\
u_{i} u_{k} \notin E(G)}}^{n-1} \frac{d_{G}\left(u_{i}\right)+d_{G}\left(u_{k}\right)}{d_{G}\left(u_{i}, u_{k}\right)}+\sum_{\substack{i, k=0 \\
i \neq k \\
u_{i}, k \\
u_{i} u_{k} \in E_{1}}}^{n-1} \frac{d_{G}\left(u_{i}\right)+d_{G}\left(u_{k}\right)}{d_{G}\left(u_{i}, u_{k}\right)}+\right.\right. \\
& \left.\left.\sum_{\substack{i, k=0 \\
i \neq k \\
i \neq k}}^{n-1} \frac{d_{G}\left(u_{i}\right)+d_{G}\left(u_{k}\right)}{u_{i}\left(u_{i}, u_{k}\right)}\right)-\sum_{\substack{i, k=0 \\
i \neq k \\
i \neq k \\
u_{i} u_{k} \in E_{1}}}^{n-1} \frac{d_{G}\left(u_{i}\right)+d_{G}\left(u_{k}\right)}{2}-2 \sum_{\substack{i, k=0 \\
\text { ifk } \\
u_{i} u_{k} \in E_{2}}}^{n-1} \frac{d_{G}\left(u_{i}\right)+d_{G}\left(u_{k}\right)}{3}\right\} \\
& =(r-1)\left\{2 H_{A}(G)-\sum_{\substack{i, k=0 \\
i \neq k \\
u_{i} \in E(G)}}^{n-1} \frac{d_{G}\left(u_{i}\right)+d_{G}\left(u_{k}\right)}{2}-\sum_{\substack{i, k=0 \\
u_{i} u_{k} \in k \\
i_{k} \\
u_{i} u_{k} \in E_{2}}}^{n-1} \frac{d_{G}\left(u_{i}\right)+d_{G}\left(u_{k}\right)}{6}\right\} \\
& =(r-1)^{2}\left\{2 H_{A}(G)-M_{1}(G)-\sum_{u_{i} u_{k} \in E_{2}} \frac{d_{G}\left(u_{i}\right)+d_{G}\left(u_{k}\right)}{3}\right\} . \tag{4}
\end{align*}
$$

Now summing (4) over $j=0,1, \ldots, r-1$, we get,

$$
\begin{equation*}
\sum_{j=0}^{r-1} S=r(r-1)\left(2 H_{A}(G)-M_{1}(G)-\sum_{u_{i} u_{k} \in E_{2}} \frac{d_{G}\left(u_{i}\right)+d_{G}\left(u_{k}\right)}{3}\right) \tag{5}
\end{equation*}
$$

Hence

$$
\begin{align*}
\prod_{j=0}^{r-1} \prod_{\substack{, k=0 \\
i \neq k}}^{n-1} \frac{d_{G \times K_{r}\left(x_{i j}\right)+d_{G \times K_{r}}\left(x_{k j}\right)}}{d_{G \times K_{r}}\left(x_{i j}, x_{k j}\right)} & \leq\left[\frac{\frac{r(r-1)}{2}\left(2 H_{A}(G)-M_{1}(G)-\sum_{u_{i} u_{k} \in E_{2}} \frac{d_{G}\left(u_{i}\right)+d_{G}\left(u_{k}\right)}{3}\right)}{n r}\right]^{n r} \\
& =\left[\frac{(r-1)\left(H_{A}(G)-\frac{M_{1}(G)}{2}-\sum_{u_{i} u_{k} \in E_{2}} \frac{d_{G}\left(u_{i}\right)+d_{G}\left(u_{k}\right)}{6}\right)}{n}\right]^{n r} \tag{6}
\end{align*}
$$

