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1. Introduction

All the graphs considered in this paper are simple and connected. For vertices u, v ∈
V (G), the distance between u and v in G, denoted by dG(u, v), is the length of a

shortest (u, v)-path in G and let dG(v) be the degree of a vertex v ∈ V (G). For

two simple graphs G and H their tensor product, denoted by G × H, has vertex

set V (G) × V (H) in which (g1, h1) and (g2, h2) are adjacent whenever g1g2 is an

edge in G and h1h2 is an edge in H. Note that if G and H are connected graphs,

then G × H is connected only if at least one of the graph is non-bipartite. The

strong product of graphs G and H, denoted by G � H, is the graph with vertex set

V (G) × V (H) = {(u, v) : u ∈ V (G), v ∈ V (H)} and (u, x)(v, y) is an edge whenever

(i) u = v and xy ∈ E(H), or (ii) uv ∈ E(G) and x = y, or (iii) uv ∈ E(G) and

xy ∈ E(H). The join G + H of graphs G and H is obtained from the disjoint union

of the graphs G and H, where each vertex of G is adjacent to each vertex of H.

A topological index of a graph is a real number related to the graph; it does not depend
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on labeling or pictorial representation of a graph. In theoretical chemistry, molecular

structure descriptors (also called topological indices) are used for modeling physic-

ochemical, pharmacologic, toxicologic, biological and other properties of chemical

compounds. There exist several types of such indices, especially those based on ver-

tex and edge distances. One of the most intensively studied topological indices is the

Wiener index; for other related topological indices see [2].

Let G be a connected graph. The Wiener index of G is defined as W (G) =
1
2

∑
u, v ∈V (G)

dG(u, v) where the summation goes over all pairs of distinct vertices of

G. Similarly, the Harary index of G is defined as H(G) = 1
2

∑
u, v ∈V (G)

1
dG(u,v) . Gut-

man et al. [7, 8] were introduced the product version of Wiener index as follows

W ∗(G) =
∏

{u,v}⊆V (G)

dG(u, v). Dobrynin and Kochetova [4] and Gutman [6] inde-

pendently proposed a vertex-degree-weighted version of Wiener index called degree

distance or Schultz molecular topological index, which is defined for a connected graph

G as DD(G) = 1
2

∑
u,v∈V (G)

(dG(u) + dG(v))dG(u, v), where dG(u) is the degree of the

vertex u in G. Note that the degree distance is a degree-weight version of the Wiener

index. Hua and Zhang [10] introduced a new graph invariant named reciprocal degree

distance, which can be seen as a degree-weight version of Harary index, that is,

HA(G) =
1

2

∑
u,v∈V (G), u 6=v

(dG(u) + dG(v))

dG(u, v)
.

Hua and Zhang [10] have obtained lower and upper bounds for the reciprocal degree

distance of graph in terms of other graph invariants including the degree distance,

Harary index, the first Zagreb index, the first Zagreb coindex, pendent vertices, in-

dependence number, chromatic number and vertex and edge-connectivity. In this

sequence, the product version of reciprocal degree distance is defined as

H∗A(G) =
∏

{u,v}⊆V (G), u 6=v

dG(u) + dG(v)

dG(u, v)
.

The first Zagreb index and second Zagerb index are defined as

M1(G) =
∑

u∈V (G)

dG(u)2 and M2(G) =
∑

uv∈E(G)

dG(u)dG(v).

Similarly, the first Zagreb coindex and second Zagerb coindex are defined as

M1(G) =
∑

uv/∈E(G)

(dG(u) + dG(v)) and M2(G) =
∑

uv/∈E(G)

dG(u)dG(v).
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The Zagreb indices are found to have applications in QSPR and QSAR studies as

well, see [3]. Various topological indices on tensor product, strong product have been

studied by several authors [1, 5, 9, 11–15].

In this paper, we present upper bounds for the product version of reciprocal degree

distance of the tensor product, join and strong product of two graphs in terms of

other graph invariants including the Harary index and Zagreb indices.

2. Tensor product

In this section, we compute the product version of the reciprocal degree distance of

G×Kr.

