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Abstract: The first general Zagreb index is defined as Mλ
1 (G) =

∑
v∈V (G) dG(v)λ

where λ ∈ R − {0, 1}. The case λ = 3, is called F-index. Similarly, reformulated first

general Zagreb index is defined in terms of edge-drees as EMλ
1 (G) =

∑
e∈E(G) dG(e)λ

and the reformulated F-index is RF (G) =
∑
e∈E(G) dG(e)3. In this paper, we compute

the reformulated F-index for some graph operations.
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1. Introduction

We follow Bondy and Murty [3] for terminology and notation not defined here and

consider finite simple connected graphs only. In 1972, Gutman and Trinajstić [7] ex-

plored the study of total π-electron energy on the molecular structure and introduced

a vertex degree-based graph invariants. These invariants are defined as

M1(G) =
∑

v∈V (G)

dG(v)2 =
∑

uv∈E(G)

(dG(u) + dG(v))
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and

M2(G) =
∑

uv∈E(G)

(dG(u).dG(v)).

In the same paper, where first Zagreb index was introduced, Gutman and Trinajstić in-

dicated that another term of the form
∑
v∈V (G) dG(v)3 influences the total ϕ-electron

energy. But this remained unstudied by the researchers for a long time, except for

a few occasions [8, 9, 12] until publication of an article by Furtula and Gutman in

2015 and so they named it forgotten topological index or F-index in short [6]. Thus

F-index of a graph G is defined as

F (G) =
∑

v∈V (G)

dG(v)3 =
∑

uv∈E(G)

(dG(u)2 + dG(v)2).

In 2004, Miličević et al. [13] reformulated first Zagreb index in terms of edge degrees

instead of vertex degrees, where the degree of an edge e = uv is defined as dG(e) =

dG(u) + dG(v)− 2. Thus, the reformulated first Zagreb index of a graph G is defined

as

EM1(G) =
∑

e∈E(G)

dG(e)2.

In 2004 and 2005, Li et al. [9, 12] introduced the concept of the first general Zagreb

index Mλ
1 (G) of G as follows:

Mλ
1 (G) =

∑
v∈V (G)

dG(v)λ =
∑

e=uv∈E(G)

dG(u)λ−1 + dG(v)λ−1 for λ ∈ R− {0, 1}.

The reformulated version of the general first Zagreb index is defined as

EMλ
1 (G) =

∑
e∈E(G)

dG(e)λ for λ ∈ R− {0, 1}.

For the special case λ = 3, RF (G) is called reformulated F-index. Graph opera-

tions play an important role in chemical graph theory. Some chemically important

graphs can be obtained from some graphs by different graph operations, such as

some nanotorus or Hamming graph, that is Cartesian product of complete graphs.

Many authors computed some indices for some graph operations (see, for instance

[2, 4, 5, 10, 11] and the references cited therein).

We [1] defined and studied the general Zagreb coindices for λ ∈ R as

M1
λ
(G) =

∑
uv/∈E(G)

(dG(u)λ−1 + dG(v)λ−1)

and

M2
λ
(G) =

∑
uv/∈E(G)

(dG(u)λdG(v)λ).

In this paper, we compute the reformulated F-index for some graph operations.
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2. The join of graphs

The join G+H of graphs G and H with disjoint vertex sets V (G) and V (H) and edge

sets E(G) and E(H) is the graph union G ∪H together with all the edges between

V (G) and V (H). Obviously, |V (G + H)| = |V (G)| + |V (H)| and |E(G + H)| =

|E(G)|+ |E(H)|+ |V (G)||V (H)|.

Theorem 1. Let Gi be a graph of order ni and size mi for i = 1, 2. Then

RF (G1 +G2) = RF (G1) +RF (G2) + 7n2F (G1) + 7n1F (G2) + 12n2M2(G1) +

12n1M2(G2) + 3(5n2
2 − 10n2 + 2m2 + n1n2)M1(G1) +

3(5n2
1 − 10n1 + 2m1 + n1n2)M1(G2) + (8n3

2 − 24n2
2 + 24n2)m1 +

(8n3
1 − 24n2

1 + 24n1)m2 + n1n2(n1 + n2 − 2)3 +

24m1m2(n1 + n2 − 2) + (6m1n2 + 6n1m2)(n1 + n2 − 2)2.

Proof. By definition,

RF (G1 +G2) =
∑

e=uv∈E(G1+G2)

(dG1+G2
(e))3.

