Roman domination excellent graphs: trees

Vladimir Samodivkin

1Department of Mathematics, University of Architecture, Civil Engineering and Geodesy
Sofia, Bulgaria
vl.samodivkin@gmail.com

Received: 2 October 2016; Accepted: 8 October 2017
Published Online: 24 October 2017
Communicated by Ismael González Yero

Abstract: A Roman dominating function (RDF) on a graph \(G = (V, E) \) is a labeling \(f: V \to \{0, 1, 2\} \) such that every vertex with label 0 has a neighbor with label 2. The weight of \(f \) is the value \(f(V) = \sum_{v \in V} f(v) \). The Roman domination number, \(\gamma_R(G) \), of \(G \) is the minimum weight of an RDF on \(G \). An RDF of minimum weight is called a \(\gamma_R \)-function. A graph \(G \) is said to be \(\gamma_R \)-excellent if for each vertex \(x \in V \) there is a \(\gamma_R \)-function \(h_x \) on \(G \) with \(h_x(x) \neq 0 \). We present a constructive characterization of \(\gamma_R \)-excellent trees using labelings. A graph \(G \) is said to be in class \(UVR \) if \(\gamma(G - v) = \gamma(G) \) for each \(v \in V \), where \(\gamma(G) \) is the domination number of \(G \). We show that each tree in \(UVR \) is \(\gamma_R \)-excellent.

Keywords: Roman domination number, excellent tree, coalescence

AMS Subject classification: 05C69, 05C05

1. Introduction and preliminaries

For basic notation and graph theory terminology not explicitly defined here, we in general follow Haynes et al. [9]. Specifically, let \(G \) be a simple graph with vertex set \(V(G) \) and edge set \(E(G) \). A spanning subgraph for \(G \) is a subgraph of \(G \) which contains every vertex of \(G \). In a graph \(G \), for a subset \(S \subseteq V(G) \) the subgraph induced by \(S \) is the graph \(\langle S \rangle \) with vertex set \(S \) and edge set \(\{xy \in E(G) \mid x, y \in S\} \). The complement \(\bar{G} \) of \(G \) is the graph whose vertex set is \(V(G) \) and whose edges are the pairs of nonadjacent vertices of \(G \). We write \(K_n \) for the complete graph of order \(n \) and \(P_n \) for the path on \(n \) vertices. Let \(C_m \) denote the cycle of length \(m \). For any vertex \(x \) of a graph \(G \), \(N_G(x) \) denotes the set of all neighbors of \(x \) in \(G \), \(N_G[x] = N_G(x) \cup \{x\} \) and the degree of \(x \) is \(\deg_G(x) = |N_G(x)| \). The minimum and maximum degrees of a graph \(G \) are denoted by \(\delta(G) \) and \(\Delta(G) \), respectively. For a subset \(S \) of vertices, let
$N_G[S] = \bigcup_{v \in S} N_G[v]$. The **external private neighborhood** \(epn(v, S) \) of \(v \in S \) is defined by \(epn(v, S) = \{ u \in V(G) - S \mid N_G(u) \cap S = \{v\} \} \). A **leaf** is a vertex of degree one and a **support vertex** is a vertex adjacent to a leaf. If \(F \) and \(H \) are disjoint graphs, \(v_F \in V(F) \) and \(v_H \in V(H) \), then the **coalescence** \((F \cdot H)(v_F, v_H : v)\) of \(F \) and \(H \) via \(v_F \) and \(v_H \), is the graph obtained from the union of \(F \) and \(H \) by identifying \(v_F \) and \(v_H \) in a vertex labeled \(v \). If \(F \) and \(H \) are graphs with exactly one vertex in common, say \(x \), then the **coalescence** \((F \cdot H)(x)\) of \(F \) and \(H \) via \(x \) is the union of \(F \) and \(H \).

Let \(Y \) be a finite set of integers which has positive as well as non-positive elements. Denote by \(P(Y) \) the collection of all subsets of \(Y \). Given a graph \(G \), for a \(Y \)-valued function \(f : V(G) \to Y \) and a subset \(S \) of \(V(G) \) we define \(f(S) = \sum_{v \in S} f(v) \). The **weight** of \(f \) is \(f(V(G)) \). A \(Y \)-**valued Roman dominating function** on a graph \(G \) is a function \(f : V(G) \to Y \) satisfying the conditions: (a) \(f(N_G[v]) \geq 1 \) for each \(v \in V(G) \), and (b) if \(v \in V(G) \) and \(f(v) \leq 0 \), then there is \(u_v \in N_G(v) \) with \(f(u_v) = \max\{k \mid k \in Y\} \). For a \(Y \)-valued Roman dominating function \(f \) on a graph \(G \), where \(Y = \{r_1, r_2, \ldots, r_k\} \) and \(r_1 < r_2 < \cdots < r_k \), let \(V^f_i = \{ v \in V(G) \mid f(v) = r_i \} \) for \(i = 1, \ldots, k \). Since these \(k \) sets determine \(f \), we can equivalently write \(f = (V^f_1; V^f_2; \ldots; V^f_k) \). If \(f \) is \(Y \)-valued Roman dominating function on a graph \(G \) and \(H \) is a subgraph of \(G \), then we denote the restriction of \(f \) on \(H \) by \(f|_H \). The **\(Y \)-Roman domination number** of a graph \(G \), denoted \(\gamma^Y_R(G) \), is defined to be the minimum weight of a \(Y \)-valued dominating function on \(G \). As examples, let us mention: (a) the domination number \(\gamma(G) = \gamma^\{0,1\}_R(G) \), (b) the minus domination number \([6], Y = \{-1, 0, 1\} \), (c) the signed domination number \([5], Y = \{-1, 1\} \), (d) the Roman domination number \(\gamma_R(G) = \gamma^\{0,1,2\}_R(G) \)[4], and (e) the signed Roman domination number \([1], Y = \{-1, 1, 2\} \).

A \(Y \)-valued Roman dominating function \(f \) on \(G \) with weight \(\gamma^Y_R(G) \) is called a \(\gamma^Y_R \)-function on \(G \).

Now we introduce a new partition of a vertex set of a graph, which plays a key role in the paper. In determining this partition, all \(\gamma^Y_R \)-functions of a graph are necessary. For each \(X \in P(Y) \) we define the set \(V^X(G) \) as consisting of all \(v \in V(G) \) with \(\{ f(v) \mid f \text{ is a } \gamma^Y_R \text{-function on } G \} = X \). Then all members of the family \(\{ V^X(G) \}_{X \in P(Y)} \) clearly form a partition of \(V(G) \). We call this partition the **\(Y \)-partition of \(G \)**.

Fricke et al. [7] in 2002 began the study of graphs, which are excellent with respect to various graph parameters. Let us concentrate here on the parameter \(\gamma^Y_R \). A vertex \(v \in V(G) \) is said to be (a) **\(\gamma^Y_R \)-good**, if \(h(v) \geq 1 \) for some \(\gamma^Y_R \)-function \(h \) on \(G \), and (b) **\(\gamma^Y_R \)-bad** otherwise. A graph \(G \) is said to be **\(\gamma^Y_R \)-excellent** if all vertices of \(G \) are **\(\gamma^Y_R \)-good**. Any vertex-transitive graph is **\(\gamma^Y_R \)-excellent**. Note that when \(\gamma^Y_R \equiv \gamma \), the set of all \(\gamma \)-good and the set of all \(\gamma \)-bad vertices of a graph \(G \) form the **\(\gamma \)-partition of \(G \)**. For further results on this topic see e.g. \([2, 10–15]\).

In this paper we begin an investigation of **\(\gamma^Y_R \)-excellent graphs** in the case when \(Y = \{0, 1, 2\} \). In what follows we shall write \(\gamma^Y_R \) instead of \(\gamma^\{0,1,2\}_R \), and we shall abbreviate a \(\{0,1,2\} \)-valued Roman dominating function to an **RD-function**. Let us describe all members of the \(\gamma^Y_R \)-partition of any graph \(G \) (we write \(V^i(G) \), \(V^{ij}(G) \) and \(V^{ijk}(G) \) instead of \(V^{\{i\}}(G) \), \(V^{\{i,j\}}(G) \) and \(V^{\{i,j,k\}}(G) \), respectively).

(i) \(V^i(G) = \{ x \in V(G) \mid f(x) = i \} \) for each \(\gamma^Y_R \)-function \(f \) on \(G \), \(i = 1, 2, 3; \).
\(\gamma_{R}(G) = \{ x \in V(G) \mid \text{there are } \gamma_{R}\text{-functions } f_{x}, g_{x}, h_{x} \text{ on } G \text{ with} \\
\quad f_{x}(x) = 0, g_{x}(x) = 1 \text{ and } h_{x}(x) = 2 \} \); \\
\(V^{012}(G) = \{ x \in V(G) - V^{012}(G) \mid \text{there are } \gamma_{R}\text{-functions } f_{x} \text{ and } g_{x} \text{ on } G \\
\quad \text{with } f_{x}(x) = i \text{ and } g_{x}(x) = j, 0 \leq i < j \leq 2 \} \).

Clearly a graph \(G \) is \(\gamma_{R}\)-excellent if and only if \(V^{0}(G) = \emptyset \).

It is often of interest to known how the value of a graph parameter is affected when a small change is made in a graph. In this connection, Hansberg, Jafari Rad and Volkmann studied in [8] changing and unchanging of the Roman domination number of a graph when a vertex is deleted, or an edge is added.

Lemma 1. ([8]) Let \(v \) be a vertex of a graph \(G \). Then \(\gamma_{R}(G - v) < \gamma_{R}(G) \) if and only if there is a \(\gamma_{R}\)-function \(f = (V_{0}, V_{1}, V_{2}) \) on \(G \) such that \(v \in V_{1} \). If \(\gamma_{R}(G - v) < \gamma_{R}(G) \) then \(\gamma_{R}(G - v) = \gamma_{R}(G) - 1 \).

Lemma 1 implies that \(V^{1}(G), V^{01}(G), V^{12}(G), V^{012}(G) \) form a partition of \(V^{-}(G) = \{ x \in V(G) \mid \gamma_{R}(G - x) + 1 = \gamma(G) \} \).

Lemma 2. ([8]) Let \(x \) and \(y \) be non-adjacent vertices of a graph \(G \). Then \(\gamma_{R}(G) \geq \gamma_{R}(G + xy) \geq \gamma_{R}(G) - 1 \). Moreover, \(\gamma_{R}(G + xy) = \gamma_{R}(G) - 1 \) if and only if there is a \(\gamma_{R}\)-function \(f \) on \(G \) such that \(\{ f(x), f(y) \} = \{ 1, 2 \} \).

The same authors defined the following two classes of graphs:

(i) \(R_{CVR} \) is the class of graphs \(G \) such that \(\gamma_{R}(G - v) < \gamma_{R}(G) \) for all \(v \in V(G) \).

(ii) \(R_{CEA} \) is the class of graphs \(G \) such that \(\gamma_{R}(G + e) < \gamma_{R}(G) \) for all \(e \in E(G) \).

Remark 1. By Lemmas 1 and 2 it easy follows that:

(i) each graph in \(R_{CVR} \cup R_{CEA} \) is \(\gamma_{R}\)-excellent,

(ii) if \(G \) is a \(\gamma_{R}\)-excellent graph, \(e \in E(G) \) and \(\gamma_{R}(G) = \gamma_{R}(G + e) \), then \(G + e \) is \(\gamma_{R}\)-excellent,

(iii) each graph (in particular each \(\gamma_{R}\)-excellent graph) is a spanning subgraph of a graph in \(R_{CEA} \) with the same Roman domination number.

Denote by \(G_{n,k} \) the family of all mutually non-isomorphic \(n \)-order \(\gamma_{R}\)-excellent connected graphs having the Roman domination number equal to \(k \). With the family \(G_{n,k} \), we associate the poset \(\mathbb{RE}_{n,k} = (G_{n,k}, \prec) \) with the order \(\prec \) given by \(H_{1} \prec H_{2} \) if and only if \(H_{2} \) has a spanning subgraph which is isomorphic to \(H_{1} \) (see [16] for terminology on posets). Remark 1 shows that all maximal elements of \(\mathbb{RE}_{n,k} \) are in \(R_{CEA} \). Here we concentrate on the set of all minimal elements of \(\mathbb{RE}_{n,k} \). Clearly a graph \(H \in G_{n,k} \) is a minimal element of \(\mathbb{RE}_{n,k} \) if and only if for each \(e \in E(H) \) at
least one of the following holds: (a) $H - e$ is not connected, (b) $\gamma_R(H) \neq \gamma_R(H - e)$, and (c) $H - e$ is not γ_R-excellent. All trees in $G_{n,k}$ are obviously minimal elements of $\mathcal{RE}_{n,k}$.