The proof of the following lemma follows easily from the properties and structure of

G×Kr. The lemma is used in the proof of the main theorem of this section.

Lemma 1. Let G be a connected graph on n ≥ 2 vertices. For any pair of vertices
xij , xkp ∈ V (G×Kr), r ≥ 3, i, k ∈ {1, 2, . . . , n} j, p ∈ {1, 2, . . . , r}. Then
(i) If uiuk ∈ E(G), then

dG×Kr (xij , xkp) =


1 if j 6= p,

2 if j = p and uiuk is on a triangle of G,

3 if j = p and uiuk is not on a triangle of G.

(ii) If uiuk /∈ E(G), then dG×Kr (xij , xkp) = dG(ui, uk).
(iii) dG×Kr (xij , xip) = 2.

Proof. Let V (G) = {u1, u2, . . . , un} and V (Kr) = {v1, v2, . . . , vr}. Let xij denote

the vertex (ui, vj) of G×Kr. We only prove the case when uiuk /∈ E(G), i 6= k and

j = p. The proofs for other cases are similar.

We may assume j = 1. Let P = uius1us2 . . . uspuk be the shortest path of

length p + 1 between ui and uk in G. From P we have a (xi1, xk1)-path P1 =

xi1xs12 . . . xsp−12xsp3xk1 if the length of P is odd, and P1 = xi1xs12 . . . xsp−12xsp2xk1

if the length of P is even.

Obviously, the length of P1 is p+ 1, and thus dG×Kr
(xi1, xk1) ≤ p+ 1 ≤ dG(ui, uk). If

there were a (xi1, xk1)-path in G×Kr that is shorter than p+1 then it is easy to find a

(ui, uk)-path in G that is also shorter than p+1 in contrast to dG(ui, uk) = p+1.

Remark 1. (Arithmetic Geometric Inequality) Let a1, a2, . . . , an be non-negative num-
bers. Then n√a1a2 . . . an ≤ a1+a2+...+an

n
.

Theorem 1. Let G be a connected graph with n ≥ 2 vertices and m edges. Then

H∗A(G×Kr) ≤
(r − 1)5nrmnr

n3nr

[
HA(G)(HA(G)− M1(G)

2
− t)

]nr

,



28 Product version of reciprocal degree distance of composite graphs

where t =
∑

uiuk∈E2

dG(ui)+dG(uk)
6

and r ≥ 3.

Proof. Set V (G) = {u1, u2, . . . , un} and V (Kr) = {v1, v2, . . . , vr}. Let xij denote
the vertex (ui, vj) of G×Kr. The degree of the vertex xij in G×Kr is dG(ui)dKr (vj),
that is dG×Kr

(xij) = (r − 1)dG(ui). By the definition of H∗A, we have

H∗A(G×Kr) =
∏

xij , xkp ∈V (G×Kr)

dG×Kr (xij) + dG×Kr (xkp)

dG×Kr (xij , xkp)

=

n−1∏
i=0

r−1∏
j, p=0
j 6= p

dG×Kr (xij) + dG×Kr (xip)

dG×Kr (xij , xip)
×

n−1∏
i, k=0
i 6= k

r−1∏
j =0

dG×Kr (xij) + dG×Kr (xkj)

dG×Kr (xij , xkj)
×

n−1∏
i, k=0
i 6= k

r−1∏
j, p=0
j 6= p

dG×Kr (xij) + dG×Kr (xkp)

dG×Kr (xij , xkp)
. (1)

We shall calculate the sums of (1) are separately.

