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Abstract: The rings considered in this article are commutative with identity which
admit at least one nonzero proper ideal. Let R be a ring. We denote the collection of
all ideals of R by I(R) and I(R)\{(0)} by I(R)*. Alilou et al. [A. Alilou, J. Amjadi and
S.M. Sheikholeslami, A new graph associated to a commutative ring, Discrete Math.
Algorithm. Appl. 8 (2016) Article ID: 1650029 (13 pages)] introduced and investigated
a new graph associated to R, denoted by Q7 which is an undirected graph whose vertex
set is I(R)*\{R} and distinct vertices I, J are joined by an edge in this graph if and
only if either (Anngl)J = (0) or (AnngJ)I = (0). Several interesting theorems were
proved on Q% in the aforementioned paper and they illustrate the interplay between
the graph-theoretic properties of 7, and the ring-theoretic properties of R. The aim
of this article is to investigate some properties of (Q’é)c, the complement of the new
graph QF associated to R.

Keywords: Annihilating ideal of a ring, maximal N-prime of (0), special principal
ideal ring, connected graph, diameter, girth
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1. Introduction

The rings considered in this article are commutative with identity which admit at least
one nonzero proper ideal. Let R be a ring. An ideal I of R such that I ¢ {(0), R}
is referred to as a nontrival ideal. Inspired by the work of I. Beck in [9], during the
last two decades, several researchers have associated a graph with certain subsets
of a ring and explored the interplay between the ring-theoretic properties of a ring
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with the graph-theoretic properties of the graph associated with it (see for example,
(3, 4, 6, 7]). Recall from [10] that an ideal I of R is said to be an annihilating ideal
if there exists r € R\{0} such that Ir = (0). As in [10], we denote the set of all
annihilating ideals of R by A(R) and A(R)\{(0)} by A(R)*. Let R be a ring such
that A(R)* # 0. As the ideals of a ring also play an important role in studying
its structure, M. Behboodi and Z. Rakeei in [10] introduced and investigated an
undirected graph called the annihilating-ideal graph of R, denoted by AG(R), whose
vertex set is A(R)* and distinct vertices I, J are joined by an edge in AG(R) if and only
if IJ = (0). In [10, 11], M. Behboodi and Z. Rakeei explored the influence of certain
graph-theoretic parameters of AG(R) on the ring structure of R. The annihilating-
ideal graph of a commutative ring and other related graphs have been studied by
several researchers (see for example, [1, 2, 14, 18, 19]). Motivated by the work done
on the annihilating-ideal graph of a commutative ring, in [2], Alilou, Amjadi and
Sheikholeslami introduced and studied a new graph associated to a commutative ring
R, denoted by Q%, which is an undirected graph whose vertex set is the set of all
nontrivial ideals of R and distinct vertices I, J are joined by an edge in this graph if
and only if either (AnnglI)J = (0) or (AnngJ)I = (0) (that is, if and only if either
Anngl C AnngJ or AnngJ C Anngl), where for an ideal I of R, the annihilator of
I in R, denoted by Anngl is defined as Anngl = {r € R: Ir = (0)}. Let R be aring
such that R is not a field. Several interesting and inspiring theorems were proved on
Q% in [2] (see for example, Theorems 4, 10, and 20).

Let G = (V,E) be a simple graph. Recall from ([8], Definition 1.1.13) that the
complement of G, denoted by G¢, is a graph whose vertex set is V and distinct vertices
u, v are joined by an edge in G° if and only if there is no edge in G joining u and v. Let
R be a ring with at least one nontrivial ideal. The aim of this article is to investigate
some properties of (Q2%)°. It is useful to mention here that distinct nontrivial ideals
A,B of R are joined by an edge in (Q})¢ if and only if AnngA € AnngB and
AnngpB ¢ AnngA.

It is useful to recall the following definitions and results from commutative ring theory.
Let R be a ring and let I be a proper ideal of R. Recall from [15] that a prime ideal
p of R is said to be a maximal N-prime of I if p is maximal with respect to the
property of being contained in Zr(R/I) = {r € R : rx € I for some x € R\I}. Let
x € Z(R). Let S = R\Z(R). Note that S is a multiplicatively closed subset of R
and Rz NS = 0. It follows from Zorn’s lemma and ([16], Theorem 1) that there
exists a maximal N-prime p of (0) in R such that x € p. Hence, if {ps}taca is the
set of maximal N-primes of (0) in R, then it follows that Z(R) = UgecpPa. Observe
that R has only one maximal N-prime of (0) if and only if Z(R) is an ideal of R.
We use nil(R) to denote the nilradical of a ring R. A ring R is said to be reduced if
nil(R) = (0). Recall from ([12], Exercise 16, p.111) that a ring R is said to be von
Neumann regular if given x € R, there exists y € R such that z = 2%y. For a ring R,
we denote the Krull dimension of R by dim R. It is known that R is von Neumann
regular if and only if R is reduced and dimR = 0 ([12], Exercise 16, p.111). We
denote the cardinality of a set A using the notation |A|.

Next, we recall the following definitions from graph theory. The graphs considered
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in this article are undirected and simple. Let G = (V| F) be a graph. Let a,b € V,
a # b. Recall that the distance between a and b, denoted by d(a,b) is defined as
the length of a shortest path between a and b in G if such a path exists; otherwise
d(a,b) = oo. We define d(a,a) = 0. G is said to be connected if for any distinct
a,b € V, there exists a path in G between a and b. Recall from ([8], Definition 4.2.1)
that the diameter of a connected graph G = (V, E) denoted by diam(G) is defined as
diam(G) = max{d(a,b) : a,b € V}. Let a € V. The eccentricity of a, denoted by e(a)
is defined as e(a) = max{d(a,b) : b € V}. G is said to be bipartite if the vertex set
V' can be partitioned into two nonempty subsets V; and V5 such that each edge of G
has one end in V7 and the other in V5. A simple bipartite graph with vertex partition
V1 and V5 is said to be complete if each element of V; is adjacent to every element of
V5. A complete bipartite graph with vertex partition V3 and V5 is said to be a star
if either |[Vi| = 1 or |Va| = 1. Recall from ([8], p. 159) that the girth of G, denoted
by girth(G) is defined as the length of a shortest cycle in G. If a graph G does not
contain any cycle, then we define girth(G) = cc.