The remainder of this paper is organized as follows. In Section 2, we formulate our main result, namely, a constructive characterization of γ_R-excellent trees. We present a proof of this result in Sections 3 and 4. Applications of our main result are given in Sections 5 and 6. We conclude in Section 7 with some open problems.

We end this section with the following useful result.

Lemma 3. ([4]) Let $f = (V_0^f; V_1^f; V_2^f)$ be any γ_R-function on a graph G. Then each component of a graph $\langle V_1^f \rangle$ has order at most 2 and no edge of G joins V_1^f and V_2^f.

In most cases Lemmas 1, 2 and 3 will be used in the sequel without specific reference.

2. The main result

In this section, we present a constructive characterization of γ_R-excellent trees using labelings. We define a **labeling** of a tree T as a function $S : V(T) \rightarrow \{A, B, C, D\}$. A labeled tree is denoted by a pair (T, S). The label of a vertex v is also called its **status**, denoted $sta_T(v : S)$ or $sta_T(v)$ if the labeling S is clear from context. We denote the sets of vertices of status A, B, C and D by $S_A(T), S_B(T), S_C(T)$ and $S_D(T)$, respectively. In all figures in this paper we use • for a vertex of status A, ◦ for a vertex of status B, ♦ for a vertex of status C, and ○ for a vertex of status D. If H is a subgraph of T, then we denote the restriction of S on H by $S|_H$.

![Figure 1](image)

Figure 1. All trees with $|L_B \cup L_C| \leq 2$.

To state a characterization of γ_R-excellent trees, we introduce four types of operations. Let \mathcal{F} be the family of labeled trees (T, S) that can be obtained from a
sequence of labeled trees \(\tau : (T^1, S^1), \ldots, (T^j, S^j), (j \geq 1) \), such that \((T^1, S^1)\) is in \((H_1, I^1), \ldots, (H_5, I^5)\) (see Figure 1) and \((T, S) = (T^j, S^j)\), and, if \(j \geq 2 \), \((T^{i+1}, S^{i+1})\) can be obtained recursively from \((T^i, S^i)\) by one of the operations \(O_1, O_2, O_3\) and \(O_4\) listed below; in this case \(\tau\) is said to be a \(\mathcal{T}\)-sequence of \(T\). When the context is clear we shall write \(T \in \mathcal{T}\) instead of \((T, S) \in \mathcal{T}\).

![Figure 2. \((F, J)\)-graphs](image)

Operation \(O_1\). The labeled tree \((T^{i+1}, S^{i+1})\) is obtained from \((T^i, S^i)\) and \((F, J) \in \{(F_1, J^1), (F_2, J^2), (F_3, J^3)\}\) (see Figure 2) by adding the edge \(ux\), where \(u \in V(T_i), x \in V(F)\) and \(sta_T(u) = sta_F(x) = C\).

Operation \(O_2\). The labeled tree \((T^{i+1}, S^{i+1})\) is obtained from \((T^i, S^i)\) and \((F_4, J^4)\) (see Figure 2) by adding the edge \(ux\), where \(u \in V(T_i), x \in V(F_4)\), \(sta_T(u) = D\), and \(sta_{F_4}(x) = C\).

Operation \(O_3\). The labeled tree \((T^{i+1}, S^{i+1})\) is obtained from \((T^i, S^i)\) and \((H_k, I^k)\), \(k \in \{2, 3, \ldots, 7\}\) (see Figure 1), in such a way that \(T^{i+1} = (T^i \cdot H_k)(u, v : u)\), where \(sta_{T^i}(u) = sta_{H_k}(v) = A\), and \(sta_{T^{i+1}}(u) = A\).

Operation \(O_4\). The labeled tree \((T^{i+1}, S^{i+1})\) is obtained from \((T^i, S^i)\) and \((H_k, I^k)\), \(k \in \{3, 4, 6\}\) (see Figure 1), in such a way that \(T^{i+1} = (T^i \cdot H_k)(u, v : u)\), where \(sta_{T^i}(u) = D\), \(sta_{H_k}(v) = A\), and \(sta_{T^{i+1}}(u) = D\).

Remark that if \(y \in V(T^i)\) and \(i \leq k \leq j\), then \(sta_{T^i}(y) = sta_{T^j}(y)\). Now we are prepared to state the main result.

Theorem 1. Let \(T\) be a tree of order at least 2. Then \(T\) is \(\gamma_R\)-excellent if and only if there is a labeling \(S : V(T) \rightarrow \{A, B, C, D\}\) such that \((T, S)\) is in \(\mathcal{T}\). Moreover, if \((T, S) \in \mathcal{T}\) then
\[
(P_s) \quad S_B(T) = \{x \in V^{02}(T) \mid \deg(x) = 2 \text{ and } |N(x) \cap V^{02}(T)| = 1\}, \quad S_A(T) = V^{01}(T), \quad S_D(T) = V^{012}(T), \quad \text{and } S_C(T) = V^{02}(T) - S_B(T).
\]

3. Preparation for the proof of Theorem 1

3.1. Coalescence

We shall concentrate on the coalescence of two graphs via a vertex in \(V^{01}\) and derive the properties which will be needed for the proof of our main result.
Proposition 1. Let $G = (G_1 \cdot G_2)(x)$ be a connected graph and $x \in V^{01}(G)$. Then the following holds.

(i) If f is a γ_R-function on G and $f(x) = 1$, then $f|_{G_i}$ is a γ_R-function on G_i, and $f|_{G_i-x}$ is a γ_R-function on G_i-x, $i = 1, 2$.

(ii) $\gamma_R(G) = \gamma_R(G_1) + \gamma_R(G_2) - 1$.

(iii) If h is a γ_R-function on G and $h(x) = 0$, then exactly one of the following holds:

(iii.1) $h|_{G_1}$ is a γ_R-function on G_1, $h|_{G_2-x}$ is a γ_R-function on G_2-x, and $h|_{G_2}$ is no RD-function on G_2;

(iii.2) $h|_{G_1-x}$ is a γ_R-function on G_1-x, $h|_{G_1}$ is no RD-function on G_1, and $h|_{G_2}$ is a γ_R-function on G_2.

(iv) Either $\{x\} = V^{01}(G_1) \cap V^{01}(G_2)$ or $\{x\} = V^{01}(G_i) \cap V^1(G_j)$, where $\{i, j\} = \{1, 2\}$.

Proof. (i) and (ii): Since $f(x) = 1$, $f|_{G_i}$ is an RD-function on G_i, and $f|_{G_i-x}$ is an RD-function on G_i-x, $i = 1, 2$. Assume g_1 is a γ_R-function on G_1 with $g_1(V(G_1)) < f|_{G_1}(V(G_1))$. Define an RD-function f' as follows: $f'(u) = g_1(u)$ for all $u \in V(G_1)$ and $f'(u) = f(u)$ when $u \in V(G_2-x)$. Then $f'(V(G)) = g_1(V(G_1)) + f|_{G_2-x}(V(G_2-x)) < f(V(G))$, a contradiction. Thus, $f|_{G_i}$ is a γ_R-function on G_i, $i = 1, 2$. Now, Lemma 1 implies that $f|_{G_i-x}$ is a γ_R-function on G_i-x, $i = 1, 2$. Hence $\gamma_R(G) = f|_{G_1}(V(G_1)) + f|_{G_2}(V(G_2)) - f(x) = \gamma_R(G_1) + \gamma_R(G_2) - 1$.

(iii) First note that $h(x) = 0$ implies $h|_{G_i}$ is an RD-function on G_i for some $i \in \{1, 2\}$, say $i = 1$. If $h|_{G_2}$ is an RD-function on G_2 then $\gamma_R(G) = h(V(G)) \geq \gamma_R(G_1) + \gamma_R(G_2)$, a contradiction with (ii). Thus, $h|_{G_2-x}$ is an RD-function on G_2-x. Now we have $\gamma_R(G_1) + \gamma_R(G_2) - 1 = \gamma_R(G) = h(V(G)) = h|_{G_1}(V(G_1)) + h|_{G_2-x}(V(G_2-x)) \geq \gamma_R(G_1) + (\gamma_R(G_2) - 1)$. Hence $h|_{G_1}$ is a γ_R-function on G_1 and $h|_{G_2-x}$ is a γ_R-function on G_2-x.

(iv) Let f_1 be a γ_R-function on G_1. Assume first that $f_1(x) = 2$. Define an RD-function g on G as follows: $g(u) = f_1(u)$ when $u \in V(G_1)$ and $g(u) = f(u)$ when $u \in V(G_2-x)$, where f is defined as in (i). The weight of g is $\gamma_R(G_1) + (\gamma_R(G_2) + 1) - 2 = \gamma_R(G)$. But $g(x) = 2$ and $x \in V^{01}(G_1)$, a contradiction. Thus $f_1(x) \neq 2$. Now by (i) we have $x \in V^1(G_i) \cup V^{01}(G_i)$, $i = 1, 2$, and by (iii), $x \in V^{01}(G_j)$ for some $j \in \{1, 2\}$.

Proposition 2. Let $G = (G_1 \cdot G_2)(x)$, where G_1 and G_2 are connected graphs and $\{x\} = V^{01}(G_1) \cap V^{01}(G_2)$.

(i) If f_i is a γ_R-function on G_i with $f_i(x) = 1$, $i = 1, 2$, then the function $f : V(G) \rightarrow \{0, 1, 2\}$ with $f|_{G_i} = f_i$, $i = 1, 2$, is a γ_R-function on G.

(ii) $\gamma_R(G) = \gamma_R(G_1) + \gamma_R(G_2) - 1$.

(iii) Let $V_R = \{V^0, V^1, V^2, V^{01}, V^{02}, V^{12}, V^{012}\}$. Then for any $A \in V_R$, $A(G_1) \cup A(G_2) = A(G)$.

\[\square \]
Proof. (i) and (ii): Note that f is an RD-function on G and $\gamma_R(G) \leq f(V(G)) = f_1(V(G_1)) + f_2(V(G_2)) - f(x) = \gamma_R(G_1) + \gamma_R(G_2) - 1$. Now let h be any γ_R-function on G.

Case 1: $h(x) \geq 1$. Then $h|_{G_i}$ is an RD-function on G_i, $i = 1, 2$. If $h(x) = 2$ then since $x \in V^{01}(G_1) \cap V^{01}(G_2)$, $h|_{G_i}$ is no γ_R-function on G_i, $i = 1, 2$. Hence $\gamma_R(G) \geq (\gamma_R(G_1) + 1) + (\gamma_R(G_2) + 1) - h(x) = \gamma_R(G_1) + \gamma_R(G_2)$, a contradiction. If $h(x) = 1$ then $\gamma_R(G) = (h(V(G)) = h(V(G_1)) + h(V(G_2)) - h(x) \geq \gamma_R(G_1) + \gamma_R(G_2) - 1$. Thus $h(x) = 1$, $\gamma_R(G) = \gamma_R(G_1) + \gamma_R(G_2) - 1$ and f is a γ_R-function on G.

Case 2: $h(x) = 0$. Then at least one of $h|_{G_1}$ and $h|_{G_2}$ is an RD-function, say the first. If $h|_{G_2}$ is an RD-function on G_2 then $h(V(G)) \geq \gamma_R(G_1) + \gamma_R(G_2)$, a contradiction. Hence $h|_{G_2-x}$ is a γ_R-function on $G_2 - x$. But then $\gamma_R(G) = h(V(G)) \geq \gamma_R(G_1) + \gamma_R(G_2)$, $G_2 - x \geq \gamma_R(G_1) + \gamma_R(G_2) - 1 \geq \gamma_R(G)$. Thus, (i) and (ii) hold.