First we compute
n−1∏
i=0

r−1∏
j, p=0
j 6= p

dG×Kr (xij)+dG×Kr (xip)
dG×Kr (xij ,xip)

.

n−1∏
i=0

r−1∏
j, p=0
j 6= p

dG×Kr (xij) + dG×Kr (xip)

dG×Kr (xij , xip)
=

n−1∏
i=0

r−1∏
j, p=0
j 6= p

2(r − 1)dG(ui)

2
(by Lemma 1)

≤
[ 1

2

n−1∑
i=0

r−1∑
j, p=0
j 6= p

(r − 1)dG(ui)

nr

]nr

(by Rem. 1)

=
[2r(r − 1)2m

2nr

]nr

=
[ (r − 1)2m

n

]nr
. (2)

Next we compute
r−1∏
j =0

n−1∏
i, k=0
i 6= k

dG×Kr (xij)+dG×Kr (xkj)
dG×Kr (xij ,xkj)

. By Remark 1, we have

r−1∏
j =0

n−1∏
i, k=0
i 6= k

dG×Kr
(xij) + dG×Kr

(xkj)

dG×Kr
(xij , xkj)

≤

[ 1
2

r−1∑
j =0

n−1∑
i, k=0
i 6= k

dG×Kr (xij)+dG×Kr (xkj)
dG×Kr (xij ,xkj)

nr

]nr

=
[ 1

2

r−1∑
j =0

S

nr

]nr
. (3)
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Now we compute S. For that, let E1 = {uv ∈ E(G) |uv is on a C3 in G} and E2 =
E(G)− E1.

S =
( n−1∑

i, k=0
i 6= k

uiuk /∈E(G)

+

n−1∑
i, k=0
i 6= k

uiuk∈E1

+

n−1∑
i, k=0
i 6= k

uiuk∈E2

)(dG×Kr (xij) + dG×Kr (xkj)

dG×Kr (xij , xkj)

)

=

(
n−1∑

i, k=0
i 6= k

uiuk /∈E(G)

(r − 1)(dG(ui) + dG(uk))

dG(ui, uk)
+

n−1∑
i, k=0
i 6= k

uiuk∈E1

(r − 1)(dG(ui) + dG(uk))

2
+

n−1∑
i, k=0
i 6= k

uiuk∈E2

(r − 1)(dG(ui) + dG(uk))

3

)
(by Lemma 1)

= (r − 1)

{(
n−1∑

i, k=0
i 6= k

uiuk /∈E(G)

dG(ui) + dG(uk)

dG(ui, uk)
+

n−1∑
i, k=0
i 6= k

uiuk∈E1

dG(ui) + dG(uk)

dG(ui, uk)
+

n−1∑
i, k=0
i 6= k

uiuk∈E2

dG(ui) + dG(uk)

dG(ui, uk)

)
−

n−1∑
i, k=0
i 6= k

uiuk∈E1

dG(ui) + dG(uk)

2
− 2

n−1∑
i, k=0
i 6= k

uiuk∈E2

dG(ui) + dG(uk)

3

}

= (r − 1)

{
2HA(G)−

n−1∑
i, k=0
i 6= k

uiuk∈E(G)

dG(ui) + dG(uk)

2
−

n−1∑
i, k=0
i 6= k

uiuk∈E2

dG(ui) + dG(uk)

6

}

= (r − 1)2

{
2HA(G)−M1(G)−

∑
uiuk∈E2

dG(ui) + dG(uk)

3

}
. (4)

Now summing (4) over j = 0, 1, . . . , r − 1, we get,

r−1∑
j =0

S = r(r − 1)
(

2HA(G)−M1(G)−
∑

uiuk∈E2

dG(ui) + dG(uk)

3

)
. (5)

Hence

r−1∏
j =0

n−1∏
i, k =0
i 6= k

dG×Kr
(xij) + dG×Kr

(xkj)

dG×Kr
(xij, xkj)

≤
[ r(r−1)

2

(
2HA(G) −M1(G) −

∑
uiuk∈E2

dG(ui)+dG(uk)
3

)
nr

]nr

=

[ (r − 1)
(
HA(G) − M1(G)

2
−

∑
uiuk∈E2

dG(ui)+dG(uk)
6

)
n

]nr

. (6)

Next we compute
n−1∏

i, k=0
i 6= k

r−1∏
j, p=0
j 6= p

dG×Kr (xij)+dG×Kr (xkp)
dG×Kr (xij ,xkp)