We partition the edge set of G1 + G2 into three subsets E1 = E(G1), E2 = E(G2)

and E3 = {e = uv | u ∈ V (G1), v ∈ V (G2)}. For any vertex v ∈ V (G1), we have

dG1+G2
(v) = dG1

(v) + n2 and for each vertex u ∈ V (G2) we have dG1+G2
(u) =

dG2
(u) + n1. It follows that

∑
uv∈E1

(dG1+G2(uv))3 =
∑
uv∈E1

(dG1(u) + dG1(v)− 2 + 2n2)3

=
∑
uv∈E1

(dG1
(u) + dG1

(v)− 2)3+

∑
uv∈E1

6n2(dG1
(u) + dG1

(v)− 2)2+

∑
uv∈E1

12n22(dG1
(u) + dG1

(v)− 2) +
∑
uv∈E1

8n32

=RF (G1) + 6n2F (G1) + 12n2M2(G1)+

(12n22 − 24n2)M1(G1) + 8m1(n32 − 3n22 + 3n2), (1)

and

∑
e∈E2

(dG1+G2
(e))3 =RF (G2) + 6n1F (G2) + 12n1M2(G2) + (12n21 − 24n1)M1(G2)+

8m2(n31 − 3n21 + 3n1). (2)
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If e = uv ∈ E3 where u ∈ V (G1) and v ∈ V (G2), then we have∑
uv∈E3

(dG1+G2
(uv))3 =

∑
u∈V (G1),v∈V (G2)

(dG1
(u) + dG2

(v) + n1 + n2 − 2)3

=
∑

u∈V (G1)

∑
v∈V (G2)

(dG1
(u) + dG2

(v))3+

∑
u∈V (G1)

∑
v∈V (G2)

(n1 + n2 − 2)3+

∑
u∈V (G1)

∑
v∈V (G2)

3(dG1
(u) + dG2

(v))2(n1 + n2 − 2)+

∑
u∈V (G1)

∑
v∈V (G2)

3(dG1
(u) + dG2

(v))(n1 + n2 − 2)2

= n2F (G1) + n1F (G2) + 6m2M1(G1) + 6m1M1(G2)+

n1n2(n1 + n2 − 2)3+

3n2(n1 + n2 − 2)M1(G1) + 3n1(n1 + n2 − 2)M1(G2)+

24m1m2(n1 + n2 − 2)+

(6m1n2 + 6n1m2)(n1 + n2 − 2)2. (3)

We conclude from Equations (1), (2) and (3) that

RF (G1 +G2) = RF (G1) +RF (G2) + 7n2F (G1) + 7n1F (G2) + 12n2M2(G1) +

12n1M2(G2) + 3(5n22 − 10n2 + 2m2 + n1n2)M1(G1) +

3(5n21 − 10n1 + 2m1 + n1n2)M1(G2) + (8n32 − 24n22 + 24n2)m1 +

(8n31 − 24n21 + 24n1)m2 + n1n2(n1 + n2 − 2)3 +

24m1m2(n1 + n2 − 2) + (6m1n2 + 6n1m2)(n1 + n2 − 2)2.

3. The corona product of graphs

The corona product G ◦ H of graphs G and H with disjoint vertex sets V (G) and

V (H) and edge sets E(G) and E(H) is the graph obtained by one copy of G and

|V (G)| copies of H and joining the i-th vertex of G to every vertex in i-th copy of

H. Obviously, |V (G ◦ H)| = |V (G)| + |V (G)||V (H)| and |E(G ◦ H)| = |E(G)| +
|V (G)||E(H)|+ |V (G)||V (H)|.

Theorem 2. If Gi is a graph of order ni and of size mi for i = 1, 2, then

RF (G1 ◦G2) = RF (G1) + 7n2F (G1) + n1F (G2) + 12n2M2(G1) +

(15n2
2 − 27n2 + 6m2)M1(G1) +

n1RF (G2) + 6n1EM1(G2) + 12n1(M1(G2)− 16m2) + (3n1(n2 − 1) +

6m1)M1(G2) + 24m1m2(n2 − 1) + (6m1n2 + 6n1m2)(n2 − 1)2.
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Proof. Suppose V (G1) = {v1, . . . , vn1
} and V (G2) = {u1, . . . , un2

}. Let E1 =

E(G1), Ei2 = E(Gi2) and Ei3 = {viuj | 1 ≤ j ≤ n2} for 1 ≤ i ≤ n1. Then E(G1 ◦G2) =