(iii): Let g_1 be a γ_R-function on G_1 with $g_1(x) = 0$, and g_2 a γ_R-function on $G_2 - x$. Then the RD-function g on G for which $g|_{G_1} = g_1$ and $g|_{G_2-x} = g_2$ has weight $g_1(V(G_1)) + g_2(V(G_2-x)) = \gamma_R(G_1) + \gamma_R(G_2) - x = \gamma_R(G_1) + \gamma_R(G_2) - 1 = \gamma_R(G)$. Hence by (i), $x \in V^{01}(G) \cup V^{012}(G)$. However, by Case 1 it follows that $h(x) \neq 2$ for any γ_R-function h on G. Thus $x \in V^{01}(G)$.

Let $y \in V(G_1-x)$, l_1 a γ_R-function on G_1, and h a γ_R-function on G. We shall prove that the following holds.

Claim 4.1 There are a γ_R-function l on G, and a γ_R-function h_1 on G_1 such that $l(y) = l_1(y)$ and $h_1(y) = h(y)$.

Define an RD-function l on G as $l|_{G_1} = l_1$ and $l|_{G_2-x} = l_2$, where l_2 is a γ_R-function on $G_2 - x$. Since $l(V(G)) = \gamma_R(G_1) + \gamma_R(G_2) - x = \gamma_R(G)$, l is a γ_R-function on G and $l(y) = l_1(y)$.

Assume now that there is no γ_R-function h_1 on G_1 with $h_1(y) = h(y)$. Proposition 1 implies that, $h|_{G_1-x}$ is a γ_R-function on $G_1 - x$. But then the function $h': V(G_1) \to \{0, 1, 2\}$ defined as $h'(u) = 1$ when $u = x$ and $h'(u) = h|_{G_1}(u)$ otherwise, is a γ_R-function on G_1 with $h'(y) = h|_{G_1}(y)$, a contradiction.

By Claim 4.1 and since $x \in V^{01}(G)$, $A(G_1) = A(G) \cap V(G_1)$ for any $A \in V_R$. By symmetry, $A(G_2) = A(G) \cap V(G_2)$. Therefore $A(G_1) \cup A(G_2) = A(G)$ for any $A \in V_R$. \hfill \Box

Lemma 4. Let $G = (G_1 \cdot G_2)(x)$, where G_1 and G_2 are connected graphs and $\{x\} = V^{012}(G_1) \cap V^{012}(G_2)$. Then $\gamma_R(G) = \gamma_R(G_1) + \gamma_R(G_2) - 1$ and $x \in V^{012}(G)$.

Proof. Let f_i be a γ_R-function on G_i with $f_i(x) = 1$, $i = 1, 2$. Then the function f defined as $f|_{G_i} = f_i$ is an RD-function on G_i, $i = 1, 2$. Hence $\gamma_R(G) \leq f(V(G)) = \gamma_R(G_1) + \gamma_R(G_2) - 1$. Let now h be any γ_R-function on G.

Case 1: $h(x) = 2$. \hfill \Box
Since \(x \in V^{012}(G_1) \cap V^{01}(G_2) \), \(h|_{G_1} \) is a \(\gamma_R \)-function on \(G_1 \) and \(h|_{G_2} \) is an RD-function on \(G_2 \) of weight more than \(\gamma_R(G_2) \). Hence \(\gamma_R(G) = h(V(G)) \geq \gamma_R(G_1) + (\gamma_R(G_2) + 1) - h(x) \). Thus \(\gamma_R(G) = \gamma_R(G_1) + \gamma_R(G_2) - 1 \).

Case 2: \(h(x) = 1 \).
Then obviously \(h|_{G_1} \) and \(h|_{G_2} \) are \(\gamma_R \)-functions. Hence \(\gamma_R(G) = \gamma_R(G_1) + \gamma_R(G_2) - 1 \).

Case 3: \(h(x) = 0 \).
Hence at least one of \(h|_{G_1} \) and \(h|_{G_2} \) is a \(\gamma_R \)-function. If both \(h|_{G_1} \) and \(h|_{G_2} \) are \(\gamma_R \)-functions, then \(\gamma_R(G) = \gamma_R(G_1) + \gamma_R(G_2) \), a contradiction. Hence either \(h|_{G_1} \) and \(h|_{G_2-x} \) are \(\gamma_R \)-functions, or \(h|_{G_1-x} \) and \(h|_{G_2} \) are \(\gamma_R \)-functions. Since \(\{x\} = V^{012}(G_1) \cap V^{01}(G_2) \), in both cases we have \(\gamma_R(G) = \gamma_R(G_1) + \gamma_R(G_2) - 1 \).
Thus, \(\gamma_R(G) = \gamma_R(G_1) + \gamma_R(G_2) - 1 \) and \(x \in V^{012}(G) \).

3.2. Three lemmas for trees

Lemma 5. Let \(T \) be a \(\gamma_R \)-excellent tree of order at least 2. Then \(V(T) = V^{01}(T) \cup V^{012}(T) \cup V^{02}(T) \).

Proof. Let \(x \in V(T), y \in N(x) \) and \(f \) a \(\gamma_R \)-function on \(T \). Suppose \(x \in V^1(T) \). If \(f(y) = 1 \), then the RD-function \(g \) on \(T \) defined as \(g(x) = 2, g(y) = 0 \) and \(g(u) = f(u) \) for all \(u \in V(T) - \{x, y\} \) is a \(\gamma_R \)-function on \(T \), a contradiction. But then \(N(x) \subseteq V^0(T) \), which is impossible.
Suppose now \(x \in V^2(T) \cup V^{12}(T) \). Hence \(x \) is not a leaf. Choose a \(\gamma_R \)-function \(h \) on \(T \) such that (a) \(h(x) = 2 \), and (b) \(k = |epn[x, V^k_2]| \) to be as small as possible. Let \(epn[x, V^k_2] = \{y_1, y_2, \ldots, y_k\} \) and denote by \(T_i \) the connected component of \(T - x \), which contains \(y_i \). Hence \(h(y_i) = 0 \) for all \(i \leq k \). Since \(T \) is \(\gamma_R \)-excellent, there is a \(\gamma_R \)-function \(f_k \) on \(T \) with \(f_k(y_i) \neq 0 \). Since \(x \in V^2(T) \cup V^{12}(T) \), \(f_k(x) \neq 0 \). If \(f_k(y_k) = 1 \) then \(f_k(x) = 1 \), which easily implies \(x \in V^{012}(T) \), a contradiction. Hence \(f_k(y_k) = f_k(x) = 2 \). Define a \(\gamma_R \)-function \(l \) on \(T \) as \(l|_{T_k} = f_k|_{T_k} \) and \(l(u) = h(u) \) for all \(u \in V(T) - V(T_k) \). But \(|epn[x, V^k_2]| < k \), a contradiction with the choice of \(h \). Thus \(V^1(T) \cup V^2(T) \cup V^{12}(T) \) is empty, and the required follows.

Lemma 6. Let \(T \) be a tree and \(V^-(T) \) is not empty. Then each component of \(\langle V^-(T) \rangle \) is either \(K_1 \) or \(K_2 \).

Proof. Assume that \(P : x_1, x_2, x_3 \) is a path in \(T \) and \(x_1, x_2, x_3 \in V^-(T) \). Then there is a \(\gamma_R \)-function \(f_i \) on \(T \) with \(f_i(x_i) = 1, i = 1, 2, 3 \) (by Lemma 1). Denote by \(T_j \) the connected component of \(T - x_2x_j \) that contains \(x_j, j = 1, 3 \). Then \(f_2|_{T_j} \) and \(f_3|_{T_j} \) are \(\gamma_R \)-functions on \(T_j, j = 1, 3 \). Now define a \(\gamma_R \)-function \(h \) on \(T \) such that \(h|_{T_j} = f_j|_{T_j}, j = 1, 3, \) and \(h(u) = f_2(u) \) when \(u \in V(T) - (V(T_1) \cup V(T_3)) \). But \(h(x_1) = h(x_2) = h(x_3) = 1 \), a contradiction.

Lemma 7. Let \(T \) be a \(\gamma_R \)-excellent tree of order at least 2.
(i) If $x \in V^{012}(T)$, then x is adjacent to exactly one vertex in $V^-(T)$, say y_1, and $y_1 \in V^{012}(T)$.

(ii) Let $x \in V^{02}(T)$. If $\deg(x) \geq 3$ then x has exactly 2 neighbors in $V^-(T)$. If $\deg(x) = 2$ then either $N_T(x) \subseteq V^{012}(T)$ or there is a path u, x, y, z in T such that $u, z \in V^{01}(T)$, $y \in V^{02}(T)$ and $\deg(y) = 2$.

(iii) $V^{01}(T)$ is either empty or independent.

Proof. Let $x \in V^{012}(T) \cup V^{02}(T)$ and $N(x) = \{y_1, y_2, \ldots, y_r\}$. If x is a leaf, then clearly $x, y_1 \in V^{012}(T)$. So, let $r \geq 2$. Denote by T_i the connected component of $T - x$ which contains y_i, $i \geq 1$. Choose a γ_R-function h on T such that (a) $h(x) = 2$, and (b) $k = |epm[x, V^h_2]|$ to be as small as possible. Let without loss of generality $epm[x, V^h_2] = \{y_1, y_2, \ldots, y_k\}$. By the definition of h it immediately follows that (c) $h|_{T_j}$ is a γ_R-function on T_j for all $j \geq k + 1$, (d) for each $i \in \{1, \ldots, k\}$, $h|_{T_i}$ is no RD-function on T_i, and (e) $h|_{T_i - y_i}$ is a γ_R-function on $T_i - y_i$.

Hence $\gamma_R(T_i) \leq \gamma_R(T_i - y_i) + 1$ for all $i \in \{1, \ldots, k\}$. Assume that the equality does not hold for some $i \leq k$. Define an RD-function h_i on T as follows: $h_i(u) = h(u)$ when $u \in V(T) - V(T_i)$ and $h_i|_{T_i} = h_i'$, where h'_i is some γ_R-function on T_i. But then either h_i has weight less than $\gamma_R(T)$ or h_i is a γ_R-function on T with $epm[x, V^h_{2i}] = epm[x, V^h_{2}] - \{y_i\}$. In both cases we have a contradiction. Thus $\gamma_R(T_i) = \gamma_R(T_i - y_i) + 1$ for all $i \in \{1, \ldots, k\}$. Therefore $\gamma_R(T) = h(V(T)) = 2 + \Sigma_{i=1}^k(\gamma_R(T_i) - 1) + \Sigma_{j=k+1}^r\gamma_R(T_j) = 2 - k + \Sigma_{i=1}^r\gamma_R(T_i) = 2 - k + \gamma_R(T - x)$. Thus $\gamma_R(T) = 2 - k + \gamma_R(T - x)$.

(i) Since $\gamma_R(T - x) + 1 = \gamma_R(T)$, $k = 1$. We already know that $h|_{T_j}$ is a γ_R-function on T_j, $j \geq 2$. Assume that $y_j \in V^{012}(T) \cup V^{01}(T)$ for some $j \geq 2$. Then there is a γ_R-function l on T with $l(y_j) = 1$. Clearly $l|_{T_j}$ is a γ_R-function on T_j. Now define a γ_R-function h'' on T as follows: $h''(u) = h(u)$ when $u \in V(T) - V(T_j)$ and $h''(y_j) = 1$ and $xy_j \in E(G)$, which is impossible. Thus, $y_2, y_3, \ldots, y_r \in V^{02}(T)$. Define now γ_R-functions h_1 and h_2 on T as follows: $h_1(u) = h_2(u) = h(u)$ for all $u \in V(T) - \{x, y_1\}$, $h_1(x) = h_1(y_1) = 1$, $h_2(x) = 0$ and $h_2(y_1) = 2$. Thus $y_1 \in V^{01}(T)$.

(ii) Since $\gamma_R(T - x) = \gamma_R(T)$, $k = 2$. Recall that $h|_{T_j}$ is a γ_R-function on T_j, $j \geq 3$, and $\gamma_R(T_i - y_i) = \gamma_R(T_i) - 1$ for $i = 1, 2$. Hence there is a γ_R-function f_i on T_i with $f_i(y_i) = 1$, $i = 1, 2$.