. By Lemma 1 and Remark 1, we
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have

n−1∏
i, k=0
i 6= k

r−1∏
j, p=0,
j 6= p

dG×Kr (xij) + dG×Kr (xkp))

dG×Kr (xij , xkp
≤
[ 1

2

n−1∑
i, k=0
i 6= k

r−1∑
j, p=0,
j 6= p

(r−1)(dG(ui)+dG(uk)
dG(ui,uk)

nr

]nr

,

=
[ r(r − 1)2HA(G)

nr

]nr

=
[ (r − 1)2HA(G)

n

]nr
. (7)

Using (1) and the sums A1,A2 and A3 in (2),(5) and (7), respectively, we have,

H∗A(G×Kr) ≤
(r − 1)5nrmnr

n3nr

[
HA(G)(HA(G)−

M1(G)

2
− t)

]nr

where t =
∑

uiuk∈E2

dG(ui)+dG(uk)
6 .

Using Theorem 1, we have the following corollaries.

Corollary 1. Let G be a connected graph on n ≥ 2 vertices with m edges. If each edge
of G is on a C3, then

H∗A(G×Kr) =≤
(r − 1)5nrmnr

n3nr

[
HA(G)(HA(G)−

M1(G)

2
)
]nr

where r ≥ 3.

For a triangle-free graph,
∑

uiuk∈E2

dG(ui)dG(uk) = M2(G).

Corollary 2. If G is a connected triangle free graph on n ≥ 2 vertices and m edges, then

H∗A(G×Kr) ≤
(r − 1)5nrmnr

n3nr

[
HA(G)(HA(G)−

2M1(G)

3
)
]nr

where r ≥ 3.

By direct calculations we obtain expressions for the values of the Harary indices of Kn

and Cn. H(Kn) = n(n−1)
2 and H(Cn) = n

( n
2∑

i=1

1
i

)
− 1 when n is even, and n

( n−1
2∑

i=1

1
i

)
otherwise. Similarly, HA(Kn) = n(n− 1)2 and HA(Cn) = 4H(Cn).

Using Corollaries 1 and 2, we obtain the H∗A of the graphs Kn ×Kr and Cn ×Kr.

Example 1. (i) H∗A(Kn ×Kr) ≤ (r−1)5nr(n−1)3nr

2nr .
(ii)

H∗A(Cn ×Kr) ≤


(r−1)15r(48)3r

36r
, if n = 3,

(16)nr(r−1)5nr

n2nr

[
(H(Cn))

2 − 2nH(Cn)
3

]nr

, if n > 3.
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3. Join of graphs

In this section, we compute the product version of reciprocal degree distance of join

of two graphs.

Theorem 2. Let G1 be a graph of order n and size p and let G2 be a graph of order m

and size q. Then H∗A(G1+G2) ≤
[
(M1(G1)+2mp)(M1(G2)+2nq)(M1(G1)+m(n(n−1)−

2p))(M1(G2) + n(m(m− 1)− 2q))(2mp+ 2nq +mn(m+ n))
]nm

.

Proof. Let V (G1) = {u1, u2, . . . , un} and V (G2) = {v1, v2, . . . , vm}. By definition of

the join of two graphs, one can see that, dG1+G2 (x) =

{
dG1

(x) + |V (G2)| , if x ∈ V (G1)

dG2 (x) + |V (G1)| , if x ∈ V (G2)

and

dG1+G2
(u, v) =


0, if u = v

1, if uv ∈ E(G1) or uv ∈ E(G2) or (u ∈ V (G1) and v ∈ V (G2))

2, otherwise.