E1 ∪ (∪n1
i=1E

i
2)∪ (∪n1

i=1E
i
3) is a partition of E(G1 ◦G2). Using an argument similar to

that described in the proof of Theorem 1, we have∑
e∈E1

(dG1◦G2
(uv))3 =RF (G1) + 6n2F (G1) + 12n2M2(G1)+

(12n22 − 24n2)M1(G1) + 8m1(n32 − 3n22 + 3n2). (4)

For any edge uv ∈ Ei2, we have dG1◦G2
(uv) = dG2

(u) + dG2
(v) and hence

n1∑
i=1

∑
uv∈Ei

2

(dG1◦G2
(uv))3 =

n1∑
i=1

∑
uv∈Ei

2

(dG2
(u) + dG2

(v)− 2 + 2)3

=

n1∑
i=1

∑
uv∈Ei

2

(dG2
(u) + dG2

(v)− 2)3+

n1∑
i=1

∑
uv∈Ei

2

6(dG2(u) + dG2(v)− 2)2+

n1∑
i=1

∑
uv∈Ei

2

12(dG2(u) + dG2(v)− 2) +

n1∑
i=1

∑
uv∈Ei

2

8

=n1RF (G2) + 6n1EM1(G2) + 12n1(M1(G2)− 16m2). (5)

On the other hand, we have

n1∑
i=1

∑
uv∈Ei

3

(dG1◦G2(uv))3 =

n1∑
i=1

n2∑
j=1

(dG1◦G2(viuj))
3

=

n1∑
i=1

n2∑
j=1

(dG1(vi) + dG2(uj) + n2 − 1)3

=

n1∑
i=1

n2∑
j=1

(dG1(vi) + dG2(uj))
3 +

∑
u∈V (G1)

∑
v∈V (G2)

(n2 − 1)3+

∑
u∈V (G1)

∑
v∈V (G2)

3(dG1(vi) + dG2(uj))
2(n2 − 1)+

∑
u∈V (G1)

∑
v∈V (G2)

3(dG1(vi) + dG2(uj))(n2 − 1)2

=n2F (G1) + n1F (G2) + 6m2M1(G1) + 6m1M1(G2)+

n1n2(n2 − 1)3 + 3n2(n2 − 1)M1(G1)+

3n1(n2 − 1)M1(G2) + 24m1m2(n2 − 1)+

(6m1n2 + 6n1m2)(n2 − 1)2. (6)
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Summing up the Equalities (4), (5) and (6) we obtain,

RF (G1 ◦G2) = RF (G1) + 7n2F (G1) + n1F (G2) + 12n2M2(G1) +

(15n22 − 27n2 + 6m2)M1(G1) + n1RF (G2) + 6n1EM1(G2) +

12n1(M1(G2)− 16m2) + (3n1(n2 − 1) + 6m1)M1(G2) +

24m1m2(n2 − 1) + (6m1n2 + 6n1m2)(n2 − 1)2.

4. The Cartesian product of graphs

The Cartesian product G × H of graphs G and H has the vertex set V (G × H) =

V (G) × V (H) and (u, x)(v, y) is an edge of G × H if uv ∈ E(G) and x = y, or

u = v and xy ∈ E(H). Obviously, |V (G × H)| = |V (G)||V (H)| and |E(G × H)| =

|E(G)||V (H)|+ |V (G)||E(H)|. If G1, G2, . . . , Gn are arbitrary graphs, then we denote

G1 × · · · ×Gn by ⊗ni=1Gi.

Lemma 1. (M.H. Khalifeh et al. [11]) Let G1 = (V1, E1), . . . , Gn = (Vn, En) be graphs
and let G = ⊗ni=1Gi and V = V (⊗ni=1Gi). Then

M1(⊗ni=1Gi) = |V |
n∑
i=1

M1(Gi)

|Vi|
+ 4|V |

n∑
i 6=j,i,j=1

|Ei||Ej |
|Vi||Vj |

.

In particular, M1(G
n) = n|V (G)|n−2(M1(G)|V (G)|+ 4(n− 1)|E(G)|2).

Lemma 2. (M.H. Khalifeh et al. [11]) Let G1 = (V1, E1), . . . , Gn = (Vn, En) be graphs
and let G = ⊗ni=1Gi, V = V (⊗ni=1Gi) and E = E(⊗ni=1Gi). Then

M2(⊗ni=1Gi) = |V |
n∑
i=1

M2(Gi)

|Vi|
+ 3M1(Gi)(

|E|
|Vi|
− |V ||Ei||Vi|2

) +

4|V |
n∑

i,j,k=1,i 6=j,i 6=k,j 6=k

|Ei||Ej ||Ek|
|Vi||Vj ||Vk|

.