Let R be a ring which admits at least one nontrivial ideal. In Section 2 of this article,
we discuss regarding the connectedness of (25)°. Let R be a reduced ring with at
least two nontrivial ideals. It is shown that (£23;)¢ is connected if and only if AG(R) is
a spanning subgraph of (Q%,)¢ and it is observed in such a case that diam((Q%5)°) <3
(see Proposition 1). It is noted in Remark 1 that if R is reduced and if (Q5)° is
connected, then R must have at least two maximal N-primes of (0). Let R be a
reduced ring which admits only a finite number n > 2 of maximal N-primes of (0).
In Proposition 2, it is proved that for such a ring R, (2},)¢ is connected if and only if
R Fy X Fy x---x F, as rings, where F; is a field for each i € {1,2,...,n}. Moreover,
for such a ring R, diam((€25)°) is shown to be equal to 1 or 2 (see Proposition 4). For
a von Neumann regular ring R, it is proved in Proposition 3 that (2};)¢ is connected if
and only if R is Noetherian. Let R be an Artinian ring which is not local. If R is not
reduced, then it is verified in Remark 3 that (2};)° is connected and diam((Q25)°) = 3.
Let R be a ring such that A(R)* # (). In [18], we associated and investigated some
properties of an undirected graph denoted by Q(R) whose vertex set is A(R)* and
distinct vertices I, J are joined by an edge in Q(R) if and only if I + J € A(R). In
[19], we studied the interplay between the graph-theoretic properties of (2(R))¢ and
the ring-theoretic properties of R. It is useful to recall here that distinct nonzero
annihilating ideals I, J are adjacent in (Q(R))¢ if and only if I + J ¢ A(R). Let H
be the subgraph of (Q%)¢ induced on A(R)*. It is observed in Lemma 5 that (Q(R))°
is a spanning subgraph of H. Let R be a ring such that |A(R)*| > 2. In Theorem 2,
classification of rings R such that (25)¢ is a path of order 4 is obtained. In Proposition
6, classification of rings R such that H is complete bipartite is given. It is proved in
Proposition 7 that H is complete if and only if R & F; x F; as rings, where F; and
F, are fields. With |[A(R)*| > 3, in Proposition 8, necessary and sufficient conditions
on R are determined in order that H be a star graph.

Let R be a ring which admits at least one nontrivial ideal. Section 3 of this article

c

contains a discussion on the girth of (2%)°. Let R be a reduced ring which is not

an integral domain. If R has a unique maximal N-prime of (0), then it is verified in
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Proposition 9 that girth((2};)°) = 3. If R has exactly two maximal N-primes of (0),
then it is proved in Proposition 10 that girth((25;)¢) € {3,4,00}. Let R be a ring
(which can possibly be non-reduced) such that R has at least three maximal N-primes
of (0). It is noted in Proposition 11 that girth((2};)°) = 3. Let R be a non-reduced
ring which has at most two maximal N-primes of (0). We are not able to determine
girth((€25)¢). Some examples are provided to illustrate the results obtained in this
section.

Let R be a ring. We denote the set of all maximal ideals of R using the notation
Max(R). A ring R is said to be quasilocal (respectively, semiquasilocal) if R has a
unique maximal ideal (respectively, R has only a finite number of maximal ideals).
A Noetherian quasilocal (respectively, semiquasilocal) ring is referred to as a local
(respectively, semilocal) ring. Let A, B be sets. We use A C B to denote proper
inclusion.

2.  On the connectedness of (2};)°

As mentioned in the introduction, the rings considered in this article are commutative
with identity which admit at least one nontrivial ideal. First, we determine some
necessary conditions on the ring R in order that (Q%)° be connected.

Lemma 1. Let R be a ring and I be a nontrivial ideal of R such that I ¢ A(R)*. Then

I is an isolated verter of (x)°.

Proof. 1t is already noted in the introduction that nontrivial ideals A, B of R are
adjacent in (Q%)° if and only if AnngA ¢ AnngB and AnngB ¢ AnnpA. As
I ¢ A(R)*, we obtain that Anngl = (0). Let J be any nontrivial ideal of R with
J # I. Then Anngl = (0) C AnngJ. Hence, I and J are not adjacent in (2})°.

c

This proves that I is an isolated vertex of (25;)°. O

Corollary 1. Let R be a ring such that R admits at least two nontrivial ideals. If (Q%)°
s connected, then any nontrivial ideal of R is an annihilating ideal of R.

Proof. As R has at least two nontrivial ideals and (Q%)° is connected, it follows
that no nontrivial ideal of R is an isolated vertex of (2})°. Hence, we obtain from
Lemma 1 that each nontrivial ideal of R is an annihilating ideal of R. [

Let R be a reduced ring with at least two nontrivial ideals. We prove in Proposition
1 that (Q%)° is connected if and only if each nontrivial ideal of R is an annihilating
ideal of R. We use Lemma 2 in the proof of Proposition 1.

Lemma 2. Let R be a reduced ring. Let I,J € A(R)™ be such that IJ = (0). Then I and
J are adjacent in (2R)°.
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Proof. We claim that Anngl € AnngJ and AnngJ ¢ Anngl. Suppose that
Anngl C AnngJ. Then from IJ = (0), it follows that J C Anngl C AnngJ. This
implies that J? = (0). This is impossible since R is reduced and J # (0). Therefore,
Anngl € AnngJ. Similarly, it can be shown that AnngJ € Anngl. This proves
that I and J are adjacent in (QF)°. O

Proposition 1. Let R be a reduced ring which admits at least two nontrivial ideals. Then
the following statements are equivalent:

(3) (%) is connected.

(it) Each nontrivial ideal of R is an annihilating ideal of R.

Proof. (i) = (4i) This follows immediately from Corollary 1. It is useful to note
that this part of this Proposition does not need the hypothesis that R is reduced.

(#4) = (4) Note that the vertex set of (5)° equals A(R)*. It follows from Lemma
2 that AG(R) is a spanning subgraph of (2};)°. It is well-known that AG(R) is
connected and diam(AG(R)) < 3 ([10], Theorem 2.1). Therefore, we obtain that
(Q7})¢ is connected and diam((Q25)°) < 3. O

Remark 1. Let R be a reduced ring which admits p as its unique maximal N-prime of
(0). Then (2%)€ is not connected.

Proof. Note that p = Z(R). Let « € p, x # 0. Note that there exists y € R\{0}
such that zy = 0. As R is reduced and =z # 0, whereas xy = 0, it follows that
Rz # Ry. Thus R has at least two nontrivial ideals. We assert that p ¢ A(R).
Suppose that p € A(R). Then there exists a € R\{0} such that pa = (0). This
implies that a € Z(R) = p. Hence, a® = 0. This is impossible since R is reduced and
a # 0. Therefore, p ¢ A(R). Hence, we obtain from Corollary 1 that (2})° is not
connected. O

Let R be a reduced ring which admits only a finite number n > 2 of maximal N-primes
of (0). In Proposition 2, we classify such rings R in order that (2};)° be connected.
We use Lemmas 3 and 4 in the proof of Proposition 2 and some other results of this
article.

Lemma 3. Let R be a reduced ring which admits only a finite number n > 2 of mazimal
N-primes of (0). Let {p1,p2,...,pn} be the set of all mazimal N-primes of (0) in R. If (QR)°
is connected, then Ni—ip; = (0).

Proof.  Assume that (Q})¢ is connected. It follows from Corollary 1 that each non-
trivial ideal of R is an annihilating ideal of R. Hence, for each i € {1,2,...,n},
there exists a; € R\{0} such that p;a; = (0). It follows from ([9], Lemma 3.6) that
a;a; = 0 for all distinct i,j € {1,2,...,n}. Let i € {1,2,...,n}. Note that a; ¢ p;.
Hence, we obtain that a; € Njeqi 2, n)\(i}P;- Since Z(R) = Ui p;, it follows that
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Yo a; ¢ Z(R). Let us denote >, a; by a. Let x € NI, p;. It follows from az =0
and a ¢ Z(R) that = 0. This proves that N}_;p;, = (0). O

Lemma 4. Let R be a ring. If (Q%)° is connected, then each mazimal N-prime p of (0)
in R is a mazimal ideal of R.