Next we compute $\prod_{\substack{i, k=0 \\ i \neq k}}^{n-1} \prod_{\substack{j, p=0 \\ j \neq p}}^{r-1} \frac{d_{G \times K_{r}}\left(x_{i j}\right)+d_{G \times K_{r}}\left(x_{\left.k_{p}\right)}\right)}{d_{G \times K_{r}}\left(x_{i j}, x_{k p}\right)}$. By Lemma 1 and Remark 1, we
have

$$
\begin{align*}
\prod_{\substack{i, k=0 \\
i \neq k}}^{n-1} \prod_{\substack{j, p=0, j \neq p}}^{r-1} \frac{\left.d_{G \times K_{r}}\left(x_{i j}\right)+d_{G \times K_{r}}\left(x_{k p}\right)\right)}{d_{G \times K_{r}}\left(x_{i j}, x_{k p}\right.} & \leq\left[\frac{\frac{1}{2} \sum_{\substack{i, k=0 \\
i \neq k}}^{n-1} \sum_{\substack{j, p=0 \\
j \neq p}}^{r-1} \frac{(r-1)\left(d_{G}\left(u_{i}\right)+d_{G}\left(u_{k}\right)\right.}{d_{G}\left(u_{i}, u_{k}\right)}}{n r}\right]^{n r} \\
& =\left[\frac{r(r-1)^{2} H_{A}(G)}{n r}\right]^{n r} \\
& =\left[\frac{(r-1)^{2} H_{A}(G)}{n}\right]^{n r} \tag{7}
\end{align*}
$$

Using (1) and the sums $\mathbf{A}_{\mathbf{1}}, \mathbf{A}_{\mathbf{2}}$ and $\mathbf{A}_{\mathbf{3}}$ in (2),(5) and (7), respectively, we have,

$$
H_{A}^{*}\left(G \times K_{r}\right) \leq \frac{(r-1)^{5 n r} m^{n r}}{n^{3 n r}}\left[H_{A}(G)\left(H_{A}(G)-\frac{M_{1}(G)}{2}-t\right)\right]^{n r}
$$

where $t=\sum_{u_{i} u_{k} \in E_{2}} \frac{d_{G}\left(u_{i}\right)+d_{G}\left(u_{k}\right)}{6}$.
Using Theorem 1, we have the following corollaries.
Corollary 1. Let G be a connected graph on $n \geq 2$ vertices with m edges. If each edge of G is on a C_{3}, then

$$
H_{A}^{*}\left(G \times K_{r}\right)=\leq \frac{(r-1)^{5 n r} m^{n r}}{n^{3 n r}}\left[H_{A}(G)\left(H_{A}(G)-\frac{M_{1}(G)}{2}\right)\right]^{n r}
$$

where $r \geq 3$.

For a triangle-free graph, $\sum_{u_{i} u_{k} \in E_{2}} d_{G}\left(u_{i}\right) d_{G}\left(u_{k}\right)=M_{2}(G)$.
Corollary 2. If G is a connected triangle free graph on $n \geq 2$ vertices and m edges, then

$$
H_{A}^{*}\left(G \times K_{r}\right) \leq \frac{(r-1)^{5 n r} m^{n r}}{n^{3 n r}}\left[H_{A}(G)\left(H_{A}(G)-\frac{2 M_{1}(G)}{3}\right)\right]^{n r}
$$

where $r \geq 3$.
By direct calculations we obtain expressions for the values of the Harary indices of K_{n} and $C_{n} . H\left(K_{n}\right)=\frac{n(n-1)}{2}$ and $H\left(C_{n}\right)=n\left(\sum_{i=1}^{\frac{n}{2}} \frac{1}{i}\right)-1$ when n is even, and $n\left(\sum_{i=1}^{\frac{n-1}{2}} \frac{1}{i}\right)$ otherwise. Similarly, $H_{A}\left(K_{n}\right)=n(n-1)^{2}$ and $H_{A}\left(C_{n}\right)=4 H\left(C_{n}\right)$.
Using Corollaries 1 and 2, we obtain the H_{A}^{*} of the graphs $K_{n} \times K_{r}$ and $C_{n} \times K_{r}$.
Example 1. (i) $H_{A}^{*}\left(K_{n} \times K_{r}\right) \leq \frac{(r-1)^{5 n r}(n-1)^{3 n r}}{2^{n r}}$.
(ii)