Suppose first that $r \geq 3$. As in the proof of (i), we obtain $y_3, \ldots, y_r \in V^{02}(T)$. Hence there is a γ_R-function g on T such that $g(y_3) = 2$. By the choice of h, $g(x) = 0$. Then $g|_{T_i}$ is a γ_R-function on T_i, $i = 1, 2$. Define now a γ_R-function g' on T as $g'|_{T_i} = f_i$, $i = 1, 2$, and $g'(u) = g(u)$ when $u \in V(T) - (V(T_1) \cup V(T_2))$. Since $g'(y_1) = g'(y_2) = 1, y_1, y_2 \in V^-(T)$.

So, let $r = 2$ and let f be a γ_R-function on T with $f(x) = 0$. Then there is y_s such that $f(y_s) = 2$, say $s = 2$. Hence $y_2 \in V^{02}(T) \cup V^{012}(T)$ and $f|_{T_1}$ is a γ_R-function on T_1. Define the γ_R-function l on T as $l|_{T_1} = f_1$ and $l(u) = f(u)$ when $u \in V(T) - V(T_1)$. Since $l(y_1) = 1, y_1 \in V^{01}(T) \cup V^{012}(T)$.
Assume first that $y_1 \in V_{012}(T)$. Then there is a γ_R-function f' on T with $f'(y_1) = 2$. Since $x \in V_{02}(T)$ and $\deg(x) = 2$, $f'(x) = 0$. Hence $f'|_{T_2}$ is a γ_R-function on T_2. But then we can choose f' so that $f'|_{T_2} = f_2$. Thus $y_2 \in V_{012}(T)$.

So let $y_1 \in V_{01}(T)$ and suppose $y_2 \in V_{012}(T)$. Then there is a γ_R-function f'' on T with $f''(y_2) = 1$. Since $x \in V_{02}(T)$, $f''(x) = 0$ and $f''(y_1) = 2$, a contradiction. Thus, if $y_1 \in V_{01}(T)$ then $y_2 \in V_{02}(T)$.

Finally, let us consider a path $y_1, x, y_2, z \in T$, where $y_1 \in V_{01}(T)$, $x, y_2 \in V_{02}(T)$ and $\deg(x) = 2$. Assume to the contrary that $N(y_2) = \{z_1, z_2, \ldots, z_s = x\}$ with $s \geq 3$. Denote by T_{y_i} the connected component of $T - y_2$ that contains $z_p, p = 1, 2, \ldots, s$. By applying results proved above for $x \in V_{02}(T)$ with $\deg(x) \geq 3$ to y_2, we obtain that (a) y_2 has exactly 2 neighbors in $V^-(T)$, say, without loss of generality, $z_1, z_2 \in V^-(T)$, and (b) $\gamma_R(T_{z_i} - z_i) = \gamma_R(T_{z_i}) - 1$, where $i = 1, 2$. Recall now that: $h(x) = 2$, $h|_{T_i}$ is no RD-function on T_i and $h|_{T_i - y_i}$ is a γ_R-function on $T_i - y_i$, $i = 1, 2$. Hence $h(y_i) = h(y_2) = 0$ and $h|_{T_j}$ is a γ_R-function on T_j, $j \leq s - 1$. Since $\gamma_R(T_j, z_i) = \gamma_R(T_{z_i}) - 1$, $i = 1, 2$, additionally we can choose h so that $h(z_1) = h(z_2) = 1$. But then the function h_1 defined as $h_1(u) = h(u)$ when $u \in V(T) - \{y_1, x, y_2, z_1, z_2\}$ and $h_1(y_1) = h_1(x) = 1$, $h_1(y_2) = 2$, $h_1(z_1) = h(z_2) = 0$ is a γ_R-function on T. Now $h_1(x) = 1$, $h_1(y_2) = 2$ and $xy_2 \in E(G)$ lead to a contradiction. Thus, $N(y_2) = \{x, z\}$.

Suppose $z \notin V_{01}(T)$. Then there is a γ_R-function h_4 on T with $h_4(z) = 2$. If $h_4(y_2) = 2$, then $h_4(x) = 0$ and the function h_5 on T defined as $h_5(x) = h_5(y_2) = 1$ and $h_5(u) = h_4(u)$ otherwise, is a γ_R-function on T, a contradiction. Hence $h_4(y_2) = 0$ and since $y_1 \in V_{01}(T)$, $h_4(x) = 2$ and $h_4(y_1) = 0$. But then the function h_6 on T defined as $h_6(x) = h_6(y_1) = 1$ and $h_6(u) = h_4(u)$ otherwise, is a γ_R-function on T, a contradiction. Therefore $z \in V_{01}(T)$, and we are done.

(iii) Assume that $u_1, u_2 \in V_{01}(T)$ are adjacent. Let T_{u_i} be the component of $T - u_1u_2$ that contains u_i, $i = 1, 2$. Let g_i be a γ_R-function on T with $g_i(u_i) = 1$, $i = 1, 2$. Hence $g_1(T_{u_1})$ is a γ_R-function on T_{u_1}, $i, j = 1, 2$. Thus $\gamma_R(T) = \gamma_R(T_{u_1}) + \gamma_R(T_{u_2})$.

Define now a γ_R-function g_3 on T as $g_3|_{T_i} = g_i|_{T_i}$, $i = 1, 2$. But then a function g_4 defined as $g_4(u) = g_3(u)$ when $u \in V(T) - \{u_1, u_2\}$, $g_4(u_1) = 2$ and $g_4(u_2) = 0$ is a γ_R-function on T, contradicting $u_1 \in V_{01}(T)$. Thus $V_{01}(T)$ is independent.

4. Proof of the main result

Proof of Theorem 1. Let T be a γ_R-excellent tree. First, we shall prove the following statement.

(P_2) There is a labeling $L : V(T) \rightarrow \{A, B, C, D\}$ such that (a) $L_A(T)$ is either empty or independent, (b) each component of $\langle L_B(T) \rangle$ and $\langle L_D(T) \rangle$ is isomorphic to K_2, (c) each element of $L_B(T)$ has degree 2 and it is adjacent to exactly one vertex in $L_A(T)$, (d) each vertex v in $L_C(T)$ has exactly 2 neighbors in $L_A(T) \cup L_D(T)$, and if $\deg(v) = 2$ then both neighbors of v are in $L_D(T)$.

By Lemma 5 we know that $V(T) = V_{01}(T) \cup V_{012}(T) \cup V_{02}(T)$. Define a labeling $L : V(T) \rightarrow \{A, B, C, D\}$ by $L_A(T) = V_{01}(T)$, $L_D(T) = V_{012}(T)$, $L_B(T) = \{x \in$
\(V^{02}(T)\mid \text{deg}(x) = 2\) and \(|N(x) \cap V^{02}(T)| = 1\), and \(L_C(T) = V^{02}(T) - L_B(T)\). The validity of \((P_2)\) immediately follows by Lemma 7.

Denote by \(\mathcal{T}\) the family of all labeled, as in \((P_2)\), trees \(T\). We shall show that if \((T, L) \in \mathcal{T}_1\) then \((T, L) \in \mathcal{T}\).

I Proof of \((T, L) \in \mathcal{T}_1 \Rightarrow (T, L) \in \mathcal{T}\).

Let \((T, L) \in \mathcal{T}_1\). The following claim is immediate.

Claim 1.1

(i) Each leaf of \(T\) is in \(L_A(T) \cup L_D(T)\).

(ii) If \(v\) is a support vertex of \(T\), then \(v\) is adjacent to at most 2 leaves.

(iii) If \(u_1\) and \(u_2\) are leaves adjacent to the same support vertex, then \(u_1, u_2 \in L_A(T)\).

We now proceed by induction on \(k = |L_B \cup L_C|\). The base case, \(k \leq 2\), is an immediate consequence of the following easy claim, the proof of which is omitted.

Claim 1.2 (see Fig.1)

(i) If \(k = 0\) then \((T, L) = (H_1, I^1)\).

(ii) If \(k = 1\) then \((T, L)\) is obtained from \((H_1, I_1)\) by operation \(O_2\), i.e. \((T, L) = (H_{11}, I^{11})\).

(iii) If \(k = 2\) then either \((T, L)\) is \((H_r, I^r)\) with \(r \in \{2, 3, 4, 5\}\), or \((T, L)\) is obtained from \((H_{11}, I^{11})\) by operation \(O_1\) or by operation \(O_2\) (see the graphs \((H_s, I^s)\) where \(s \in \{6, 7, 8, 9, 10\}\).

Let \(k \geq 3\) and suppose that each tree \((H, L') \in \mathcal{T}_1\) with \(|L'_B(H) \cup L'_C(H)| < k\) is in \(\mathcal{T}\).

Let now \((T, L) \in \mathcal{T}_1\) and \(k = |L_B(T) \cup L_C(T)|\). To prove the required result, it suffices to show that \(T\) has a subtree, say \(U\), such that \((U, L|_U) \in \mathcal{T}_1\) and \((T, L)\) is obtained from \((U, L|_U)\) by one of operations \(O_1, O_2, O_3\) and \(O_4\). Consider any diametral path \(P : x_1, x_2, \ldots, x_n\) in \(T\). Clearly \(x_1\) is a leaf. Denote by \(x_1^1, x_1^2, \ldots\) all neighbors of \(x_i\), which do not belong to \(P\), \(2 \leq i \leq n - 1\).

Case 1: \(\text{sta}(x_1) = A\) and \(\text{sta}(x_2) = B\).

Then \(\text{deg}(x_1) = 1\), \(\text{deg}(x_2) = \text{deg}(x_3) = 2\), \(\text{sta}(x_3) = B\) and \(\text{sta}(x_4) = A\). Thus \(T\) is obtained from \(T - \{x_1, x_2, x_3\} \in \mathcal{T}_1\) and a copy of \(H_2\) by operation \(O_3\) (via \(x_4\)).

Case 2: \(\text{sta}(x_1) = A\) and \(\text{sta}(x_2) = C\).

Hence \(\text{deg}(x_2) \geq 3\). By the choice of \(P\), \(\text{deg}(x_2) = 3\), \(x_2^1\) is a leaf, \(\text{sta}(x_2^1) = A\), and \(\text{sta}(x_3) = C\). If \(\text{deg}(x_3) \geq 4\) then \(T\) is obtained from \(T - \{x_2^1, x_1, x_2\} \in \mathcal{T}_1\) and a copy of \(F_1\) by operation \(O_1\). So, let \(\text{deg}(x_3) = 3\). Assume first that \(\text{sta}(x_4) = A\). Then either \(x_3^1\) is a leaf of status \(A\) or \(x_3^1\) is a support vertex, \(\text{deg}(x_3^1) = 2\), and both \(x_3^1\) and its leaf-neighbor have status \(D\). Thus, \(T\) is obtained from \(T - (N[x_2] \cup N[x_3]) \in \mathcal{T}_1\) and a copy of \(H_3\) or \(H_4\), respectively, by operation \(O_3\) (via \(x_4\)). Finally let \(\text{sta}(x_4) = D\).

By the choice of \(P\), either \(x_3^1\) is a leaf of status \(A\) and then \(T\) is obtained from
In what follows, let \(sta(x_1) = D \). Hence \(\text{deg}(x_2) = 2 \), \(\text{sta}(x_2) = D \) and \(\text{sta}(x_3) = C \). If \(\text{deg}(x_3) = 2 \) then \(T \) is obtained from \(T - N[x_2] \in \mathcal{T}_1 \) and a copy of \(F_4 \) by operation \(O_2 \).

Case 3: \(\text{deg}(x_3) = 3 \) and \(\text{sta}(x_4) \in \{A, D\} \).

In this case \(\text{sta}(x_3^1) = C \), \(x_3^1 \) is a support vertex, \(\text{deg}(x_3^1) = 3 \), and the leaf neighbors of \(x_3^1 \) have status \(A \). Now (a) if \(\text{sta}(x_4) = A \) then \(T \) is obtained from \(T - (N[x_2] \cup N[x_3^1]) \in \mathcal{T}_1 \) and a copy of \(H_4 \) by operation \(O_3 \) (via \(x_4 \)), and (b) if \(\text{sta}(x_4) = D \) then \(T \) is obtained from \(T - (N[x_2] \cup N[x_3^1]) \in \mathcal{T}_1 \) and a copy of \(H_4 \) by operation \(O_4 \) (via \(x_4 \)).