Proof.  Assume that (Q})¢ is connected. Let p be a maximal N-prime of (0) in R.
Let m be a maximal ideal of R such that p C m. If p = m, then the proof is complete.
Suppose that p # m. Since (Q})° is connected, there exists a path in (Q})° between
p and m. Hence, m is not an isolated vertex of (2};)¢. This implies by Lemma 1 that
m € A(R)*. So, there exists z € R\{0} such that mz = (0). Hence, m C Z(R) and
s0, p C m C Z(R). This is impossible since p is maximal with respect to the property
of being contained in Z(R). Therefore, p is a maximal ideal of R. O

Proposition 2. Let R be a reduced ring . Suppose that R has only a finite number n > 2
of mazimal N-primes of (0). Then the following statements are equivalent:

(3) (%) is connected.

(it) R F1 X Fy X -+ X Fy, as rings, where F; is a field for each i € {1,2,...,n}.

Proof. (i) = (i1) Let {p1,p2,...,pn} denote the set of all maximal N-primes of (0)
in R. We know from Lemma 3 that N_;p; = (0). It follows from Lemma 4 that
p; is a maximal ideal of R for each ¢ € {1,2,...,n}. Observe that p; +p; = R
for all distinct 4,5 € {1,2,...,n} and N’_;p;, = (0). Therefore, we obtain from the
Chinese remainder theorem ([5], Proposition 1.10 (i¢) and (4¢7)) that the mapping
f:R— R/p1 X R/pa x -+ X R/p, defined by f(r) = (r+ p1,7 + p2,...,7 + py) is
an isomorphism of rings. Let ¢ € {1,2,...,n}. Since p; is a maximal ideal of R, it
follows that R/p; is a field. Let us denote R/p; by F;. Then F; is a field for each
i€{l,2,...,n} and R F} X Fy x -+ X F}, as rings.

(7i) = (i) Let us denote the ring Fy X Fy x --- x F,, by T. Note that T is reduced and
each nontrivial ideal of T is of the form Te for some nontrivial idempotent e of T.
Hence, each nontrivial ideal of T' is an annihilating ideal of 1. Therefore, we obtain
from (#) = (i) of Proposition 1 that (Q%)¢ is connected. Since R = T as rings, it
follows that (Q7})¢ is connected. O

Let R be von Neumann regular and let z € R. Note that there exists y € R such that
x = 2%y. Observe that e = 2y is an idempotent element of R. It is not hard to verify
that u =2+ 1 — e is a unit in R and = = ue. Let R be a von Neumann regular ring
with at least two maximal ideals. In Proposition 3, we classify von Neumann regular
rings R in order that (2},)¢ be connected.

Proposition 3. Let R be a von Neumann regular ring which is not a field. Then the
following statements are equivalent:
(3) (%) is connected.
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(it) R &2 F1 X Fy x --- X Fy as rings for some n > 2, where F; is a field for each i €
{1,2,...,n}.

Proof. (1) = (i3) Since (Q})° is connected, we obtain from Corollary 1 that if I
is any nontrivial ideal of R, then I € A(R)*. Let p be any prime ideal of R. As
p € A(R)*, there exists € R\{0} such that pz = (0). Since dimR = 0, it follows
that p is a maximal ideal of R. Hence, p = ((0) :g x). Note that = = ue, where u is
a unit of R and e is a nontrivial idempotent element of R. Therefore, p = R(1 —e).
This proves that any prime ideal of R is finitely generated and hence by Cohen’s
theorem ([5], Exercise 1, p.84), we obtain that R is Noetherian. Therefore, it follows
from ([12], Exercise 22, p.112) that R & Fy x --- x F,, as rings, where F; is a field for
each i € {1,...,n}. As R is not a field, it is clear that n > 2.

(#4) = (i) This follows immediately from (ii) = (7) of Proposition 2. O

Let n > 2 and let R = Fy x Fy x--- X F,,, where F; is a field for each i € {1,2,...,n}.
In Proposition 4, we determine diam((25)°).

Proposition 4. Letn > 2 and let R = Fy X F» X --- x F,,, where F; is a field for each
1€ {1,2,...,n}. Then the following hold.

() diam((Q%)) =1 if n=2.

(#1) diam((QR)°) =2 ifn > 3.

Proof. (i) Assume that n = 2. Note that the set of all nontrivial ideals of R equals
{m; = (0) x F5,my = F; x (0)}. Since R is reduced and mjmy = (0) x (0), it follows
from Lemma 2 that m; and mg are adjacent in (Q%)¢. Therefore, diam((Q%)¢) = 1.
(74) Assume that n > 3. Let I, J be any two distinct nontrivial ideals of R. Observe
that I = Re and J = Rf for some nontrivial idempotent elements e, f of R. Suppose
that I and J are not adjacent in (23;)°. Then either Anngl C AnngJ or AnngJ C
Anngl. Without loss of generality, we can assume that Anngl C AnngJ. Hence,
R(1—e) C R(1— f). This implies that (1—e)f = 0. Observe that IR(1—e) = (0) and
JR(1 —e) = (0). Since R is reduced, it follows from Lemma 2 that I — R(1 —e) — J
is a path of length 2 in (2%)°. This proves that between any two nontrivial ideals
I,J of R, there exists a path of length at most two between I and J in (Q})°.
Therefore, diam((2};)¢) < 2. We next verify that diam((€2};)¢) = 2. Indeed, we show
that e(I) = 2 for any nontrivial ideal I of R. Observe that either I € Max(R) or
I ¢ Max(R). Suppose that I € Maxz(R). Let m € Max(R) be such that I # m.
Since n > 3, it follows that I N m is a nontrivial ideal of R. As I Nm C I, it
follows that Anngl C Anng(I Nm) and so, I and I Nm are not adjacent in (Q%)°.
Hence, d(I,I Nm) = 2 in (Q5)°. Suppose that I ¢ Max(R). Let n € Max(R) be
such that I C n. Note that I and n are not adjacent in (Q5)¢ and so, d(I,n) = 2
in (Q%)°. This proves that e(I) = 2 for any nontrivial ideal I of R and therefore,
diam((25)°) = 2. O
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Let R be a non-reduced ring. We next discuss the connectedness of (Q})°. First,
we consider non-reduced rings R such that R has only one maximal N-prime of (0).
Recall that a principal ideal ring R is said to be a special principal ideal ring (SPIR)
if R has only one prime ideal. If m is the only prime ideal of a SPIR R, then m is
necessarily nilpotent. If R is a SPIR with m as its only prime ideal, then we denote
it by saying that (R, m) is a SPIR. Suppose that m # (0). Let n > 2 be least with
the property that m™ = (0). Then it follows from (éi¢) = (i) of ([5], Proposition 8.8)
that {m?:i € {1,...,n — 1}} is the set of all nontrivial ideals of R.

Proposition 5. Let R be a non-reduced ring which admits p as its unique mazimal
N-prime of (0) Then the following statements are equivalent:

(3) (%) is connected.