$$
H_{A}^{*}\left(C_{n} \times K_{r}\right) \leq\left\{\begin{array}{l}
\frac{(r-1)^{15 r}(48)^{3 r}}{(16)^{36 r}}, \quad \text { if } n=3, \\
\frac{(16)^{3_{r}(r-1)^{5 n r}}}{n^{2 n r}}\left[\left(H\left(C_{n}\right)\right)^{2}-\frac{2 n H\left(C_{n}\right)}{3}\right]^{n r}, \quad \text { if } n>3 .
\end{array}\right.
$$

3. Join of graphs

In this section, we compute the product version of reciprocal degree distance of join of two graphs.

Theorem 2. Let G_{1} be a graph of order n and size p and let G_{2} be a graph of order m and size q. Then $H_{A}^{*}\left(G_{1}+G_{2}\right) \leq\left[\left(M_{1}\left(G_{1}\right)+2 m p\right)\left(M_{1}\left(G_{2}\right)+2 n q\right)\left(\bar{M}_{1}\left(G_{1}\right)+m(n(n-1)-\right.\right.$ $\left.2 p))\left(\bar{M}_{1}\left(G_{2}\right)+n(m(m-1)-2 q)\right)(2 m p+2 n q+m n(m+n))\right]^{n m}$.

Proof. Let $V\left(G_{1}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $V\left(G_{2}\right)=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$. By definition of the join of two graphs, one can see that, $d_{G_{1}+G_{2}}(x)=\left\{\begin{array}{l}d_{G_{1}}(x)+\left|V\left(G_{2}\right)\right|, \text { if } x \in V\left(G_{1}\right) \\ d_{G_{2}}(x)+\left|V\left(G_{1}\right)\right|, \text { if } x \in V\left(G_{2}\right)\end{array}\right.$ and

$$
d_{G_{1}+G_{2}}(u, v)=\left\{\begin{array}{l}
0, \text { if } u=v \\
1, \text { if } u v \in E\left(G_{1}\right) \text { or } u v \in E\left(G_{2}\right) \text { or }\left(u \in V\left(G_{1}\right) \text { and } v \in V\left(G_{2}\right)\right) \\
2, \text { otherwise. }
\end{array}\right.
$$

Therefore,

$$
\begin{aligned}
& H_{A}^{*}\left(G_{1}+G_{2}\right)=\prod_{\{u, v\} \subseteq V\left(G_{1}+G_{2}\right)} \frac{d_{G_{1}+G_{2}}(u)+d_{G_{1}+G_{2}}(v)}{d_{G_{1}+G_{2}}(u, v)} \\
& =\prod_{u v \in E\left(G_{1}\right)}\left(\left(d_{G_{1}}(u)+m\right)+\left(d_{G_{1}}(v)+m\right)\right) \times \\
& \prod_{u v \notin E\left(G_{1}\right)} \frac{\left(d_{G_{1}}(u)+m\right)+\left(d_{G_{1}}(v)+m\right)}{2} \times \\
& \prod_{u v \in E\left(G_{2}\right)}\left(\left(d_{G_{2}}(u)+n\right)+\left(d_{G_{2}}(v)+n\right)\right) \times \\
& \prod_{u v \notin E\left(G_{2}\right)} \frac{\left(d_{G_{2}}(u)+n\right)+\left(d_{G_{2}}(v)+n\right)}{2} \times \\
& \prod_{u \in V\left(G_{1}\right), v \in V\left(G_{2}\right)}\left(\left(d_{G_{1}}(u)+m\right)+\left(d_{G_{2}}(v)+n\right)\right) \\
& \leq\left[\frac{\sum_{u \in E\left(G_{1}\right)}\left(d_{G_{1}}(u)+d_{G_{1}}(v)+2 m\right)}{n m}\right]^{n m}\left[\frac{\left.\sum_{u v E\left(G_{1}\right)} \frac{\frac{d_{G_{1}}(u)+d_{G_{1}}(v)+2 m}{2}}{n m}\right]^{n m} \text { n}}{n m}\right. \\
& {\left[\frac{\sum_{u v \in E\left(G_{2}\right)}\left(d_{G_{2}}(u)+d_{G_{2}}(v)+2 n\right)}{n m}\right]^{n m}\left[\frac{\sum_{u \notin E\left(G_{2}\right)} \frac{d_{G_{2}}(u)+d_{G_{2}}(v)+2 n}{2}}{n m}\right]^{n m}} \\
& {\left[\frac{\sum_{u \in V\left(G_{1}\right), v \in V\left(G_{2}\right)}\left(d_{G_{1}}(u)+d_{G_{2}}(v)+(m+n)\right)}{n r}\right]^{n m} \quad \text { (by Remark 1) }} \\
& =\left[M_{1}\left(G_{1}\right)+2 m p\right]^{n m}\left[M_{1}\left(G_{2}\right)+2 n q\right]^{n m}\left[\bar{M}_{1}\left(G_{1}\right)+m(n(n-1)-2 p)\right]^{n m} \\
& {\left[\bar{M}_{1}\left(G_{2}\right)+n(m(m-1)-2 q)\right]^{n m}[2 m p+2 n q+m n(m+n)]^{n m} .}
\end{aligned}
$$