Case 4: \(\text{deg}(x_3) = 3 \), \(\text{sta}(x_4) = C \) and \(\text{sta}(x_3^1) = A \).

Hence \(x_3^1 \) is a leaf. If \(\text{deg}(x_4) = 3 \) and \(\text{sta}(x_5) = \text{sta}(x_4^1) = D \), or \(\text{deg}(x_4) \geq 4 \), then \(T \) is obtained from \(T - \{x_1, x_2, x_3, x_3^1\} \in \mathcal{T}_1 \) and a copy of \(F_2 \) by operation \(O_1 \). So, let \(\text{deg}(x_4) = 3 \) and the status of at least one of \(x_5 \) and \(x_4^1 \) is \(A \). Assume first that \(\text{sta}(x_4^1) = A \). Hence \(x_4^1 \) is a leaf (by the choice of \(P \)). If \(\text{sta}(x_5) = A \) then \(T \) is obtained from a copy of \(H_4 \) and a tree in \(\mathcal{T}_1 \) by operation \(O_3 \) (via \(x_5 \)). If \(\text{sta}(x_5) = D \) then \(T \) is obtained from a copy of \(H_4 \) and a tree in \(\mathcal{T}_1 \) by operation \(O_4 \) (via \(x_5 \)). Second, let \(\text{sta}(x_4^1) = D \). Hence \(\text{sta}(x_5) = A \), \(\text{deg}(x_4^1) = 2 \) and the status of the leaf-neighbor of \(x_4^1 \) is \(D \). But then \(T \) is obtained from a copy of \(H_5 \) and a tree in \(\mathcal{T}_1 \) by operation \(O_3 \) (via \(x_5 \)).

Case 5: \(\text{deg}(x_3) = 3 \), \(\text{sta}(x_4) = C \) and \(\text{sta}(x_3^1) = D \).

Hence \(\text{deg}(x_3^1) = 2 \), \(x_3^1 \) is a support vertex, and the leaf-neighbor of \(x_3^1 \) has status \(D \). If \(\text{deg}(x_4) \geq 4 \) or \(\text{sta}(x_5) = \text{sta}(x_4^1) = D \), then \(T \) is obtained from \(T - N[x_2, x_3^1] \in \mathcal{T}_1 \) and a copy of \(F_3 \) by operation \(O_1 \). So, let \(\text{deg}(x_4) = 3 \) and at least one of \(x_5 \) and \(x_4^1 \) has status \(A \). Assume \(\text{sta}(x_4^1) = A \). Hence \(x_4^1 \) is a leaf. If \(\text{sta}(x_5) = A \) then \(T \) is obtained from \(T - N[x_2, x_3^1, x_4^1] \in \mathcal{T}_1 \) and a copy of \(H_6 \) by operation \(O_3 \) (via \(x_5 \)). If \(\text{sta}(x_5) = D \) then \(T \) is obtained from \(T - N[x_2, x_3^1, x_4^1] \in \mathcal{T}_1 \) and a copy of \(H_6 \) by operation \(O_4 \) (via \(x_5 \)). Now let \(\text{sta}(x_4^1) = D \). Hence \(\text{sta}(x_5) = A \) and then \(T \) is obtained from a copy of \(H_7 \) and a tree in \(\mathcal{T}_1 \) by operation \(O_3 \) (via \(x_5 \)).

Case 6: \(\text{deg}(x_3) \geq 4 \).

Hence \(x_3 \) has a neighbor, say \(y \), such that \(y \neq x_4 \) and \(\text{sta}(y) = C \). By the choice of \(P \), \(y \) is a support vertex which is adjacent to exactly 2 leaves, say \(z_1 \) and \(z_2 \), and \(\text{sta}(z_1) = \text{sta}(z_2) = A \). But then \(T \) is obtained from \(T - \{y, z_1, z_2\} \in \mathcal{T}_1 \) and a copy of \(F_1 \) by operation \(O_1 \).

By Claim 2.1, there are no other possibilities.

(II) \((T, S) \in \mathcal{T} \Rightarrow (T, S) \in \mathcal{T}_1 \). Obvious.

It remains the following.

(III) Proof of \((T, S) \in \mathcal{T} \Rightarrow T \) is \(\gamma_R \)-excellent and \((P_1) \) holds.
Let \((T, S) \in \mathcal{F}\). We know that \((T, S) \in \mathcal{F}_1\). We now proceed by induction on \(k = |S_B \cup S_C|\). First let \(k \leq 2\). By Claim 1.2, \(T \in \mathcal{F} = \{H_1, \ldots, H_{11}\}\). It is easy to see that all elements of \(\mathcal{F}\) are \(\gamma_R\)-excellent graphs and \((P_1)\) holds for each \(T \in \mathcal{F}\).

Let \(k \geq 3\) and suppose that if \((H, S') \in \mathcal{F}\) and \(|S'_B(H) \cup S'_C(H)| < k\), then \(H\) is \(\gamma_R\)-excellent and \((P_1)\) holds with \((T, S)\) replaced by \((H, S')\). So, let \((T, S) \in \mathcal{F}\) and \(k = |S_B(T) \cup S_C(T)|\). Then there is a \(\mathcal{F}\)-sequence \(\tau : (T^1, S^1), \ldots, (T^{j-1}, S^{j-1}), (T, S)\). By induction hypothesis, \(T^{j-1}\) is \(\gamma_R\)-excellent and \((P_1)\) holds with \((T, S)\) replaced by \((T^{j-1}, S^{j-1})\). We consider four possibilities depending on whether \(T\) is obtained from \(T^{j-1}\) by operation \(O_1, O_2, O_3\) or \(O_4\).

Case 7: \(T\) is obtained from \(T^{j-1} \in \mathcal{F}\) and \(F_a\) by operation \(O_1\), \(a \in \{1, 2, 3\}\). Hence \(T\) is obtained after adding the edge \(ux\) to the union of \(T^{j-1}\) and \(F_a\), where \(\text{sta}_{T^{j-1}}(u) = \text{sta}_{F_a}(x) = C\) (see Fig. 2). First note that \(\gamma_R(F_a) = a + 1\), and \(F_2\) and \(F_3\) are \(\gamma_R\)-excellent graphs. Since \(\gamma_R(F_a - x) = \gamma_R(F_a)\) and \(u \in V^{02}(T^{j-1})\), Lemma 2 implies \(\gamma_R(T) = \gamma_R(T^{j-1}) + \gamma_R(F_a)\). Hence for any \(\gamma_R\)-function \(g\) on \(T\), the weight of \(g|_{F_a}\) is not more than \(\gamma_R(F_a)\). But then \(g(x) \neq 1\) and either \(g|_{F_a}\) is a \(\gamma_R\)-function on \(F_a\) or \(g|_{F_a - x}\) is a \(\gamma_R\)-function on \(F_a - x\). By inspection of all \(\gamma_R\)-functions on \(F_a\) and \(F_a - x\), we obtain

\[(\alpha_1)\quad S_A(T) \cap V(F_a) = V^{01}(T) \cap V(F_a), S_B(T) \cap V(F_a) = \emptyset, \{x\} = S_C(T) \cap V(F_a) = V^{02}(T) \cap V(F_a), \text{ and } S_D(T) \cap V(F_a) = V^{012}(T) \cap V(F_a).\]

By the definition of operation \(O_1\) it immediately follows

\[(\alpha_2)\quad S_X(T) \cap V(T^{j-1}) = S_X^{j-1}(T^{j-1}), \text{ for all } X \in \{A, B, C, D\}.\]

Let \(f_1\) be a \(\gamma_R\)-function on \(T^{j-1}\) and \(f_2\) a \(\gamma_R\)-function on \(F_a\). Then the RD-function \(f\) on \(T\) defined as \(f|_{T^{j-1}} = f_1\) and \(f|_{F_a} = f_2\) is a \(\gamma_R\)-function on \(T\). Since \(f_1\) was chosen arbitrarily, we have

\[(\alpha_3)\quad V^{01}(T^{j-1}) \subseteq V^{01}(T) \cup V^{012}(T), \quad V^{02}(T^{j-1}) \subseteq V^{02}(T) \cup V^{012}(T), \quad \text{and } V^{012}(T^{j-1}) \subseteq V^{012}(T).\]

By \((\alpha_1)\) and \((\alpha_3)\) we conclude that \(T\) is \(\gamma_R\)-excellent.

Now we shall prove that

\[(\alpha_4)\quad V^{01}(T) \cap V(T^{j-1}) = V^{01}(T^{j-1}), \quad V^{02}(T) \cap V(T^{j-1}) = V^{02}(T^{j-1}), \quad \text{and } V^{012}(T) \cap V(T^{j-1}) = V^{012}(T^{j-1}).\]

Assume there is a vertex \(z \in V^{02}(T^{j-1}) \cap V^{012}(T)\). By Lemma 7, \(z\) is adjacent to at most 2 elements of \(V^{-1}(T^{j-1})\). Now by \((\alpha_3)\) and since \(\Delta((V^{-1}(T))) \leq 1\) (by Lemma 6), \(z\) is adjacent to exactly one element of \(V^{-1}(T^{j-1})\). But then Lemma 7 implies that there is a path \(z_1, z, z_2, z_3\) in \(T^{j-1}\) such that \(\text{deg}_{T^{j-1}}(z) = \text{deg}_{T^{j-1}}(z_2) = 2, z, z_2 \in V^{02}(T^{j-1})\) and \(z_1, z_3 \in V^{01}(T^{j-1})\). Since \((P_1)\) is true for \(T^{j-1}\), \(\text{sta}_{T^{j-1}}(z_1) = \text{sta}_{T^{j-1}}(z_3) = A\), and \(\text{sta}_{T^{j-1}}(z) = \text{sta}_{T^{j-1}}(z_2) = B\). Clearly, at least one of \(z_1\) and \(z_3\) is a cut-vertex. Denote by \(Q\) the graph \(\langle\{z_1, z, z_2, z_3\}\rangle\) and let the vertices of \(Q\)
are labeled as in T^{j-1}. Let U_s be the connected component of $T - \{z, z_2\}$, which contains z_s, $s = 1, 3$.

Assume first that T^1 is a subtree of $U \in \{U_1, U_3\}$. Then there is i such that T^i is obtained from T^{i-1} and Q by operation O_3. Hence T^{i-1} is a subtree of U. Recall that if $y \in V(T^r)$ and $r \leq s \leq j - 1$, then $sta_{T^s}(y) = sta_{T^r}(y)$. Using this fact, we can choose τ so that $T^{i-1} = U$. Therefore U is in \mathcal{J}. Suppose that neither z_1 nor z_3 is a leaf of T^{j-1}. Define $R^s = T^{i+s} - (V(T^{i-1}) \cup \{z, z_2\})$, $s = 1, 2, \ldots, j-1 - i$. Since clearly R^1 is in $\{H_2, H_3, \ldots, H_7\}$, the sequence $R^1, R^2, \ldots, R^{j-1-i}$ is a \mathcal{J}-sequence of U', where $\{U, U'\} = \{U_1, U_2\}$. Thus, both U_1 and U_3 are in \mathcal{J}, and $sta_{U_1}(z_1) = A$. By the induction hypothesis, $z_1 \in V^{01}(U_1)$.

Suppose now that $u \in V(U_3)$. Consider the sequence of trees U_3, U_4, U_5, where U_4 is obtained from U_3 and Q by operation O_4 (via z_3), and U_5 is obtained from U_4 and F_a by operation O_1. Clearly U_5 is in \mathcal{J}, $sta_{U_5}(z_1) = A$ and by the induction hypothesis, $z_1 \in V^{01}(U_5)$. Since $T = (U_5 \cdot U_1)(z_1)$ and $\{z_1\} = V^{01}(U_1) \cap V^{01}(U_5)$, by Proposition 2 we have $z_1 \in V^{01}(T)$. But then Lemma 7 implies $z_2 \in V^{02}(T)$, a contradiction.

Now let $u \in V(U_1)$. Denote by U_2 the graph obtained from U_1 and F_a by operation O_3. Then U_2 is in \mathcal{J}, $sta_{U_2}(z_1) = A$, and by induction hypothesis, $z_1 \in V^{01}(U_2)$. Define also the graph U_6 as obtained from U_3 and Q by operation O_3, i.e. $U_6 = (U_3 \cdot Q)(z_3$). Then U_6 is in \mathcal{J}, $sta_{U_6}(z_1) = A$ and by induction hypothesis, $z_1 \in V^{01}(U_6)$.