(1) (R,p) is a SPIR with p* = (0).

Proof. (i) = (ii) Let * € R\{0} be such that 22 = 0. We claim that p = Rz.
Suppose that p # Rz. Since, ()¢ is connected, there exists a path in (2};)° between
Rz and p. Hence, there exists a nontrivial I of R such that I and p are adjacent in
(Q})¢. This implies by Lemma 1 that I € A(R)*. So, there exists » € R\{0} such
that Ir = (0). Hence, I C Z(R) = p. Therefore, Anngp C Anngl and so, I and
p are not adjacent in (Q25)°. This is a contradiction. Therefore, p = Rz. We know
from Lemma 4 that p € Maxz(R). It follows from p? = (0), that p is the unique
maximal ideal of R and it is the only nontrivial ideal of R. Hence, (R,p) is a SPIR

with p? = (0).
(it) = (i) Note that p is the only nontrivial ideal of R. Hence, (2};) is a graph whose
vertex set is {p} and so, it is connected. O

Let R be a non-reduced ring such that R admits only a finite number n > 2 of
maximal N-primes of (0). In Theorem 7, we provide a sufficient condition for (£2};)°
to be connected. We need some preliminary results that are needed for proving
Theorem 7.

Lemma 5. Let R be a ring and let I, I> € A(R)* be such that I + I> ¢ A(R). Then I
and Iy are adjacent in (2%)°.

Proof.  Since I1 + 1 ¢ A(R), we obtain that Anngly N Anngls = (0). As Anngl; #
(0) for each i € {1,2}, it follows that Anngly € Anngly and Anngly € Anngl;.
This proves that I; and I, are adjacent in (Q7})°. O

For a ring R, we denote the Jacobson radical of R by J(R).

Lemma 6. Let R be a ring such that each nontrivial ideal of R is an annihilating ideal
of R. Let W ={I:1 € A(R)" such that I Z J(R)}. Then the subgraph H of ()¢ induced
on W is connected and moreover, diam(H) < 2.
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Proof. Let I;,I; € W be such that Iy # I,. Suppose that I; and Iy are not
adjacent in H. Then either Anngl; C Anngls or Anngls C Anngl;. Without loss
of generality, we can assume that Anngly C Anngls. Since I € W, there exists
a maximal ideal m of R such that Is € m. We assert that Iy € m. Suppose that
I € m. Then we obtain that Anngm C Anngl;. Since Anngl; C Anngls, we
get that Anngm C Anngls. This is impossible since I + m = R. This proves that
Iy € m. Therefore, Iy + m = I, + m = R. It is clear that m € W and it follows from
Lemma 5 that [y —m — I is a path of length 2 between I; and Is in H. This shows
that H is connected and moreover, diam(H) < 2. O

Lemma 7. Letn > 2 and let (R;,m;) be a quasilocal ring for each i € {1,2,...,n}.
Suppose that each proper ideal of R; is an annihilating ideal of R; for each i € {1,2,...,n}.
Let R=Ri X Ra X --- X Ry. Then (QR)° is connected and moreover, diam((Q3)°) < 3.

Proof. Let ¢ € {1,2,...,n} . Let M; = I} x Iy X --- x I, where I; = m; and
I = Rj for all j € {1,2,...,n}\{i}. It is clear that R is semiquasilocal with
{1, My, ..., M, } as its set of all maximal ideals. As each proper ideal of R; is
an annihilating ideal of R; for each i € {1,2,...,n}, we obtain that each proper ideal
of R is an annihilating ideal of R. Note that J(R) =m; x mg X --- xm,,. Let A, B be
nontrivial ideals of R with A # B. We now verify that there exists a path of length
at most three between A and B in (2};)°. We can assume that A and B are not
adjacent in (QF%)°
Case 1. AZ J(R) and B Z J(R).

In this case, we know from Lemma 6 that there exists a path of length at most two
between A and B in (Q5)°.

Case 2. A C J(R) whereas B Z J(R).

Note that A is of the form A = A; x Ay x --- x A,,, where A; is an ideal of R; with
A; Cm; foreachi € {1,2,...,n}. Note that A; # (0) for at least one i € {1,2,...,n}.
Fixi € {1,2,...,n} such that A; # (0). Observe that Anng, A; is a nontrivial ideal of
R; . It can happen that A; = (0) for each j € {1,2,...,n}\{i}. Fix j € {1,2,...,n}
with j # i. Let C be an ideal of R defined by C' = C1 xCy x---x C,, with C; = R; and
Cr =(0) for all k € {1,2,...,n}\{j}. It is clear that C € J(R) , AnngrA L AnngrC,
and AnngC € AnngA. Therefore, A and C are adjacent in (25)°. Suppose that
Ay # (0) for some t € {1,2,...,n} with ¢ # i. In such a case, define the ideal D of R
by D = D; X Dy X -+ x Dy, with D; = R; and Dy, = (0) for all k € {1,2,...,n}\{i}.
It is clear that D € J(R), AnngA € AnngD, and AnngD € AnngrA. Hence, A and
D are adjacent in (Q%5)°. We know from Lemma 6 that there exists a path of length
at most two between C' and B in (2%;)¢ and there exists a path of length at most two
between D and B in (2%)°. This proves that there exists a path of length at most
three between A and B in (Q5)°.

Case 3. AC J(R) and B C J(R).
Note that A is of the form A = A; x Ay x --- x A,, and B is of the form B = B; x
By x -+ X By, , where for each i € {1,2,...,n}, A;, B; are proper ideals of R;. We are

. We consider the following cases.
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assuming that A and B are not adjacent in (Q},)°. Hence, either AnngA C AnngB
or AnngB C AnnrA. Without loss of generality, we can assume that AnngA C
AnngB. Then Anng,A; C Anng,B; for each i € {1,2,...,n}. Note that B; # (0) for
at least one i € {1,2,...,n}. It follows from Anng, A; C Anng,B; that A; # (0). It
can happen that there are distinct i,¢ € {1,2,...,n} such that B; # (0) and B; # (0).
In such a case, A; # (0) and A; # (0). In such a situation, we know from the proof of
Case 2 of this lemma that both A and B are adjacent to D = Dy X Dy X -++ X D, in
(Q%)¢, where D; = R; and Dy, = (0) for all ke {1,2,...,n}\{i}. Hence, A— D — B is
a path of length two between A and B in (25)¢. Suppose that there exists a unique
i€{1,2,...,n} such that B; # (0). Then A; # (0). It can happen that A; = (0) for
all j € {1,2,...,n}\{i}. Fix j € {1,2,...,n}\{i}. Observe that it follows from the
proof of Case 2 of this lemma that both A and B are adjacent to C' = C; xCy x---xC,,
in (%), where C; = Rj and Cj, = (0) for all k € {1,2,...,n}\{j}. Hence, A—C—B
is a path of length two between A and B in (Q5)°. Suppose that there exists j €
{1,2,...,n}\{i} such that A; # (0). With C, D as above, it is clear that A—D—C—B
is a path of length three between A and B in (QF)°.