In particular,

M2(G
n) = n|V (G)|n−3(|V (G)|2M2(G)+3(n−1)|E(G)||V (G)|M1(G)+4(n−1)(n−2)|E(G)|3).

Lemma 3. (De Dilanjan et al. []) Let G1 = (V1, E1), . . . , Gn = (Vn, En) be graphs and
let G = ⊗ni=1Gi, V = V (⊗ni=1Gi) and E = E(⊗ni=1Gi). Then

F (⊗ni=1Gi) = |V |
n∑
i=1

M1(Gi)

|Vi|
+ 4n

n∑
i,j=1,i6=j

|E(Gi)|
|V (Gi)|

.
|E(Gj)|
|V (Gj)|

.



H. Aram and N. Dehgardi 93

Now we determine the reformulated F-index of the Cartesian product of graphs.

Theorem 3. Let Gi be a graph of order ni and size mi for i = 1, 2. Then

RF (G1 ×G2) =n1RF (G2) + n2RF (G1) + 12(m2EM1(G1) +m1EM1(G2))+

24M1(G2)M1(G1)− 24(m1M1(G2) +m2M1(G1))+

8(m1F (G2) +m2F (G1)).

Proof. Suppose V (G1) = {u1, . . . , un1
} and V (G2) = {v1, . . . , vn2

}. Set Ei =

{(u, vi)(v, vi) | uv ∈ E(G1)} for 1 ≤ i ≤ n2 and Lj = {(uj , x)(uj , y) | xy ∈ E(G2)}
for 1 ≤ j ≤ n1. Clearly (∪n2

i=1Ei) ∪ (∪n1
j=1Lj) is a partition of V (G1 × G2). Since

dG1×G2
(ui, vj) = dG1

(ui) + dG2
(vj) for each i, j, we have

n2∑
i=1

∑
uv∈E(G1)

(dG1×G2
((u, vi)(v, vi)))

3 =

n2∑
i=1

∑
uv∈E(G1)

(dG1
(u) + dG1

(v)− 2 + 2dG2
(vi))

3

=

n2∑
i=1

∑
uv∈E(G1)

(dG1(u) + dG1(v)− 2)3+

n2∑
i=1

∑
uv∈E(G1)

6(dG1(u) + dG1(v)− 2)2dG2(vi)+

n2∑
i=1

∑
uv∈E(G1)

12(dG1(u) + dG1(v)− 2)d2G2
(vi)+

n2∑
i=1

∑
uv∈E(G1)

8d3G2
(vi)

= n2RF (G1) + 12m2EM1(G1)+

12M1(G2)(M1(G1)− 2m1) + 8m1F (G2).

(7)

Similarly, we have

n1∑
j=1

∑
uv∈E(G2)

(dG1×G2
((uj , u)(uj , v)))3 =n1RF (G2) + 12m1EM1(G2)+

12M1(G1)(M1(G2)− 2m2)+

8m2F (G1). (8)

Summing up Equations (7) and (8), we obtain

RF (G1 ×G2) = n1RF (G2) + n2RF (G1) + 12(m2EM1(G1) +m1EM1(G2))+

24M1(G2)M1(G1)− 24(m1M1(G2) +m2M1(G1)) + 8(m1F (G2)+

m2F (G1)).
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Example 1. As regards, for natural numbers n,m, M1(Cn) = EM1(Cn) = 4n, F (Cn) =
RF (Cn) = 8n, M1(Pm) = 4m− 6, EM1(Pm) = 4m− 10, F (Pm) = 8m− 14 and RF (Pm) =
8m− 22,

1. RF (Cn × Cm) = 432mn.

2. RF (Cn × Pm) = 432mn− 702n.

3. RF (Pn × Pm) = 432mn− 582(m+ n) + 1008.

Example 2. Let T = T [p, q] be the molecular graph of a nanotorus (Figure 1). Then
|V (T )| = pq and |E(T )| = 3

2
pq. Obviously, M1(T ) = 9pq, EM1(T ) = 24pq, F (T ) =

27pq and RF (T ) = 96pq. Therefore for a q-multi-walled nanotorus G = Pn × T we have
RF (Pn × T ) = 1280npq − 1738pq.