Now by Proposition 2, $z_1 \in V^{01}(T)$, which leads to $z_2 \in V^{02}(T)$ (by Lemma 7), a contradiction.

Thus, in all cases we have a contradiction. Therefore $V^{02}(T^{j-1}) \subseteq V^{02}(T)$ when both z_1 and z_3 are cut-vertices. If z_1 or z_3 is a leaf, then, by similar arguments, we can obtain the same result.

Let now $T^1 \equiv Q$. Then T^2 is obtained from T^1 and H_k by operation O_3. Consider the sequence of trees $\tau_1 : T^1_1 = H_k, T^2, T^3, \ldots, T^{j-1}$. Clearly τ_1 is a \mathcal{J}-sequence of T^{j-1} and $T^1_1 \neq Q$. Therefore we are in the previous case. Thus, $V^{02}(T^{j-1}) = V(T^{j-1}) \cap V^{02}(T)$.

Assume now that there is a vertex $w \in V^{01}(T^{j-1}) \cap V^{012}(T)$. By Lemma 7(i) w has a neighbor in T, say w', such that $w' \in V^{012}(T)$. Since $w \neq u$, $w' \in V(T^{j-1})$. But all neighbors of w in T^{j-1} are in $V^{02}(T^{j-1})$ (by Lemma 7 applied to T^{j-1} and w). Since $V^{02}(T^{j-1}) = V(T^{j-1}) \cap V^{02}(T)$, we obtain a contradiction.

Thus (α_4) is true.

Now we are prepared to prove that (P_1) is valid. Using, in the chain of equalities below, consecutively (α_2), the induction hypothesis, (α_1) and (α_4), we obtain

$$S_A(T) = S_{A^{-1}}(T^{j-1}) \cup (S_A(T) \cap V(F_a)) = V^{01}(T^{j-1}) \cup (V^{01}(T) \cap V(F_a)) = V^{01}(T),$$
and similarly, \(S_D(T) = V^{12}(T) \). Since \(u \notin S_B(T) \) and \(S_B(T) \cap V(F_a) = \emptyset \), we have

\[
S_B(T) = S_B(T) \cap V(T^{j-1}) \overset{(a_2)}{=} S_B^{-1}(T^{j-1}) = \{ t \in V^{02}(T^{j-1}) \mid deg_{T^{j-1}}(t) = 2 \text{ and } |N_{T^{j-1}}(t) \cap V^{02}(T^{j-1})| = 1 \}
\]

\[
\overset{(a_4)}{=} \{ t \in V^{02}(T) \cap V(T^{j-1}) \mid deg_T(t) = 2 \text{ and } |N_T(t) \cap V^{02}(T)| = 1 \}
\[= \{ t \in V^{02}(T) \mid deg_T(t) = 2 \text{ and } |N_T(t) \cap V^{02}(T)| = 1 \}.
\]

The last equality follows from \(deg_T(x) > 2 \) and \(\{ x \} = V^{02}(T) \cap V(F_a) \) (see \((a_1) \)). Now the equality \(S_C(T) = V^{02}(T) - S_B(T) \) is obvious. Thus, \((P_1) \) holds and we are done.

Case 8: \(T \) is obtained from \(T^{j-1} \in \mathcal{F} \) by operation \(O_2 \).

Clearly, \(\gamma_R(F_4) = \gamma_R(F_4 - x) = 2 \). By Lemma 2, \(\gamma_R(T) = \gamma_R(T^{j-1}) + \gamma_R(H_4) \). Let \(f_1 \) be a \(\gamma_R \)-function on \(T^{j-1} \) and \(f_2 \) a \(\gamma_R \)-function on \(F_4 \). Then the function \(f \) defined as \(f|_{T^{j-1}} = f_1 \) and \(f|_{F_4} = f_2 \) is a \(\gamma_R \)-function on \(T \). Therefore \(V^{02}(T^{j-1}) \subseteq V^{02}(F_4) \), \(V^{01}(T^{j-1}) \subseteq V^{01}(T) \cup V^{02}(T) \), and \(V^{02}(T^{j-1}) \subseteq V^{02}(T) \cup V^{02}(T) \).

Assume that there is \(y \in V^{08}(T^{j-1}) \cap V^{02}(T), s \in \{1, 2\} \), and let \(f' \) be a \(\gamma_R \)-function on \(T \) with \(f'(y) = r \notin \{0, s\} \). If \(f'|_{T^{j-1}} \) is an RD-function on \(T^{j-1} \), then \(f'|_{T^{j-1}}(V(T^{j-1})) > \gamma_R(T^{j-1}) \) and \(f'|_{E_4}(V(F_4)) \geq 2 \). This leads to \(f'(V(T)) > \gamma_R(T) \), a contradiction. Hence \(f'|_{T^{j-1}} \) is no RD-function on \(T^{j-1} \) and \(f'|_{T^{j-1} - u} \) is a \(\gamma_R \)-function on \(T^{j-1} - u \). Define now an RD-function \(f'' \) on \(T^{j-1} \) as \(f''|_{T^{j-1} - u} = f'|_{T^{j-1} - u} \) and \(f''(u) = 1 \). Since \(u \in V^{-}(T^{j-1}) \), \(f'' \) is a \(\gamma_R \)-function on \(T^{j-1} \) with \(f''(y) = r \notin \{0, s\} \), a contradiction with \(y \in V^{08}(T^{j-1}) \). Thus

\[
\overset{(a_5)}{=} V^{02}(T^{j-1}) = V^{02}(T) \cap V(T^{j-1}), \quad V^{01}(T^{j-1}) = V^{01}(T) \cap V(T^{j-1}), \quad V^{02}(T^{j-1}) = V^{02}(T) \cap V(T^{j-1}).
\]

Let \(x, x_1, x_2 \) be a path in \(F_4 \), \(h_1 \) a \(\gamma_R \)-function on \(T^{j-1} \) with \(h_1(u) = 2 \), and \(h_2 \) a \(\gamma_R \)-function on \(T^{j-1} - u \). Define \(\gamma_R \)-functions \(g_1, \ldots, g_4 \) on \(T \) as follows:

- \(g_1|_{T^{j-1}} = h_1, \quad g_1(x) = g_1(x) = 0 \) and \(g_1(x_1) = 2 \);
- \(g_2|_{T^{j-1}} = h_1, \quad g_2(x) = 0 \) and \(g_2(x_1) = g_2(x_2) = 1 \);
- \(g_3|_{T^{j-1}} = h_1, \quad g_3(x) = g_3(x_1) = 0 \) and \(g_3(x_2) = 2 \);
- \(g_4|_{T^{j-1} - u} = h_2, \quad g_4(u) = g_4(x_1) = 0, \quad g(x) = 2 \) and \(g_4(x_2) = 1 \).

This, \((a_5) \) and Lemma 6 allows us to conclude that \(T \) is \(\gamma_R \)-excellent, \(x_1, x_2 \in V^{12}(T) \) and \(x \in V^{02}(T) \).

By induction hypothesis, \((P_1) \) holds with \((T, S) \) replaced by \((T^{j-1}, S^{j-1}) \). Then Since \(u \notin S_B(T) \) and \(S_B(T) \cap V(F_4) = \emptyset \), we have

\[
S_B(T) = S_B^{-1}(T^{j-1}) = \{ t \in V^{02}(T^{j-1}) \mid deg_{T^{j-1}}(t) = 2 \text{ and } |N_{T^{j-1}}(t) \cap V^{02}(T^{j-1})| = 1 \}
\[= \{ t \in V^{02}(T) \mid deg_T(t) = 2 \text{ and } |N_T(t) \cap V^{02}(T)| = 1 \}.
\]
Claim 1.3. The next claim is obvious.

Let V be a function on H_k and g be another function on H_k such that $S(H_k) = S(T) = 1$. Hence $S_X(T) = S_X(H_k) = 1$. Let $S = \{v \in V(T) : \deg_T(v) = 1 \}$, then S is an equality as required, because

$V(T) = V(H_k) = 1$. Similarly we obtain $S(T) = 1$. We also have

$$S_B(T) = S_B(H_k)$$

as required, because $V(T) = V(H_k) = 1$. Now the equality $S(T) = 1$ is obvious.

Case 9: T is obtained from $T^{t_j} \in \mathcal{T}$ by operation O_3.

Let $T = T^{t_j} \cdot H_k(u,v : u)$, where $\text{sta}_{T^{t_j}}(u) = \text{sta}_{H_k}(v) = \text{sta}_T(u) = A$ and $k \in \{2, \ldots, 7\}$. Hence $S_X(T) = S_X(T^{t_j}) \cup I_X^k(H_k)$, for any $X \in \{A, B, C, D\}$. We know that (P_1) holds with (T, S) replaced by any of (T^{t_j}, S^{t_j}) and (H_k, I^k). Hence $S_A(T) = S_A(T^{t_j}) \cup I_A^k(H_k) = V(T^{t_j}) \cup V(H_k)$. Now, by Proposition 2, applied to T^{t_j} and H_k, $S_A(T) = V(T^{t_j})$. Similarly we obtain $S_D(T) = V(T^{t_j})$. We also have

$$S_B(T) = S_B(T^{t_j}) \cup I_B^k(H_k)$$

as required, because $V(T^{t_j}) \cup V(H_k) = V(T) = 1$. Now the equality $S(T) = V(T) - S_B(T)$ is obvious.

Case 10: T is obtained from $T^{t_j} \in \mathcal{T}$ and $H_k \in \mathcal{T}$, $k \in \{3, 4, 6\}$, by operation O_4. By induction hypothesis and Lemma 4, we have $\gamma_R(T) = \gamma_R(T^{t_j}) + \gamma_R(H_k) - 1$ and $u \in V(T^{t_j})$. Let f be a γ_R-function on T^{t_j} and f_2 a γ_R-function on $H_k - v$. Then the function f defined as $f|_{T^{t_j}} = f_1$ and $f|_{H_k - v} = f_2$ is a γ_R-function on T. Therefore $V_0(T^{t_j}) \subseteq V_0(T), V_0(T^{t_j}) \subseteq V_0(T) \cup V_0(T), \text{ and } V_0(T^{t_j}) \subseteq V_0(T) \cup V_0(T)$. Assume that there is $y \in V_0(T^{t_j}) \cap V_0(T), s \in \{1, 2\}$, and let f' be a γ_R-function on T with $f'(y) = r \notin \{0, s\}$. But then $f'|_{T^{t_j}}$ is no RD-function on $T^{t_j}, f'(u) = 0, f'|_{T^{t_j}-u}$ is a γ_R-function on $T^{t_j} - u$ and $f'|_{H_k}$ is a γ_R-function on H_k. Define now an RD-function g_1 on T^{t_j} as $g_1|_{T^{t_j}-u} = f'|_{T^{t_j}-u}$ and $g_1(u) = 1$. Since $g_1(V(T^{t_j}) - u) = \gamma_R(T^{t_j} - u) + 1 = \gamma_R(T^{t_j}), g_1$ is a γ_R-function on T^{t_j}. But $g_1(y) = r \notin \{0, s\}$, a contradiction. Thus

$$(\alpha_6) V_0(T^{t_j}) = V_0(T) \cap V(T^{t_j}), V_0(T^{t_j}) = V_0(T) \cap V(T^{t_j}), \text{ and } V_0(T^{t_j}) = V_0(T) \cap V(T^{t_j}).$$

The next claim is obvious.

Claim 1.3. Let x be the neighbor of v in $H_k, k \in \{3, 4, 6\}$. Then $\gamma_R(H_3) = 4, \gamma_R(H_4) = 5, \gamma_R(H_6) = 6, \gamma_R(H_k - v) = \gamma_R(H_k - \{v, x\}) = \gamma_R(H_k)$, and $l(x) = 0$ for any γ_R-function l on $H_k - v$.