Thus for any distinct nontrivial ideals A, B of R, there exists a path of length at
most three between A and B in (Q%)°. This proves that (QF)¢ is connected and
diam((25,)°) < 3. O

Theorem 1. Let R be a non-reduced ring which has only a finite number n > 2 of
mazimal N-primes of (0). Let {p1,p2,...,pn} denote the set of all mazimal N-primes of (0)
i R. If Nj_1p; is nilpotent, then the following statements are equivalent:

(3) (%) is connected.
(it) Each nontrivial ideal of R is an annihilating ideal of R and R is semiquasilocal with
{p1,p2,...,pn} as its set of all mazimal ideals.

Proof. (i) = (i4) Assume that (Q%)¢ is connected. It follows from Corollary 1 that
any nontrivial ideal of R is an annihilating ideal of R. We know from Lemma 4 that
p; € Maz(R) for each i € {1,2,...,n}. Note that Z(R) = U_;p;. Let m € Maz(R).
As m € A(R), we get that m C Z(R) = U~ ,p;. Therefore, we obtain from Prime
avoidance lemma ([5], Proposition 1.11 (7)) that m C p; for some i € {1,2,...,n} and
so, m = p;. This shows that R is semiquasilocal with {p1,pa,...,p,} as its set of all
maximal ideals.

(1) = (i) Note that for each ¢ € {1,2,...,n}, there exists a; € R\{0} such that
pi = ((0) :g a;). Note that J(R) = NI ,p; and as J(R) is nilpotent, there exists
k > 1 such that (J(R))* = (0). Since R is not reduced, it follows that k > 2. Observe
that for all distinct 4,7 € {1,2,...,n}, pi* + p;* = R and NI, p¥ = [[1_, p¥ = (0).
Therefore, we obtain from the Chinese remainder theorem ([5], Proposition 1.10 (i)
and (iii)) that the mapping f : R — R/p} x R/pk x --- x R/pE given by f(r) =
(r+pk,r+p5 ...,r +pk) is an isomorphism of rings. Let i € {1,2,...,n} and let
us denote the ring R/p¥ by R;. Note that R; is quasilocal with m; = p;/pF as its
unique maximal ideal. It is clear that mf = zero ideal of R;. Let us denote the ring
Ry X Ry X -+ x R, by T. We know from Lemma 7 that (Q%)°¢ is connected and
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diam((25)°) < 3. Since R = T as rings, we obtain that (QF)¢ is connected and
moreover, diam((23)°) < 3. O

Let R, p1,p2,...,pn be as in the statement of Theorem 1. If N}, p; is nilpotent and
if ()¢ is connected, then it is shown in the proof of (i) = (i) of Theorem 1 that
diam((2;)°) < 3. As an immediate consequence of Remark 2, we deduce in Corollary
2 that diam((23)°) = 3.

Remark 2. Let R be a ring. Let p be a prime ideal of R such that p = ((0) :g ) for
some x € p . Suppose that p # Rz. Then the following hold.

() Rz and p are not adjacent in (Q%)°.

(#4) There is no path of length 2 between Rz and p in (Q%)°.

Proof. (i) Since Rz C p, it is clear that Rz and p are not adjacent in (Q7)°.

(#4) Suppose that there exists a path of length 2 between Rz and p in (2})°. Let
Rz — I —p be a path of length 2 in (Q%)° between Rz and p. Since Rz and I are
adjacent in (QF%)¢, it follows that AnngRx € Anngl and Anngl ¢ AnngpRx. Note
that AnngRx = p. Thus Anngl € p. It follows from TAnngl = (0) C p and the
hypothesis that p is a prime ideal of R that I C p. Hence, I and p are not adjacent
in (23;)°. This is a contradiction. Therefore, there exists no path of length 2 between
Rz and p in (QF)°. O

Corollary 2. Let R be a non-reduced ring. Suppose that R has only a finite number
n > 2 of mazimal N-primes of (0). Let {p1,p2,...,pn} be the set of all mazimal N-primes
of (0) in R. If (UR)° is connected and if Ni_1p; is nilpotent, then diam((Q%)°) = 3.

Proof. Assume that (};)¢ is connected. We know from (i) = (i¢) of Theorem 1
that for each ¢ € {1,2,...,n}, there exists a; € R\{0} such that p; = ((0) :r a;).
Moreover, R is semiquasilocal with Max(R) = {p1,p2,...,Pn}. Under the assumption
that N?_,p; is nilpotent, it is shown in the proof of (it) = (i) of Theorem 1 that
diam((Q7)¢) < 3. Let ¢ € {1,2,...,n}. Now, p;a; = (0). As p; € p; for each
Jj € {L,2,...,n}\{i}, it follows that a; € p; for all j € {1,2,...,n}\{i}. We claim
that ax € NI'_p; for some k € {1,2,...n}. That is, equivalently aj € pj for some
k € {1,2,...,n}. Suppose that aj ¢ pj for each k € {1,2,...,n}. Note that for
each k € {1,2,...,n}, ap € p; for all i € {1,2,...,n}\{k}. Let us denote the element
>oi, a; by a. Since Z(R) = Ul p;, it follows that a ¢ Z(R). As R is not reduced, we
obtain that N_;p; # (0). Let x € N, p;, © # 0. From ax = 0 and a ¢ Z(R), we get
that = 0. This is a contradiction. Therefore, a; € N, p; for some k € {1,2,...,n}.
Note that p; = ((0)r : ar), ax € pi, and it is clear that Ray # pr. Now, it follows from
Remark 2 that d(Rax,px) > 3 in (Q%)° As is already noted that diam((25)¢) < 3,
we obtain that diam((Q%)°) = 3. O
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Remark 3. Let R be a non-reduced Artinian ring. If R is local with m as its unique
maximal ideal, then as m is the unique maximal N-prime of (0) in R, it follows from Propo-
sition 5 that (Q5) is connected if and only if (R, m) is a SPIR with m?® = (0). Suppose that
R is not local. Since R is Artinian, we know from ([5], Proposition 8.3) that R has only a
finite number of maximal ideals. Let {mi, m2,..., m,} be the set of all maximal ideals of
R. Note that J(R) = Nj—;m;. It follows from ([5], Corollary 8.2 and Proposition 8.4) that
there exists k € N such that (J(R))* = (0). It is clear that k > 2. Let i € {1,2,...,n}. Let
us denote {1,2,...,n}\{i} by A;. Observe that []; ,. m% # (0) . Tt is convenient to denote
[Tica, m” by I;. Note that m¥I; = (0). We can choose ¢ > 1 least with the property that
mil; = (0). Let z; € m!"'I;\{0}. Then it is clear that m; = ((0) :r ;). This shows that
{my, mz,...,m,} is the set of all maximal N-primes of (0) in R and each proper ideal of R
is an annihilating ideal of R. Now, it follows from (i7) = (i) of Theorem 1 that (Q%)¢ is
connected. Moreover, we obtain from Corollary 2 that diam((Q%)°) = 3.

Let n > 2 and let R, p1,p2,...,p, be as in the statement of Theorem 1. It is shown
in Theorem 1 that (¢7) = (i) of Theorem 1 holds under the assumption that N, p; is

nilpotent. We provide an example in Example 1 to illustrate that the above assump-
tion is not necessary.