This completes the proof.

One can observe that $M_{1}\left(C_{n}\right)=4 n, n \geq 3, M_{1}\left(P_{1}\right)=0, M_{1}\left(P_{n}\right)=4 n-6, n>1$ and $M_{1}\left(K_{n}\right)=n(n-1)^{2}$. Similarly, $\overline{M_{1}}\left(K_{n}\right)=\overline{M_{2}}\left(K_{n}\right)=0$. Moreover $M_{2}\left(P_{n}\right)=4(n-2)$ and $M_{2}\left(C_{n}\right)=4 n$. Using Theorem 2, we have the following corollaries.

Corollary 3. Let G be graph on n vertices and p edges. Then $H_{A}^{*}\left(G+K_{m}\right) \leq\left[\left(M_{1}\left(G_{1}\right)+\right.\right.$ $\left.2 m p)\left(\bar{M}_{1}\left(G_{1}\right)+m(n(n-1)-2 p)\right)(m(m-1)(m+n-1))(2 m p+n m(2 m+n-1))\right]^{n m}$.

Let $K_{n, m}$ be the bipartite graph with two partitions having n and m vertices. Note that $K_{n, m}=\bar{K}_{n}+\bar{K}_{m}$.

Corollary 4. $\quad H_{A}^{*}\left(K_{n, m}\right)=H_{A}^{*}\left(\bar{K}_{n}+\bar{K}_{m}\right) \leq(n m)^{3 n m}[(n-1)(m-1)(m+n)]^{n m}$.

4. Strong product

In this section, we obtain the product version of reciprocal degree distance of $G \boxtimes K_{r}$.
Theorem 3. Let G be a connected graph with n vertices and m edges. Then

$$
H_{A}^{*}\left(G \boxtimes K_{r}\right)=H_{A}^{*}\left(G \boxtimes K_{r}\right) \leq \frac{(r-1)^{2 n r}}{n^{3 n r}}\left[(2 r m+n(r-1)]^{n r}\left[r H_{A}(G)+2(r-1) H(G)\right)\right]^{2 n r} .
$$

Proof. Let $V(G)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $V\left(K_{r}\right)=\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$. Let $x_{i j}$ denote the vertex $\left(u_{i}, v_{j}\right)$ of $G \boxtimes K_{r}$. The degree of the vertex $x_{i j}$ in $G \boxtimes K_{r}$ is $d_{G}\left(u_{i}\right)+d_{K_{r}}\left(v_{j}\right)+$ $d_{G}\left(u_{i}\right) d_{K_{r}}\left(v_{j}\right)$, that is $d_{G \boxtimes K_{r}}\left(x_{i j}\right)=r d_{G}\left(u_{i}\right)+(r-1)$. One can observe that for any pair of vertices $x_{i j}, x_{k p} \in V\left(G \boxtimes K_{r}\right), d_{G \boxtimes K_{r}}\left(x_{i j}, x_{i p}\right)=1$ and $d_{G \boxtimes K_{r}}\left(x_{i j}, x_{k p}\right)=$ $d_{G}\left(u_{i}, u_{k}\right)$.