Theorem 4. Let G1, G2, · · · , Gn be graphs with Vi = V (Gi) and Ei = E(Gi) for
1 ≤ i ≤ n, and V = V (⊗ni=1Gi) and E = E(⊗ni=1Gi). Then

RF (⊗ni=1Gi) =

n∑
i=1

RF (Gi)

n∏
j=1,j 6=i

|Vj |+ 12(|En|EM1(⊗n−1
i=1 Gi) +

|E(⊗n−1
i=1 Gi)|EM1(Gn))− 24(|En|M1(⊗n−1

i=1 Gi) +

|E(⊗n−1
i=1 Gi)|M1(Gn)) + 8(|En|F (⊗n−1

i=1 Gi) + |E(⊗n−1
i=1 Gi)|F (Gn)) +

24M1(Gn)M1(⊗n−1
i=1 Gi) + 24

n−3∑
j=0

j∏
i=0

|Vn−i|M1(Gn−i−1)M1(⊗n−i−2
i=1 Gi) +

n−1∑
j=1

j∏
i=1

|Vn−i+1|[|En−i|(12EM1(⊗n−i−1
i=1 Gi)− 24M1(⊗n−i−1

i=1 Gi)) +

8F (⊗n−i−1
i=1 Gi) + |E(⊗n−i−1

i=1 Gi)|(12EM1(Gn−i)−
24M1(Gn−i) + 8F (Gn−i))].

Proof. The proof is by induction on n. According on Theorem 3, the statement

holds for n = 2. Clearly, |E(⊗ni=1Gi)| = |V |
∑n
i=1

|Ei|
|Vi| and |V (⊗ni=1Gi)| =

∏n
i=1 |Vi| .

One can see that for every graph G, E(M1(G)) = F (G) + 2M2(G) + 4m − 4M1(G).

Now with applying the Theorem 3 for ⊗ni=1Gi = ⊗n−1i=1 Gi × Gn and induction, the

proof is completed.

5. The composition product of graphs

The composition G[H] of graphs G and H has the vertex set V (G[H]) = V (G)×V (H)

and (u, x)(v, y) is an edge of G[H] if (uv ∈ E(G)) or (xy ∈ E(H) and u = v). Obvi-

ously, |V (G[H])| = |V (G)||V (H)| and |E(G[H])| = |E(G)||V (H)|2 + |E(H)||V (G)|.



H. Aram and N. Dehgardi 95

Figure 1. The graph of a nanotorus

Theorem 5. Let G1 be a graph of order n1 and size m1 and let G2 be a graph of order
n2 and size m2. Then

RF (G1[G2]) = RF (G1)n
3
2 +m1(RF (G2) +RF (G2)) + 8m1n

3
2 +

4n2m1(EM1(G2) + EM1(G2)) + 8n2
2m1(M1(G2) +M1(G2)− 2) +

2n2
2EM1(G1)(M1(G2) +M1(G2)− 2 + 2n2) +

2n2(M1(G1)− 2m1)(EM1(G2) + EM1(G2) + 4n2
2) +

8m2n
3
2F (G1) +RF (G2) + 12n2

2M1(G1)(M1(G2)− 2m2) +

12n2m1EM1(G2).

Proof. Suppose V (G1) = {u1, . . . , un1
} and V (G2) = {v1, . . . , vn2

}. We partition

the edges of G1[G2] into two subsets E1 and E2, as follows:

Set L = {e = (u, x)(v, y) | uv ∈ E(G1)} and Ei = {(ui, x)(ui, y) | xy ∈ E(G2)} for

1 ≤ i ≤ n1. Clearly (∪n1
i=1Ei) ∪ L is a partition of V (G1[G2]).

Let e = (u, x)(v, y) ∈ L. Then dG1[G2](u, x) = n2dG1
(u) + dG2

(x) and

dG1[G2](u, x)(v, y) = n2(dG1(u) + dG2(v)) − 2 + dG2(x) + dG2(y). In this case we

notice that xy can be adjacent in G2 or not.
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∑
e=(u,x)(v,y) , e∈L

d3G1[G2]
(e) =

∑
e=(u,x)(v,y)

e∈L

[n2(dG1
(u) + dG1

(v)− 2)− 2 +

dG2 (x) + dG2 (y) + 2n2]3

=
∑

e=(u,x)(v,y)
e∈L

[n3
2(dG1

(u) + dG1
(v)− 2)3 +

(dG2 (x) + dG2 (y)− 2)3 + 8n3
2 +

4n2(dG2
(x) + dG2

(y)− 2)2 + 8n2
2(dG2

(x) + dG2
(y)− 2) +

2n2
2(dG1

(u) + dG1
(v)− 2)2(dG2

(x) + dG2
(y)− 2 + 2n2) +

2n2(dG1
(u) + dG1

(v)− 2)((dG2
(x) + dG2

(y)− 2)2 + 4n2
2)]

= RF (G1)n3
2 +m1(RF (G2) +RF (G2)) + 8m1n

3
2 +

4n2m1(EM1(G2) + EM1(G2)) +

8n2
2m1(M1(G2) +M1(G2)− 2) +

2n2
2EM1(G1)(M1(G2) +M1(G2)− 2 + 2n2) +

2n2(M1(G1)− 2m1)(EM1(G2) + EM1(G2) + 4n2
2).