Example 1. Let S = K[[X, Y]] be the power series ring in two variables X,Y over a field
K. Let I = SX? + SXY. Let T = S/I. Let R =T x T. Then (Q})° is connected and
moreover, diam((Qx)¢) = 3.

Proof. Observe that S is local with m = SX + SY as its unique maximal ideal.
Note that m = (I :g X). It is clear that T is local with m/I as its unique maximal
ideal. Observe that (m/I)(X + 1) = (04 1) and X ¢ I. Hence, each proper ideal
of T' is an annihilating ideal of T. As R = T x T, we obtain from Lemma 7 that
(Q%)¢ is connected and diam((Q5)¢) < 3. Note that Z(T') = m/I. Therefore, {p; =
m/I x T,py =T x m/I} is the set of all maximal N-primes of the zero ideal in R.
As (Y +1)¥ # 0+ I for any k > 1, it follows that p; Nps = m/I x m/I is not
nilpotent. Observe that p1 = (0+1,0+1):g (X +I1,0+ 1)), p1 # R(X +I1,0+1).
Therefore, we obtain from Remark 2 that d(R(X + 1,04 1I),p1) > 3 in (25)¢ and so,
diam((25)°) = 3. O

In Theorem 2, we classify rings R such that (Q%)¢ is a path of order 4.

Theorem 2. Let R be a ring. Then the following statements are equivalent:
(3) (%) is a path of order 4.
(it) R= F x S as rings, where F is a field and (S,m) is a SPIR with m # (0) but m* = (0).

Proof. (i) = (i7) It follows from (i) that (25)¢ is connected and R has exactly
four nontrivial ideals. Therefore, R is necessarily Artinian. If R is local, then we
obtain from (i) = (i%) of Proposition 5 that R has only one nontrivial ideal. Hence,
R must have at least two maximal ideals. Let n be the number of maximal ideals of
R. If n > 3, then R admits at least six nontrivial ideals. This is impossible. Hence,
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n = 2. Let {my, my} denote the set of all maximal ideals of R. If my Nmy = (0),
then R is isomorphic to the direct product of two fields. In such a case, R has exactly
two nontrivial ideals. This is a contradiction. Therefore, m; Nmg # (0). Since R has
exactly four nontrivial ideals, it follows that either m; = m? or my = m3. Without loss
of generality, we can assume that m; = m?. Note that J(R) = m;Nmy. As J(R) # (0),
it follows from Nakayama’s lemma ([5], Proposition 2.6) that J(R) # (J(R))?. Hence,
it follows that my # m3. Therefore, {m;, mo, m3, m; Nmy} is the set of all nontrivial
ideals of R. Moreover, (J(R))? = (0). Note that m; + m3 = R and my Nm3 = (0).
Hence, we obtain from the Chinese remainder theorem ([5], Proposition 1.10 (i) and
(ii7)) that the mapping f : R — R/m; x R/m3 given by f(r) = (r +my,r +m3) is an
isomorphism of rings. Let us denote R/m; by F and R/m3 by S. Observe that for
any r € mp\(m; Um3), my = Rz. Let us denote my/m3 by m. It is clear that (S, m)
is a local ring with m = S(x +m3) # (0 + m3) and m? = (0 + m3). Note that F is a
field and (S, m) is a SPIR with m # zero ideal but m? = zero ideal and R = F x S as
rings.

(#4) = (i) Assume that R = F X S as rings, where F is a field and (S, m) is a SPIR
with m # (0) but m? = (0). It is not hard to show that (%) is the path of order 4
given by (0) x m — F x (0) — (0) x S — F' x m. O

Let R be a ring such that |A(R)*| > 2. Let H be the subgraph of (2%)¢ induced
on A(R)*. In Proposition 6, we classify rings R such that H is a complete bipartite
graph. We use Lemma 8 in the proof of Proposition 6.

Lemma 8. Let R be a reduced ring such that R has ezactly two minimal prime ideals.
Let H be the subgraph of (Q%)¢ induced on A(R)*. Then H = AG(R) = (2(R))°.

Proof. Note that the vertex set of H = the vertex set of AG(R) = the vertex set of
(QR))° = A(R)*. Let I,J € A(R)* be such that I # J. If I and J are adjacent in
AG(R), then we know from Lemma 2 that I and J are adjacent in (Q%)°. Suppose
that I and J are adjacent in (Q5)°. We assert that I and J are adjacent in AG(R),
that is, IJ = (0). Suppose that I.J # (0). Let {p1,p2} denote the set of all minimal
prime ideals of R. Note that p;Nps = (0) and Z(R) = p1Ups. Moreover, if A € A(R)*,
then A C Z(R) and so, either A C p; or A C py. From IJ # (0), it follows that
either IJ & py or IJ & po. Without loss of generality, we can assume that IJ € p;.
Then I € py and J & p1. Hence, Anngl C p; and AnngJ C p1. Observe that I C po
and J C py. Hence, Ipy = Jp; = (0) and so, p1 C Anngrl N AnngJ. Therefore,
Anngl = AnngJ = p;. This is in contradiction to the assumption that I and J
are adjacent in (})°. Hence, IJ = (0) and so, I and J are adjacent in AG(R).
Therefore, we obtain that H = AG(R).

We next verify that H = (Q(R))°. Let I,J € A(R)* be such that I # J. Suppose
that I and J are adjacent in (Q(R))°. This implies that I + J ¢ A(R). Hence, we
obtain from Lemma 5 that I and J are adjacent in (Q})°. Suppose that I and J
are adjacent in (%;)°. Then it is shown in the previous paragraph that IJ = (0).
Without loss of generality, we can assume that I C p; and J C p,. Note that I & ps
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and J € p;. Hence, we get that I + J € p; U po. Since any annihilating ideal of R
is contained in Z(R) and Z(R) = p; U po, it follows that I + J ¢ A(R). Therefore, I
and J are adjacent in (©2(R))°. This proves that H = (Q(R))°. O

Proposition 6. Let R be a ring with |A(R)*| > 2. Let H be the subgraph of ()¢
induced on A(R)*. Then the following statements are equivalent:

(¢) H is a complete bipartite graph.

(i) R is reduced and has ezactly two minimal prime ideals.

Proof. (i) = (#) We adapt an argument found in the proof of (i) = (i) of ([19],
Proposition 2.10). Let H be a complete bipartite graph with vertex partition V; and
V. Note that V4 and V5 are nonempty, V4 NV, = 0, and A(R)* = V3 U V,. Let us
denote Urey, I by A and Ujey,J by B. We claim that A and B are ideals of R. Let
ai,as € A. Then there exist I;,I; € V; such that a1 € I; and as € Ir. If I} = I,
then it is clear that ay + ag € Iy C A. If Iy # I, then I; and I5 are not adjacent in
(Q%)°. Hence, it follows from Lemma 5 that I; + I» € A(R). If I; + I, € V5, then
we obtain that I, and I + I are adjacent in (Q})°. This is impossible. Therefore,
I, + I € V;. Hence, we get that a; +as € I1 + I C A. Let r € R and a € A. Note
that there exists I € V; such that a € I. Hence, ra € I C A. This proves that A
is an ideal of R. Similarly, it can be shown that B is an ideal of R. Now, it can be
shown as in the proof of (i) = (#) of ([19], Proposition 2.10) that both A and B are
maximal N-primes of (0) in R and AN B = (0). It is now clear that R is a reduced
ring and {A, B} is the set of all minimal prime ideals of R.