Let h be a γ_R-function on T. We know that $u \in V(T^{t_j}), u \in V(T^{t_j}), v \in V_0(H_k)$, and $\gamma_R(T) = \gamma_R(T^{t_j}) + \gamma_R(H_k) - 1$. Then by Claim 1.3 we clearly have:

(a1) If $h(u) = 2$ then at least one of the following holds:

(a1.1) $h|_{H_k - v}$ is a γ_R-function on $H_k - v$, and

(a1.2) $h|_{H_k - \{v, x\}}$ is a γ_R-function on $H_k - \{v, x\}$.
Let l_1, l_2, l_3, l_4 and l_5 be γ_R-functions on $H_k, H_k - v, H_k - \{v, x\}, T^{j-1} - u$ and T^{j-1}, respectively, and let $l_5(u) = 2$. Define the functions $h_1, h_2,$ and h_3 on T as follows: (i) $h_1_{|T^{j-1}} = l_5, h_1(x) = 0$ and $h_1_{|H_k - \{v, x\}} = l_3$, (ii) $h_2_{|T^{j-1}} = l_5$ and $h_1_{|H_k - v} = l_2$, and (iii) $h_3_{|T^{j-1} - u} = l_4$ and $h_3_{|H_k} = l_1$. Clearly $h_1, h_2,$ and h_3 are γ_R-functions on T. After inspection of all γ_R-functions of $H_k, H_k - v$ and $H_k - \{v, x\}$, we conclude that $V^{01}(H_k) - \{v\} \subseteq V^{01}(T), V^{02}(H_k) \subseteq V^{02}(T),$ and $V^{012}(H_k) \subseteq V^{012}(T)$. This and (a_6) imply

\[(a_7) \quad V^{012}(T) = V^{012}(T^{j-1}) \cup V^{012}(H_k), \quad V^{02}(T) = V^{02}(T^{j-1}) \cup V^{02}(H_k), \]
and
\[V^{01}(T) = V^{01}(T^{j-1}) \cup (V^{01}(H_k) - \{v\}).\]

Since (P_1) holds with T replaced by H_k or by T^{j-1} (by induction hypothesis), using (a_7) we obtain that (P_1) is satisfied.

5. Corollaries

The next three results immediately follow by Theorem 1.

Corollary 1. If $(T, S_1), (T, S_2) \in \mathcal{T}$ then $S_1 \equiv S_2$.

If $(T, S) \in \mathcal{T}$ then we call S the \mathcal{T}-labeling of T.

Corollary 2. Let T be a γ_R-excellent tree of order $n \geq 5$, and S the \mathcal{T}-labeling of T. Then \[\frac{2}{3} \leq |V^{02}(T)| \leq \frac{2}{3}(n-1) \quad \text{and} \quad \frac{2}{3}n \geq |V^{-}(T)| \geq \frac{1}{3}(n+2). \] Moreover,\[(i) \quad \frac{2}{3} \leq |V^{02}(T)| \iff \text{if and only if} \quad (T, S) \text{ has a } \mathcal{T}-\text{sequence} \tau : (T^1, S^1), \ldots, (T^j, S^j), \text{ such that} \quad (T^1, S^1) = (F_3, J^3) \text{ and if } j \geq 2, (T^{j+1}, S^{j+1}) \text{ can be obtained recursively from} \quad (T^j, S^j) \text{ and } (F_3, J^3) \text{ by operation } O_1.\]

\[(ii) \quad |V^{02}(T)| \leq \frac{2}{3}(n-1) \iff \text{if and only if} \quad (T, S) \text{ has a } \mathcal{T}-\text{sequence} \tau : (T^1, S^1), \ldots, (T^j, S^j), \text{ such that} \quad (T^1, S^1) = (H_2, I^2) \text{ and if } j \geq 2, (T^{j+1}, S^{j+1}) \text{ can be obtained recursively from} \quad (T^j, S^j) \text{ and } (H_2, I^2) \text{ by operation } O_3.\]

Corollary 3. Let G be an n-order γ_R-excellent connected graph of minimum size. Then either $G = K_3$ or $n \neq 3$ and G is a tree.

6. Special cases

Let G be a graph and $\{a_1, \ldots, a_k\} \subseteq \{0, 1, 2, 01, 02, 12, 012\}$. We say that G is a R_{a_1, \ldots, a_k}-graph if $V(G) = \bigcup_{i=1}^k V^{a_i}(G)$ and all $V^{a_1}(G), \ldots, V^{a_k}(G)$ are nonempty. Now let T be a γ_R-excellent tree of order at least 2. By Theorem 1, we immediately conclude that $T \in R_{012} \cup R_{01,02} \cup R_{02,012} \cup R_{01,02,012}$. Moreover,
labeled tree (T, S).

Remark that once a vertex is assigned a status, this status remains unchanged as the labeling proceeds. Therefore, the following result.

As an immediate consequence of Corollary 1 we obtain:

Corollary 5. If $(T, S_1), (T, S_2) \in \mathcal{F}_{01,02}$ then $S_1 \equiv S_2$.

A graph G is called a 2-corona if each vertex of G is either a support vertex or a leaf, and each support vertex of G is adjacent to exactly 2 leaves. In a labeled 2-corona all leaves have status A and all support vertices have status C.

(i) $T \in \mathcal{R}_{012}$ if and only if $T = K_2$, and

(ii) $T \in \mathcal{R}_{01,02,012}$ if and only if none of $S_A(T), S_C(T)$ and $S_D(T)$ is empty, where S is the \mathcal{F}-labeling of T.

In this section, we turn our attention to the classes $\mathcal{R}_{01,02}$ and $\mathcal{R}_{02,012}$.

6.1. $\mathcal{R}_{01,02}$-graphs.

Here we give necessary and sufficient conditions for a tree to be in $\mathcal{R}_{01,02}$. We define a subfamily $\mathcal{J}_{01,02}$ of \mathcal{F} as follows. A labeled tree $(T, S) \in \mathcal{J}_{01,02}$ if and only if (T, S) can be obtained from a sequence of labeled trees $\tau : (T^1, S^1), \ldots, (T^j, S^j)$, $(j \geq 1)$, such that (T^1, S^1) is in $\{(H_2, I^2), (H_3, I^3)\}$ (see Figure 1) and $(T, S) = (T^1 \cdot S^1)$, and, if $j \geq 2$, (T^{i+1}, S^{i+1}) can be obtained recursively from (T^i, S^i) by one of the operations O_5 and O_6 listed below; in this case τ is said to be a $\mathcal{J}_{01,02}$-sequence of T.

Operation O_5. The labeled tree (T^{i+1}, S^{i+1}) is obtained from (T^i, S^i) and (F_1, I^1) (see Figure 2) by adding the edge ux, where $u \in V(T_i), x \in V(F_1)$ and $sta_{T_i}(u) = sta_{F_1}(x) = C$.

Operation O_6. The labeled tree (T^{i+1}, S^{i+1}) is obtained from (T^i, S^i) and (H_k, I^k), $k \in \{2, 3\}$ (see Figure 1), in such a way that $T^{i+1} = (T^i \cdot H_k)(u, v : u)$, where $sta_{T_i}(u) = sta_{H_k}(v) = A$, and $sta_{T_i+1}(u) = A$.

Remark that once a vertex is assigned a status, this status remains unchanged as the labeled tree (T, S) is recursively constructed. By the above definitions we see that $S_D(T)$ is empty when $(T, S) \in \mathcal{J}_{01,02}$. So, in this case, it is naturally to consider a labeling S as $S : V(T) \to \{A, B, C\}$. From Theorem 1 we immediately obtain the following result.

Corollary 4. Let T be a tree of order at least 2. Then $T \in \mathcal{R}_{01,02}$ if and only if there is a labeling $S : V(T) \to \{A, B, C\}$ such that (T, S) is in $\mathcal{J}_{01,02}$. Moreover, if $(T, S) \in \mathcal{J}_{01,02}$ then

\[
(P_3) \quad S_B(T) = \{x \in V^{o2}(T) \mid \deg(x) = 2 \text{ and } |N(x) \cap V^{o2}(T)| = 1\}, S_A(T) = V^{o1}(T), \text{ and } S_C(T) = V^{o2}(T) - S_B(T).
\]

As an immediate consequence of Corollary 1 we obtain:

Corollary 5. If $(T, S_1), (T, S_2) \in \mathcal{J}_{01,02}$ then $S_1 \equiv S_2$.
Proposition 3. Every connected n-order graph H, $n \geq 2$, is an induced subgraph of a $\mathcal{R}_{01,02}$-graph with the domination number equals to $2|V(H)|$.

Proof. Let a graph G be a 2-corona such that the induced subgraph by the set of all support vertices of G is isomorphic to H. Let x be a support vertex of G and y, z the leaf neighbors of x in G. Then clearly for any γ_R-function f on G, $f(x) + f(y) + f(z) \geq 2$, $f(y) \neq 2 \neq f(z)$ and $f(x) \neq 1$. Define RD-functions h and g on G as follows: (a) $h(u) = 2$ when u is a support vertex of G and $h(u) = 0$, otherwise, and (b) $g(v) = h(v)$ when $v \notin \{x, y, z\}$, and $g(x) = 0$, $g(y) = g(z) = 1$. Therefore $\gamma_R(G) = 2|V(H)|$ and G is in $\mathcal{R}_{01,02}$. \hfill \Box

Corollary 6. There does not exist a forbidden subgraph characterization of the class of $\mathcal{R}_{01,02}$-graphs. There does not exist a forbidden subgraph characterization of the class of γ_R-excellent graphs.

Let $\mathcal{T}_{01,02}$ be the family of all labeled trees (T, L) that can be obtained from a sequence of labeled trees $\lambda: (T^1, L^1), \ldots, (T^j, L^j), \ (j \geq 1)$, such that $(T, L) = (T^j, L^j)$, (T^1, L^1) is either (H_2, I_2) (see Figure 1) or a labeled 2-corona tree, and, if $j \geq 2$, (T^{i+1}, L^{i+1}) can be obtained recursively from (T^i, L^i) by one of the operations O_7 and O_8 listed below; in this case λ is said to be a $\mathcal{T}_{01,02}$-sequence of T.

Operation O_7. The labeled tree (T^{i+1}, L^{i+1}) is obtained from (T^i, L^i) and (H_2, I_2), in such a way that $T^{i+1} = (T^i \cdot H_2)(u, v : u)$, where $sta_{T^i}(u) = sta_{H_2}(v) = A$, and $sta_{T^{i+1}}(u) = A$.

Operation O_8. The labeled tree (T^{i+1}, L^{i+1}) is obtained from (T^i, L^i) and a labeled 2-corona tree, say U_i, in such a way that $T^{i+1} = (T^i \cdot U_i)(u, v : u)$, where $sta_{T^i}(u) = sta_{U_i}(v) = A$, and $sta_{T^{i+1}}(u) = A$.

Again, once a vertex is assigned a status, this status remains unchanged as the 2-labeled tree T is recursively constructed.

Theorem 2. For any tree T the following are equivalent.

(A_1) T is in $\mathcal{R}_{01,02}$.

(A_2) There is a labeling $S: V(T) \rightarrow \{A, B, C\}$ such that (T, S) is in $\mathcal{R}_{01,02}$.

(A_3) There is a labeling $L: V(T) \rightarrow \{A, B, C\}$ such that (T, L) is in $\mathcal{T}_{01,02}$.

Proof. $(A_1) \Leftrightarrow (A_2)$: By Corollary 4.

$(A_3) \Rightarrow (A_2)$: Let a tree $(T, L) \in \mathcal{T}_{01,02}$. It is clear that all $\mathcal{T}_{01,02}$-sequences of (T, L) have the same number of elements. Denote this number by $r(T)$. We shall prove that $(T, L) \in \mathcal{T}_{01,02} \Rightarrow (T, L) \in \mathcal{R}_{01,02}$. We proceed by induction on $r(T)$. If $r(T) = 1$ then either
Let a labeled tree \((T, S)\) exist. If \((T, S)\) is a labeled 2-corona tree, or \((T, L) = (H_2, I^2)\). In both cases \((T, L) \in \mathcal{T}_{01,02}\).

We need the following obvious claim.

Claim 2.1 If \((T', L')\) is a labeled 2-corona tree, \(w \in V(T')\) and \(sta(w) = A\), then either \((T', L')\) is \((H_3, I^3)\) or there is a \(\mathcal{T}\)-sequence \(\tau: (T^1, S^1), \ldots, (T^i, S^i), (l \geq 2)\), such that \((T^1, S^1) = (H_3, I^3)\), \(w \in V(T^1)\), \((T^i, S^i) = (T', L')\), and \((T^{i+1}, S^{i+1})\) can be obtained recursively from \((T^i, S^i)\) and \((F_1, J^1)\) by operation \(O_9\).