Let e = (ui, x)(ui, y) ∈ Ei. Then

dG1[G2](ui, x)(ui, y) = 2n2dG1
(ui)− 2 + dG2

(x) + dG2
(y)

and we have

∑
e=(u,x)(u,y) , e∈Ei

d3G1[G2]
(e) =

∑
e=(u,x)(u,y)

e∈Ei

[2n2dG1
(u)− 2 + dG2

(x) + dG2
(y)]3

=
∑

e=(u,x)(u,y)
e∈Ei

[8n32d
3
G1

(u) + (dG2
(x) + dG2

(y)− 2)3 +

12n22d
2
G1

(u)(dG2(x) + dG2(y)− 2) +

6n2dG1
(u)(dG2

(x) + dG2
(y)− 2)2

= 8m2n
3
2F (G1) +RF (G2) +

12n22M1(G1)(M1(G2)− 2m2) + 12n2m1EM1(G2).
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Therefore

RF (G1[G2]) =
∑
e∈L

(dG1[G2](e))
3 +

∑
e∈Ei

(dG1[G2](e))
3

= RF (G1)n32 +m1(RF (G2) +RF (G2)) + 8m1n
3
2 +

4n2m1(EM1(G2) + EM1(G2)) + 8n22m1(M1(G2) +M1(G2)− 2) +

2n22EM1(G1)(M1(G2) +M1(G2)− 2 + 2n2) +

2n2(M1(G1)− 2m1)(EM1(G2) + EM1(G2) + 4n22) +

8m2n
3
2F (G1) +RF (G2) + 12n22M1(G1)(M1(G2)− 2m2) +

12n2m1EM1(G2).

6. The tensor product of graphs

The Tensor Product G ⊗ H of graphs G and H has the vertex set V (G ⊗ H) =

V (G)×V (H) and (u, x)(v, y) is an edge of G⊗H if uv ∈ E(G) and xy ∈ E(H). Ob-

viously, |V (G⊗H)| = |V (G)||V (H)|, |E(G⊗H)| = 2|E(G)||E(H)| and dG⊗H(u, x) =

dG(u).dH(x).

Theorem 6. If Gi is a graph of order ni and size mi for i = 1, 2, then

RF (G1 ⊗G2) = M4
1 (G1 ⊗G2)− 6F (G1 ⊗G2) + 12M1(G1 ⊗G2) +

3M2(G1 ⊗G2)M1(G1 ⊗G2)− 12M2(G1 ⊗G2)− 8m1m2.

Proof. For any edge e = (u, x)(v, y) ∈ E(G1 ⊗G2), we have

dG1⊗G2
(e) = dG1

(u).dG2
(x) + dG1

(v).dG2
(y)− 2.

By definition, we have

RF (G1 ⊗G2) =
∑

uv∈E(G1)

∑
xy∈E(G2)

(dG1⊗G2
((u, x)(v, y)))3

=
∑

uv∈E(G1)

∑
xy∈E(G2)

(dG1
(u).dG2

(x) + dG1
(v).dG2

(y)− 2)3

=
∑

uv∈E(G1)

∑
xy∈E(G2)

[d3G1
(u)d3G2

(x) + d3G1
(v)d3G2

(y)− 6d2G1
(v)d2G2

(y) +

12dG1 (v)dG2 (y)− 8 + 3d2G1
(u)d2G2

(x)dG1 (v)dG2 (y)−

6d2G1
(u)d2G2

(x) + 3dG1
(u)dG2

(x)d2G1
(v)d2G2

(y)−
12dG1

(u)dG2
(x)dG1

(v)dG2
(y) + 12dG1

(u)dG2
(x)]

= M4
1 (G1 ⊗G2)− 6F (G1 ⊗G2) + 12M1(G1 ⊗G2) +

3M2(G1 ⊗G2)M1(G1 ⊗G2)− 12M2(G1 ⊗G2)− 8m1m2.
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