(#4) = (i) Assume that R is reduced and has exactly two minimal prime ideals.
Let {p1,p2} denote the set of all minimal prime ideals of R. Note that AG(R) is
a complete bipartite graph with vertex partition V3 = {I € A(R)* : I C p;} and
Vo ={J € A(R)* : J C p2}. We know from Lemma 8 that H = AG(R). Therefore,
H is a complete bipartite graph. O

Proposition 7.  Let R be a ring with |A(R)*| > 2. Let H be the subgraph of (k)¢
induced on A(R)*. Then the following statements are equivalent:

(¢) H 1s complete.

(1) R = F1 X F> as rings, where F; is a field for each i € {1,2}.

(313) (QR)° is complete.

Proof. (i) = (it) Let I € A(R)*. Let J be any nonzero ideal of R such that J C I.
Then it is clear that J € A(R)* and Anngl C AnngJ. If I # J, then I and J are not
adjacent in (Q7%)°. This contradicts the assumption that H is complete. Therefore,
J = I. This shows that each I € A(R)* is a minimal ideal of R. Hence, we obtain
from ([10], Theorem 1.1) that R is Artinian. It is already noted in Remark 3 that if
I is any proper ideal of R, then I € A(R). We know from ([5], Proposition 8.3) that
R has only a finite number of maximal ideals. Let {my,..., m,} denote the set of all
maximal ideals of R. If R is local, then m; is the only element of A(R)* and this is in
contradiction to the hypothesis that |A(R)*| > 2. Hence, we obtain that n > 2. As
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my is a minimal ideal of R and m; N my C my, it follows that m; Nmy = (0). Since
m;+me = R, we obtain from the Chinese remainder theorem ([5], Proposition 1.10 (i)
and (747)) that the mapping f : R — R/m; X R/ms defined by f(r) = (r+mq,r+my)
is an isomorphism of rings. Let us denote R/m; by F; for each i € {1,2}. Then F; is
a field for each ¢ € {1,2} and R = F} x F; as rings.

(i4) = (i4i) Let us denote the ring Fy x Fy by T, where Fy and F, are fields. It is
already noted in Proposition 4 () that (2%)¢ is complete. Since R = T' as rings, it
follows that (27%)¢ is complete.

(#4i) = (i) It follows from Corollary 1 that if I is any nontrivial ideal of R, then
I € A(R)*. Hence, we obtain that H = (Q%)° and so, H is complete. O

Proposition 8. Let R be a ring with |A(R)*| > 3. Let H be the subgraph of ()¢
induced on A(R)*. Then the following statements are equivalent:

(3) H is a star graph.

(i) R=2 D X F as rings, where F is a field and D is an integral domain but not a field.

Proof. (i) = (ii) Let H be a star graph with vertex partition V; and V, such that
|[V1] = 1. Let V3 = {I}. Since H is a complete bipartite graph with vertex partition
V1 and V4, it follows from the proof of (i) = (i7) of Proposition 6 that R is reduced
and has exactly two minimal prime ideals A and B , where A = I and B = U ey, J.
We know from Lemma 8 that H = (2(R))¢. Hence, (©2(R))° is star and so, we obtain
from (¢) = (i) of ([19], Proposition 2.12) that R = D X F as rings, where F' is a field
and D is an integral domain but not a field.

(#4) = (i) Let us denote D x F by T, where F is a field and D is an integral domain
but not a field. From (ii) = (i) of ([19], Proposition 2.12), we obtain that (2(7"))°
is a star graph. As R = T as rings, we get that (2(R))° is a star graph. Since R
is reduced and has exactly two minimal prime ideals, it follows from Lemma 8 that
H = (Q(R)). Therefore, H is a star graph. O

3. On the girth of (Q})°

Let R be a ring with |A(R)*| > 2. In this section, we discuss regarding girth((25)).
Let H be the subgraph of (Q%5)¢ induced on A(R)*. We know from Lemma 1 that if
I is an ideal of R such that I ¢ A(R), then I is an isolated vertex of (25)¢. Hence,
it follows that girth((Q5)°) = girth of H. Moreover, we know from Lemma 5 that
(Q(R))¢ is a subgraph of H. Hence, in this section, we use results that were proved
on the girth(((R))°) in ([19], Section 3).

Proposition 9. Let R be a reduced ring with |A(R)*| > 2. If R has a unique mazimal
N-prime of (0), then girth((2R)°) = 3.

Proof. First, we claim that R has an infinite number of minimal prime ideals.
Suppose that R has only a finite number n > 2 of minimal prime ideals. Let
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{p1,P2,...,pn} denote the set of all minimal prime ideals of R. Note that N, p; = (0)
and Z(R) = U ;p;. This implies that {p1,p2,...,pn} is the set of all maximal N-
primes of (0) in R. This is in contradiction to the assumption that R has a unique
maximal N-prime of (0). Therefore, R has an infinite number of minimal prime ideals.
Now, it follows from ([19], Proposition 3.8) that girth((2(R))¢) = 3. Since (Q(R))°
is a subgraph of (2})¢, we obtain that girth((Q5)¢) = 3. O

Proposition 10. Let R be a reduced ring such that R has ezactly two mazimal N-primes
of (0). Then girth((Q%)¢) € {3,4,00}.

Proof. If R has at least three minimal prime ideals, then we know from ([19], Propo-
sition 3.8) that girth((Q2(R))°) = 3 and so, girth((2};)°) = 3. Suppose that R
has exactly two minimal prime ideals. Let H be the subgraph of (Q})¢ induced
on A(R)*. We know from (i71) = (i) of Proposition 6 that H is a complete bi-
partite graph. Therefore, girth((Q25;)°) = girth(H) € {4,00}. This proves that
girth((Q2%)°) € {3,4, cc}. O

We next present some examples to illustrate Propositions 9 and 10. Example 2 given
below is found in ([13], Example, page 16).

Example 2. Let K be a field and {X;}{2; be a set of independent indeterminates over
K. Let D = UL K[[X1,...,Xn]], where K[[X1,...,Xn]] is the power series ring in n
variables X1,..., X, over K. Let I be the ideal of D generated by {X; X : 4,5 € N,i # j}.
Let R = D/I. Then R is a reduced ring, R has a unique maximal N-prime of (0), and
girth((Q%)€) = 3.

Proof. Let i € N. It is convenient to denote X; + I by x;. The following facts about
the ring R have been mentioned in ([13], Example, page 16).

(1) R is quasilocal with m = the ideal of R generated by {x; : i € N} as its unique
maximal ideal.

(2) Let ¢ € N and p; be the ideal of R generated by {z; : j € N,j # i}. Then
{p; : i € N} is the set of all minimal prime ideals of R.