Suppose now that each tree \((H, L_H) \in \mathcal{T}_{01,02}\) with \(r(H) < k\) is in \(\mathcal{T}_{01,02}\), where \(k \geq 2\). Let \(\lambda : (T^1, L^1), \ldots, (T^k, L^k)\), be a \(\mathcal{T}_{01,02}\)-sequence of a labeled tree \((T, L) \in \mathcal{T}'_{01,02}\). By the induction hypothesis, \((T^k, L^{k-1})\) is in \(\mathcal{T}_{01,02}\). Let \(\tau_1 : (U^1, S^1), \ldots, (U^m, S^m)\) be a \(\mathcal{T}\)-sequence of \((T^k, L^{k-1})\). Hence \(U^m = T^{k-1}\) and \(S^m = L^{k-1}\). If \((T^k, L_k)\) is obtained from \((T^{k-1}, L^{k-1})\) and \((H_2, I^2)\) by operation \(O_7\), then \((U^1, S^1), \ldots, (U^m, S^m), (T^k, L^k) = (T, L)\) is a \(\mathcal{T}\)-sequence of \((T, L)\). So, let \((T^k, L_k)\) is obtained from \((T^{k-1}, L^{k-1})\) and a labeled 2-corona tree, say \((Q, L_q)\) by operation \(O_8\). Hence \(T^{k-1}\) and \(Q\) have exactly one vertex in common, say \(w\), and \(sta_{T^{k-1}}(w) = sta_Q(w) = sta_T(w) = A\). By Claim 2.1, \((Q, L_q) \in \mathcal{T}_{01,02}\) and it has a \(\mathcal{T}_{01,02}\)-sequence, say \((Q^1, L_{q1}), \ldots, (Q^s, L_{qs})\) such that \(Q^s = Q\), \(L_q = L_q^s\), and \(w \in V(Q^1)\). Denote \(W^{m+i} = (V(U^m) \cup V(Q^1))\) and let a labeling \(S_1, \ldots, S^m+i\) be such that \(S_1^{m+i}|_{U^m} = S^m\) and \(S_1^{m+i}|_{Q^1} = L^q_1\). Then the sequence of labeled trees \((U^1, S^1), \ldots, (U^m, S^m), (W^{m+1}, S^{m+1}), \ldots, (W^{m+s}, S^{m+s}) = (T, L)\) is a \(\mathcal{T}_{01,02}\)-sequence of \((T, L)\).

\((A_2) \Rightarrow (A_3)\):

Let a labeled tree \((T, S) \in \mathcal{T}_{01,02}\). Then \((T, S)\) has a \(\mathcal{T}\)-sequence \(\tau : (T^1, S^1), \ldots, (T^j, S^j) = (T, S)\), where \((T^1, S^1) \in \{(H_2, I^2), (H_3, I^3)\} \subset \mathcal{T}'_{01,02}\). We proceed by induction on \(p(T) = \sum_{z \in \mathcal{C}(T)} deg_T(z)\), where \(\mathcal{C}(T)\) is the set of all cut-vertices of \(T\) that belong to \(S_A(T)\). Assume first \(p(T) = 0\). If \(j = 1\) then we are done. If \(j \geq 2\) then \((T^1, S^1) = (H_3, I^3)\) and \((T^{j+1}, S^{j+1})\) is obtained from \((F_1, J^1)\) and \((T^i, S^i)\) by operation \(O_5\). Thus, \((T, S)\) is a labeled 2-corona tree, which allow us to conclude that \((T, S)\) is in \(\mathcal{T}'_{01,02}\).

Suppose now that \(p(T) = k \geq 1\) and for each labeled tree \((H, S_H) \in \mathcal{T}_{01,02}\) with \(p(H) < k\) is fulfilled \((H, S_H) \in \mathcal{T}'_{01,02}\). Then there is a cut-vertex, say \(z\), such that \(z \in S_A(T)\), (b) \((T, S)\) is a coalescence of 2 graphs, say \((T', S|_{T'})\) and \((T'', S|_{T''})\), via \(z\), and (c) no vertex in \(S_A(T) \cap V(T'')\) is a cut-vertex of \(T''\). Hence \((T', S|_{T'}) \in \mathcal{T}'_{01,02}\) (by induction hypothesis) and \((T'', S|_{T''})\) is either a labeled 2-corona tree or \(H_2\). Thus \((T, S)\) is in \(\mathcal{T}'_{01,02}\).

\(\square\)

6.2. \(\mathcal{R}_{02,012}\)-trees.

Our aim in this section is to present a characterization of \(\mathcal{R}_{02,012}\)-trees. For this purpose, we need the following definitions. Let \(\mathcal{R}_{02,012} \subset \mathcal{T}\) be such that \((T, S) \in \mathcal{R}_{02,012}\) if and only if \((T, S)\) can be obtained from a sequence of labeled trees \(\tau : (T^1, S^1), \ldots, (T^i, S^i), (j \geq 1)\), such that \((T^1, S^1) = (F_3, J^3)\) (see Figure 2) and \((T, S) = (T^i, S^i)\), and, if \(j \geq 2\), \((T^{i+1}, S^{i+1})\) can be obtained recursively from \((T^{i}, S^{i})\) by one of the operations \(O_9\) and \(O_{10}\) listed below.
Operation O_9. The labeled tree (T^{i+1}, S^{i+1}) is obtained from (T^i, S^i) and (F_3, J^3) by adding the edge ux, where $u \in V(T^i)$, $x \in V(F_3)$ and $\text{sta}_{S^i}(u) = \text{sta}_{F_3}(x) = C$.

Operation O_{10}. The labeled tree (T^{i+1}, S^{i+1}) is obtained from (T^i, S^i) and (F_4, J^4) (see Figure 2) by adding the edge ux, where $u \in V(T^i)$, $x \in V(F_4)$, $\text{sta}_{T^i}(u) = D$, and $\text{sta}_{F_4}(x) = C$.

Note that once a vertex is assigned a status, this status remains unchanged as the labeled tree (T, S) is recursively constructed. By the above definitions we see that if $(T, S) \in R_{01,02}$, then $S_A(T) = S_B(T) = \emptyset$. Therefore it is naturally to consider a labeling S as $S : V(T) \to \{C, D\}$.

From Theorem 1 we immediately obtain the following result.

Corollary 7. A tree T is in $R_{02,012}$ if and only if there is a labeling $S : V(T) \to \{C, D\}$ such that (T, S) is in $\mathcal{R}_{02,012}$. Moreover, if $(T, S) \in \mathcal{R}_{02,012}$ then $S_C(T) = V^{02}(T)$ and $S_D(T) = V^{012}(T)$.

As an immediate consequence of Corollary 1 we obtain:

Corollary 8. If $(T, S_1), (T, S_2) \in \mathcal{R}_{02,012}$ then $S_1 \equiv S_2$.

Theorem 3. [3] If G is a connected graph of order $n \geq 3$, then $\gamma_R(G) \leq 4n/5$. The equality holds if and only if G is C_5 or is obtained from $\frac{5}{2}P_5$ by adding a connected subgraph on the set of centers of the components of $\frac{5}{2}P_5$.

As a consequence of Theorem 3 and Corollary 7 we have:

Corollary 9. Let G be a connected n-vertex graph with $n \geq 6$ and $\gamma_R(G) = 4n/5$. Then G is in $R_{02,012}$ and $V^{012}(G)$ consists of all leaves and all support vertices. Moreover, if G is a tree, then G has a \mathcal{R}-sequence $\tau : (G^1, S^1), \ldots, (G^j, S^j)$, $(j \geq 1)$, such that $(G^1, S^1) = (F_3, J^3)$ (see Figure 2) and if $j \geq 2$, then (G^{i+1}, S^{i+1}) can be obtained recursively from (G^i, S^i) by operation O_9.

A graph G is said to be in class UVR if $\gamma(G - v) = \gamma(G)$ for each $v \in V(G)$. Constructive characterizations of trees belonging to UVR are given in [14] by Samodivkin, and independently in [11] by Haynes and Henning. We need the following result in [14] (reformulated in our present terminology).

Theorem 4. [14] A tree T of order at least 5 is in UVR if and only if there is a labeling $S : V(T) \to \{C, D\}$ such that (T, S) is in $\mathcal{R}_{02,012}$. Moreover, if $(T, S) \in \mathcal{R}_{02,012}$ then $S_C(T)$ and $S_D(T)$ are the sets of all γ-bad and all γ-good vertices of T, respectively.

We end with our main result in this subsection.
Theorem 5. For any tree T the following are equivalent:

(A4) T is in $R_{02,012}$,
(A5) T is in R_{012},
(A6) T is in UVR.

Proof. Corollary 7 and Theorem 4 together imply the required result.

7. Open problems and questions

We conclude the paper by listing some interesting problems and directions for further research. Let first note that if $n \geq 3$ and $G_{n,k}$ is not empty, then $k \leq 4n/5$ (Theorem 3).

An element of $\mathbb{RE}_{n,k}$ is said to be *isolated*, whenever it is both maximal and minimal. In other words, a graph $H \in G_{n,k}$ is isolated in $\mathbb{RE}_{n,k}$ if and only if $H \in R_{CEA}$ and for each $e \in E(H)$ at least one of the following holds: (a) $H - e$ is not connected, (b) $\gamma_R(H) \neq \gamma_R(H - e)$, (c) $H - e$ is not γ_R-excellent.

Example 1.

(i) All γ_R-excellent graphs with the Roman domination number equals to 2 are K_2 and K_n, $n \geq 2$. If a graph $G \in R_{CEA}$ and $\gamma_R(G) = 2$, then G is complete. K_n is isolated in $\mathbb{RE}_{n,2}$, $n \geq 2$.

(ii) $[8]$ K_2, H_7 and H_8 (see Fig. 1) are the only trees in R_{CEA}.

(iii) If $\mathbb{RE}_{n,k}$ has a tree T as an isolated element, then either $(n, k) = (2, 2)$ and $T = K_2$, or $(n, k) = (9, 7)$ and $T = H_7$, or $(n, k) = (10, 8)$ and $T = H_8$.

- Find results on the isolated elements of $\mathbb{RE}_{n,k}$.
- What is the maximum number of edges $m(G_{n,k})$ of a graph in $G_{n,k}$? Note that (a) $m(G_{n,2}) = n(n - 1)/2$, (b) $m(G_{n,3}) = n(n - 1)/2 - \lceil n/2 \rceil$.
- Find results on those minimal elements of $\mathbb{RE}_{n,k}$ that are not trees.

Example 2.

(a) A cycle C_n is a minimal element of $\mathbb{RE}_{n,k}$ if and only if $n \equiv 0 \pmod{3}$ and $k = 2n/3$. (b) A graph G obtained from the complete bipartite graph $K_{p,q}$, $p \geq q \geq 3$, by deleting an edge is a minimal element of $\mathbb{RE}_{p+q,4}$.

The height of a poset is the maximal number of elements of a chain.

- Find the height of $\mathbb{RE}_{n,k}$.

Example 3.

(a) It is easy to check that any longest chain in $\mathbb{RE}_{6,4}$ has as the first element H_3 (see Fig 1) and as the last element one of the two 3-regular 6-vertex graphs. Therefore the height of $\mathbb{RE}_{6,4}$ is 5.
(b) Let us consider the poset \(\mathbb{RE}_{5r,4r} \), \(r \geq 2 \). All its minimal elements are \(\gamma_R \)-excellent trees (by Theorem 3 and Corollary 9), which are characterized in Corollary 9. Moreover, the graph obtained from \(rP_5 \) by adding a complete graph on the set of centers of the components of \(rP_5 \) is the largest element of \(\mathbb{RE}_{5r,4r} \). Therefore the height of \(\mathbb{RE}_{5r,4r} \) is \((r - 1)(r - 2)/2 + 1 \).

- Find results on \(\gamma_{YR} \)-excellent graphs at least when \(Y \) is one of \(\{-1, 0, 1\} \), \(\{-1, 1\} \) and \(\{-1, 1, 2\} \).

References