Therefore,

H∗A(G1 +G2) =
∏

{u,v}⊆V (G1+G2)

dG1+G2
(u) + dG1+G2

(v)

dG1+G2
(u, v)

=
∏

uv∈E(G1)

(
(dG1

(u) +m) + (dG1
(v) +m)

)
×

∏
uv/∈E(G1)

(dG1
(u) +m) + (dG1

(v) +m)

2
×

∏
uv∈E(G2)

(
(dG2 (u) + n) + (dG2 (v) + n)

)
×

∏
uv/∈E(G2)

(dG2
(u) + n) + (dG2

(v) + n)

2
×

∏
u∈V (G1), v∈V (G2)

(
(dG1

(u) +m) + (dG2
(v) + n)

)

≤
[ ∑
uv∈E(G1)

(
dG1

(u) + dG1
(v) + 2m

)
nm

]nm[ ∑
uv/∈E(G1)

dG1
(u)+dG1

(v)+2m

2

nm

]nm

[ ∑
uv∈E(G2)

(
dG2

(u) + dG2
(v) + 2n

)
nm

]nm[ ∑
uv/∈E(G2)

dG2
(u)+dG2

(v)+2n

2

nm

]nm

[ ∑
u∈V (G1), v∈V (G2)

(
dG1

(u) + dG2
(v) + (m+ n)

)
nr

]nm
(by Remark 1)

=
[
M1(G1) + 2mp

]nm[
M1(G2) + 2nq

]nm[
M1(G1) +m(n(n− 1)− 2p)

]nm

[
M1(G2) + n(m(m− 1)− 2q)

]nm[
2mp+ 2nq +mn(m+ n)

]nm
.

This completes the proof.



32 Product version of reciprocal degree distance of composite graphs

One can observe that M1(Cn) = 4n, n ≥ 3, M1(P1) = 0, M1(Pn) = 4n−6, n > 1 and

M1(Kn) = n(n−1)2. Similarly, M1(Kn) = M2(Kn) = 0. Moreover M2(Pn) = 4(n−2)

and M2(Cn) = 4n. Using Theorem 2, we have the following corollaries.

Corollary 3. Let G be graph on n vertices and p edges. ThenH∗A(G+Km) ≤
[
(M1(G1)+

2mp)(M1(G1) +m(n(n− 1)− 2p))(m(m− 1)(m+ n− 1))(2mp+ nm(2m+ n− 1))
]nm

.

Let Kn,m be the bipartite graph with two partitions having n and m vertices. Note

that Kn,m = Kn + Km.

Corollary 4. H∗A(Kn,m) = H∗A(Kn +Km) ≤ (nm)3nm
[
(n− 1)(m− 1)(m+ n)

]nm

.

4. Strong product

In this section, we obtain the product version of reciprocal degree distance of G�Kr.

Theorem 3. Let G be a connected graph with n vertices and m edges. Then

H∗A(G �Kr) = H∗A(G �Kr) ≤
(r − 1)2nr

n3nr

[
(2rm+ n(r − 1)

]nr[
rHA(G) + 2(r − 1)H(G))

]2nr
.

Proof. Let V (G) = {u1, u2, . . . , un} and V (Kr) = {v1, v2, . . . , vr}. Let xij denote the
vertex (ui, vj) of G�Kr. The degree of the vertex xij in G�Kr is dG(ui)+dKr

(vj)+
dG(ui)dKr

(vj), that is dG�Kr
(xij) = rdG(ui) + (r− 1). One can observe that for any

pair of vertices xij , xkp ∈ V (G � Kr), dG�Kr
(xij , xip) = 1 and dG�Kr

(xij , xkp) =
dG(ui, uk).

H∗A(G �Kr) =
∏

xij , xkp ∈V (G�Kr)

dG�Kr
(xij) + dG�Kr

(xkp)

dG�Kr
(xij , xkp)

=

n−1∏
i=0

r−1∏
j, p=0
j 6= p

dG�Kr
(xij) + dG�Kr

(xip)

dG�Kr
(xij , xip)

×

n−1∏
i, k=0
i 6= k

r−1∏
j =0

dG�Kr
(xij) + dG�Kr

(xkj)

dG�Kr
(xij , xkj)

×

n−1∏
i, k=0
i 6= k

r−1∏
j, p=0
j 6= p

dG�Kr
(xij) + dG�Kr

(xkp)

dG�Kr
(xij , xkp)

. (8)
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We shall obtain the products of (8) separately. First we compute
n−1∏
i=0

r−1∏
j, p=0
j 6= p

dG�Kr
(xij)+dG�Kr

(xip)

dG�Kr
(xij ,xip)