$$
\begin{align*}
H_{A}^{*}\left(G \boxtimes K_{r}\right)= & \prod_{\substack{x_{i j}, x_{k p} \in V\left(G \boxtimes K_{r}\right)}} \frac{d_{G \boxtimes K_{r}}\left(x_{i j}\right)+d_{G \boxtimes K_{r}}\left(x_{k p}\right)}{d_{G \boxtimes K_{r}}\left(x_{i j}, x_{k p}\right)} \\
= & \prod_{\substack{i=0 \\
n-1}} \prod_{\substack{ \\
j-p=0 \\
j \neq p}}^{r-1} \frac{d_{G \boxtimes K_{r}}\left(x_{i j}\right)+d_{G \boxtimes K_{r}}\left(x_{i p}\right)}{d_{G \boxtimes K_{r}}\left(x_{i j}, x_{i p}\right)} \times \\
& \prod_{\substack{i, k=0 \\
i \neq k}}^{\substack{n-1}} \prod_{j=0}^{r-1} \frac{d_{G \boxtimes K_{r}}\left(x_{i j}\right)+d_{G \boxtimes K_{r}}\left(x_{k j}\right)}{d_{G \boxtimes K_{r}}\left(x_{i j}, x_{k j}\right)} \times \\
& \prod_{\substack{i, k=0 \\
i \neq k}} \prod_{\substack{j, p=0 \\
j \neq p}}^{r-1} \frac{d_{G \boxtimes K_{r}}\left(x_{i j}\right)+d_{G \boxtimes K_{r}}\left(x_{k p}\right)}{d_{G \boxtimes K_{r}}\left(x_{i j}, x_{k p}\right)} . \tag{8}
\end{align*}
$$

We shall obtain the products of (8) separately. First we compute $\prod_{i=0}^{n-1} \prod_{\substack{ \\j, p=0 \\ j \neq p}}^{r-1} \frac{d_{G \boxtimes K_{r}}\left(x_{i j}\right)+d_{G \boxtimes K_{r}}\left(x_{i p}\right)}{d_{G \boxtimes K_{r}}\left(x_{i j}, x_{i p}\right)}$. By Remark 1, we have

$$
\begin{align*}
\prod_{i=0}^{n-1} \prod_{\substack{j, p=0 \\
j \neq p}}^{r-1} \frac{d_{G \boxtimes K_{r}}\left(x_{i j}\right)+d_{G \boxtimes K_{r}}\left(x_{i p}\right)}{d_{G \boxtimes K_{r}}\left(x_{i j}, x_{i p}\right)} & =\prod_{\substack { i=0 \\
\begin{subarray}{c}{j, p=0 \\
j \neq p{ i = 0 \\
\begin{subarray} { c } { j , p = 0 \tag{9}\\
j \neq p } }\end{subarray}}^{\prod_{\substack{ }}^{r-1}\left(2 d_{G}\left(u_{i}\right)+2(r-1)+2(r-1) d_{G}\left(u_{i}\right)\right)} \\
& \leq\left[\frac{\sqrt{2} \sum_{i=0}^{n-1} \sum_{\substack{ \\
j, p=0 \\
j \neq p}}^{r-1}\left(2 d_{G}\left(u_{i}\right)+2(r-1)+2(r-1) d_{G}\left(u_{i}\right)\right)}{n r}\right]^{n r} \\
& =\left[\frac{2 r^{2}(r-1) m+n r(r-1)^{2}}{n r}\right]^{n r} \\
& =\left[\frac{2 r(r-1) m+n(r-1)^{2}}{n}\right]^{n r}
\end{align*}
$$