It was shown in ([17], Example 3.4 (¢)) that m = Z(R). Hence, R has m as its unique
maximal N-prime of (0). It follows from N5°,p, = (0) that R is reduced. It follows
from Proposition 9 that girth((Q25)¢) = 3. We verify here that (Q(R))° admits an
infinite clique. Since R is reduced, it is clear that m ¢ A(R). Observe that for each
i €N, p;, =((0+1):g x;) and so, p; € A(R)*. Note that for all distinct 7,57 € N,
pi +p; = m ¢ A(R). Hence, the subgraph of (Q(R))° induced on {p; : i € N} is an
infinite clique. Since (2(R))€ is a subgraph of (25)¢, it follows that (2};)¢ admits an
infinite clique. O

Example 3. Let R be as in Example 2 and let T'= R x R. Then T is a reduced ring, T’
has exactly two maximal N-primes of its zero ideal, and girth((27)°) = 3.
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Proof. We know from Example 2 that R is reduced. Hence, it follows that T is
reduced. Also, it is noted in the verification of Example 2 that Z(R) = m, where m
is the unique maximal ideal of R. Observe that T" has exactly two maximal N-primes
of (0,0) and they are given by P; = m x R and PBo = R x m. It is observed in the
proof of Example 2 that the subgraph of (2(R))¢ induced on {p; : ¢ € N} is an infinite
clique. Hence, we obtain that the subgraph of (2(7))¢ induced by {p; X R: i € N} is
an infinite clique. Therefore, girth((Q(T))¢) = girth((%)°) = 3. O

Example 4. If R =Z X Z, then girth((Qr)°) = 4.

Proof. Tt is clear that R is reduced and {p; = (0) x Z,p2 = Z x (0)} is the set of
all minimal prime ideals of R. We know from Lemma 8 that H = AG(R), where
H is the subgraph of (Q})¢ induced by A(R)*. Observe that AG(R) is a complete
bipartite graph with vertex partition V; = {A € A(R)* : A C p;} and Vo = {B €
A(R)* : B C pa}. As V; contains at least two elements for each i € {1, 2}, it follows
that girth((Q5)°¢) = girth(H) = 4. O

Example 5. If R =7 x Q, then girth((Q%)°) = oco.

Proof.  Let H be the subgraph of (2%,)¢ induced by A(R)*. We know from (ii) = (%)
of Proposition 8 that H is a star graph. Hence, girth((25)¢) = girth(H) =oc0. O

Example 6. Let R = Fy x F», where Fy, F» are fields. Then girth((Q25)¢) = oo.

Proof. It is already noted in the proof of Proposition 4 (¢) that (2},)° is a complete
graph on two vertices. Therefore, girth((Q25)°) = oo. O

Let R be a ring which is possibly non-reduced. @ We next discuss regarding
girth((Q25)°). We are not able to determine girth((Q25)°) in the case when R has
at most two maximal N-primes of (0). However, we present some remarks and exam-
ples of rings R describing the nature of cycles of (Q};)°.

Remark 4. Recall that a ring R is a chained ring if the ideals of R are comparable under
the inclusion relation. Thus if R is a chained ring , then Z(R) is an ideal of R and hence, R
has a unique maximal N-prime of (0). Let R be a chained ring with at least one nontrivial
ideal. Then (Q%)¢ has no edges and so, girth((Qx)°) = co.

Example 7. Let T = K|[[X]] be the power series ring in one variable X over a field K
and let R = T/X°T. Then girth((Q5)¢) = co.

Proof. It is well-known that 7' is a discrete valuation ring and {X"T : n € N} is the
set of all nontrivial ideals of T'. Observe that R is a chained ring and the set of all
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nontrivial ideals of R equals {XT/X°T :i € {1,2,3,4}}. It follows from Remark 4
that girth((Q5)¢) = oo. O

We next provide an example of a quasilocal ring (R, p) in Example 8 such that p is the
unique maximal N-prime of (0) and girth((2};)°) = 3. The ring R given in Example
8 is from ([16], Exercises 6 and 7, pages 62-63).

Example 8. Let S = K[X,Y] be the polynomial ring in two variables X,Y over a field
K. Let m = SX + SY. Let T = Swn. Let P be the set of all pairwise nonassociate prime
elements of the unique factorization domain 7. Let W = @, (T/Tp) be the direct sum of
the T- modules T'/Tp, where p varies over P. Let R =T & W be the ring obtained on using
Nagata’s principle of idealization. Then girth((Q%)¢) = 3.

Proof. Since T is local with mT as its unique maximal ideal, it follows that R is
quasilocal with p = mT @ W as its unique maximal ideal. It was shown in ([18],
Example 2.8) that p is the unique maximal N-prime ideal of the zero ideal in R. It
was verified in ([19], Remark 3.2 (i7)) that girth((Q(R))¢) = 3. Indeed, it was shown
n ([19], Remark 3.2 (i¢)) that (Q(R))¢ contains an infinite clique. Since (Q(R))€ is a
subgraph of ()¢, we get that girth((Q})°) = 3. O

Example 9. Let R = F x S, where F' is a field and (S, m) is a SPIR with m # (0) but
m? = (0). Then R has exactly two maximal N-primes of (0,0) and girth((Q5)¢) = oco.

Proof. Tt is clear that {p; = (0) x S,p2 = F x m} is the set of all maximal N-primes
of (0,0) in R. We know from (i¢) = (¢) of Theorem 2 that (Q7},)¢ is a path of order
4. Hence, girth((Q5)°) = oo. O

Remark 5. Let Ri, R2 be rings such that Z(R;) € A(R;)* for each i € {1,2}. Let
R = Ri X Ry. Then R has exactly two maximal N-primes of (0,0) and girth((Q%)¢) = 3.

Proof.  Observe that {p1 = Z(Ry) X Ra,pa = Ry x Z(R2)} is the set of all maximal
N-primes of (0,0) in R. Let Iy = Ry x (0),I2 = (0) X Rg, and Is = Z(R;) X Z(Ra).
As I + I, = R ¢ A(R), it follows from Lemma 5 that I; and Iy are adjacent in
(Q%)¢. By assumption, Anng,Z(R;) is a nontrivial ideal of R; for each ¢ € {1,2}.
Observe that Annrly = (0) x Ry € Annpls = Anng,Z(R1) x Anng,Z(Rs) and
Anngls € Anngly. Similarly, Anngls = R1x(0) € Anngrls and Anngls € Anngls.
Hence, we obtain that I is adjacent to both I; and Iy in (Q})°. From the above
discussion, it is clear that Iy — Io — Is — I; is a cycle of length 3 in (Q})¢. Therefore,
we get that girth((Q7})¢) = 3. O

Example 10. Let R be as in Example 7 and let S = R x R. Then girth((Q%)°) = 3.

Proof.  Observe that Z(R) = XT/X°T € A(R)*. Hence, on applying Remark 5
with Ry = Ro = R, we obtain that girth((Q%)°) = 3. O
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Proposition 11. If R is a ring which admits at least three mazimal N-primes of (0),
then girth((Q%)°) = 3.

Proof. We know from ([19], Corollary 3.11) that girth((2(R))¢) = 3. Since (2(R))°
is a subgraph of (Q})¢, it follows that girth((Q5)°) = 3. O
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