. By Remark 1, we have

n−1∏
i=0

r−1∏
j, p=0
j 6= p

dG�Kr
(xij) + dG�Kr

(xip)

dG�Kr
(xij , xip)

=

n−1∏
i=0

r−1∏
j, p=0
j 6= p

(
2dG(ui) + 2(r − 1) + 2(r − 1)dG(ui)

)

≤
[ 1

2

n−1∑
i=0

r−1∑
j, p=0
j 6= p

(
2dG(ui) + 2(r − 1) + 2(r − 1)dG(ui)

)
nr

]nr

=
[2r2(r − 1)m+ nr(r − 1)2

nr

]nr

=
[2r(r − 1)m+ n(r − 1)2

n

]nr
. (9)

Next we compute
r−1∏
j =0

n−1∏
i, k=0
i 6= k

dG�Kr
(xij)+dG�Kr

(xkj)

dG�Kr
(xij ,xkj)

. We have

r−1∏
j =0

n−1∏
i, k=0
i 6= k

dG�Kr
(xij) + dG�Kr

(xkj)

dG�Kr
(xij , xkj)

=

r−1∏
j =0

n−1∏
i, k=0
i 6= k

(
dG(ui) + (r − 1)dG(ui) + dG(uk) + (r − 1)dG(uk) + 2(r − 1)

)
dG(ui, uk)

≤
[ r

2

r−1∑
j =0

∑n−1
i, k=0
i 6= k

dG(ui)+dG(uk)
dG(ui,uk)

+ 1
2

r−1∑
j =0

n−1∑
i, k=0
i 6= k

2(r−1)
dG(ui,uk)

nr

]nr

(by Remark 1)

=
[ r2HA(G) + 2r(r − 1)H(G)

nr

]nr

=
[ rHA(G) + 2(r − 1)H(G)

n

]nr
. (10)

Finally we determine
n−1∏

i, k=0
i 6= k

r−1∏
j, p=0,
j 6= p

dG�Kr
(xij)+dG�Kr

(xkp)

dG�Kr
(xij ,xkp)

.

n−1∏
i, k=0
i 6= k

r−1∏
j, p=0,
j 6= p

dG�Kr
(xij) + dG�Kr

(xkp)

dG�Kr
(xij , xkp)

≤
[ r2(r−1)

2

n−1∑
i, k=0
i 6= k

dG(ui)+dG(uk)
dG(ui,uk)

+ r(r − 1)2
n−1∑

i, k=0
i 6= k

1
dG(ui,uk)

nr

]nr

(by Remark 1)

=
[ r2(r − 1)HA(G) + 2r(r − 1)2H(G)

nr

]nr

=
[ r(r − 1)HA(G) + 2(r − 1)2H(G)

n

]nr

. (11)



34 Product version of reciprocal degree distance of composite graphs

Using (9), (10) and (11) in (8), we have

H∗A(G�Kr) =
(r − 1)2nr

n3nr

[
(2rm + n(r − 1)

]nr[
rHA(G) + 2(r − 1)H(G))

]2nr
.

Using Theorem 3, we obtain the following corollary.

Corollary 5. H∗A(Cn �Kr) ≤ (3r − 1)nr
[
2(r−1)(3r−1)H(Cn)

n

]2nr

.

As an application we present formula for product version of reciprocal degree distance

of closed fence graph, Cn �K2.

Example 2. By Corollary 5, we have

H∗M (Cn �K2) ≤


52n

[
10
n
(n

n
2∑

i=1

1
i
− 1)

]4n
, if n is even

52n
[
10

n−1
2∑

i=1

1
i

]4n
, if n is odd.
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[5] T. Došlić, Vertex-weighted Wiener polynomials for composite graphs, Ars Math.

Contemp. 1 (2008), no. 1.

[6] I. Gutman, Selected properties of the Schultz molecular topological index, J. Chem.

Inf. Comput. Sci. 34 (1994), no. 5, 1087–1089.

[7] I. Gutman, W. Linert, I. Lukovits, and Ž. Tomović, The multiplicative version of
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