Next we compute $\prod_{j=0}^{r-1} \prod_{\substack{i, k=0 \\ i \neq k}}^{n-1} \frac{d_{G \boxtimes K_{r}}\left(x_{i j}\right)+d_{G \boxtimes K_{r}}\left(x_{k j}\right)}{d_{G \boxtimes K_{r}}\left(x_{i j}, x_{k j}\right)}$. We have

$$
\begin{align*}
& \prod_{j=0}^{r-1} \prod_{\substack{i, k=0 \\
i \neq k}}^{n-1} \frac{\substack{i \neq k \\
i \neq K_{r}}}{d_{G \boxtimes K_{r}}\left(x_{i j}\right)+d_{G \boxtimes K_{r}}\left(x_{k j}\right)} \\
= & \prod_{j=0}^{r-1} \prod_{\substack{i, k=0 \\
i \neq k}}^{n-1} \frac{\left(d_{G}\left(u_{i}\right)+(r-1) d_{G}\left(u_{i}\right)+d_{G}\left(u_{k}\right)+(r-1) d_{G}\left(u_{k}\right)+2(r-1)\right)}{d_{G}\left(u_{i}, u_{k}\right)} \\
\leq & {\left[\frac{\frac{r}{2} \sum_{j=0}^{r-1} \sum_{\substack{i, k=0 \\
i \neq k}}^{n-1} \frac{d_{G}\left(u_{i}\right)+d_{G}\left(u_{k}\right)}{d_{G}\left(u_{i}, u_{k}\right)}+\frac{1}{2} \sum_{j=0}^{r-1} \sum_{\substack{i, k=0 \\
i \neq k}}^{n-1} \frac{2(r-1)}{d_{G}\left(u_{i}, u_{k}\right)}}{n r}\right]^{n r} \quad \text { (by Remark 1) } } \\
= & {\left[\frac{r^{2} H_{A}(G)+2 r(r-1) H(G)}{n r}\right]^{n r} } \\
= & {\left[\frac{r H_{A}(G)+2(r-1) H(G)}{n}\right]^{n r} . }
\end{align*}
$$

Finally we determine $\prod_{\substack{i, k=0 \\ i \neq k}}^{n-1} \prod_{\substack{p=0, p \\ j \neq p}}^{r-1} \frac{d_{G \boxtimes K_{r}}\left(x_{i j}\right)+d_{G \boxtimes K_{r}}\left(x_{k p}\right)}{d_{G \boxtimes K_{r}}\left(x_{i j}, x_{k p}\right)}$.

$$
\begin{align*}
& \prod_{\substack{i, k=0 \\
i \neq k}}^{n-1} \prod_{\substack{j=0, j \neq p}}^{r-1} \frac{d_{G \boxtimes K_{r}}\left(x_{i j}\right)+d_{G \boxtimes K_{r}}\left(x_{k p}\right)}{d_{G \boxtimes K_{r}}\left(x_{i j}, x_{k p}\right)} \\
\leq & {\left[\frac{\frac{r^{2}(r-1)}{2} \sum_{\substack{i, k=0 \\
i \neq k}}^{n-1} \frac{d_{G}\left(u_{i}\right)+d_{G}\left(u_{k}\right)}{d_{G}\left(u_{i}, u_{k}\right)}+r(r-1)^{2}}{\sum_{\substack{i, k=0 \\
i \neq k}}^{n-1} \frac{1}{d_{G}\left(u_{i}, u_{k}\right)}}\right]^{n r} \quad \text { (by Remark 1) } } \\
= & {\left[\frac{r^{2}(r-1) H_{A}(G)+2 r(r-1)^{2} H(G)}{n r}\right]^{n r} } \\
= & {\left[\frac{r(r-1) H_{A}(G)+2(r-1)^{2} H(G)}{n r} .\right.} \tag{11}
\end{align*}
$$

Using (9), (10) and (11) in (8), we have

$$
H_{A}^{*}\left(G \boxtimes K_{r}\right)=\frac{(r-1)^{2 n r}}{n^{3 n r}}\left[(2 r m+n(r-1)]^{n r}\left[r H_{A}(G)+2(r-1) H(G)\right)\right]^{2 n r}
$$

Using Theorem 3, we obtain the following corollary.

Corollary 5. $\quad H_{A}^{*}\left(C_{n} \boxtimes K_{r}\right) \leq(3 r-1)^{n r}\left[\frac{2(r-1)(3 r-1) H\left(C_{n}\right)}{n}\right]^{2 n r}$.

As an application we present formula for product version of reciprocal degree distance of closed fence graph, $C_{n} \boxtimes K_{2}$.

Example 2. By Corollary 5, we have

$$
H_{M}^{*}\left(C_{n} \boxtimes K_{2}\right) \leq\left\{\begin{array}{l}
5^{2 n}\left[\frac{10}{n}\left(n \sum_{i=1}^{\frac{n}{2}} \frac{1}{i}-1\right)\right]^{4 n}, \quad \text { if } n \text { is even } \\
5^{2 n}\left[10 \sum_{i=1}^{\frac{n-1}{2}} \frac{1}{i}\right]^{4 n}, \quad \text { if } n \text { is odd. }
\end{array}\right.
$$

References

[1] Y. Alizadeh, A. Iranmanesh, and T. Došlić, Additively weighted Harary index of some composite graphs, Discrete Math. 313 (2013), no. 1, 26-34.
[2] K.C. Das, B. Zhou, and N. Trinajstić, Bounds on Harary index, J. Math. Chem. 46 (2009), no. 4, 1377-1393.
[3] J. Devillers and A.T. Balaban, Topological indices and related descriptors in $Q S A R$ and $Q S P A R$, Gordon and Breach, Amsterdam, The Netherlands, 2000.
[4] A.A. Dobrynin and A.A. Kochetova, Degree distance of a graph: A degree analog of the Wiener index, J. Chem. Inf. Comput. Sci. 34 (1994), no. 5, 1082-1086.
[5] T. Došlić, Vertex-weighted Wiener polynomials for composite graphs, Ars Math. Contemp. 1 (2008), no. 1.
[6] I. Gutman, Selected properties of the Schultz molecular topological index, J. Chem. Inf. Comput. Sci. 34 (1994), no. 5, 1087-1089.
[7] I. Gutman, W. Linert, I. Lukovits, and Ž. Tomović, The multiplicative version of the Wiener index, J. Chem. Inf. Comput. Sci. 40 (2000), no. 1, 113-116.
[8] _ On the multiplicative Wiener index and its possible chemical applications, Monatshefte für Chemie/Chemical Monthly 131 (2000), no. 5, 421-427.
[9] M. Hoji, Z. Luo, and E. Vumar, Wiener and vertex PI indices of Kronecker products of graphs, Discrete Appl. Math. 158 (2010), no. 16, 1848-1855.
[10] H. Hua and S. Zhang, On the reciprocal degree distance of graphs, Discrete Appl. Math. 160 (2012), no. 7, 1152-1163.
[11] M.H. Khalifeh, H. Yousefi-Azari, and A.R. Ashrafi, Vertex and edge PI indices of Cartesian product graphs, Discrete Appl. Math. 156 (2008), no. 10, 1780-1789.
[12] K. Pattabiraman and P. Paulraja, On some topological indices of the tensor products of graphs, Discrete Appl. Math. 160 (2012), no. 3, 267-279.
[13] _ Wiener and vertex PI indices of the strong product of graphs, Discuss. Math. Graph Theory 32 (2012), no. 4, 749-769.
[14] K. Xu, K.C. Das, H. Hua, and M.V. Diudea, Maximal Harary index of unicyclic graphs with given matching number, Studia Univ. Babes-Bolyai Chem. 58 (2013), 71-86.
[15] K. Xu, J. Wang, and H. Liu, The Harary index of ordinary and generalized quasitree graphs, J. Appl. Math. Comput. 45 (2014), no. 1-2, 365-374.

