On global (strong) defensive alliances in some product graphs

Ismael González Yero¹*, Marko Jakovac² and Dorota Kuziak³

¹Departamento de Matemáticas, Escuela Politécnica Superior de Algeciras
Universidad de Cádiz, Av. Ramón Puyol s/n, 11202 Algeciras, Spain
ismael.gonzalez@uca.es

²Faculty of Natural Sciences and Mathematics, University of Maribor
Koroška 160, 2000 Maribor, Slovenia
marko.jakovac@um.si

³Departamento de Estadística e Investigación Operativa, Escuela Superior de Ingeniería
Universidad de Cádiz
Av. de la Universidad 10, 11519 Campus Universitario de Puerto Real, Spain
dorota.kuziak@uca.es

Received: 8 November 2016; Accepted: 14 May 2017;
Available Online: 23 May 2017.

Communicated by Francesco Belardo

Abstract: A defensive alliance in a graph is a set $S$ of vertices with the property that every vertex in $S$ has at most one more neighbor outside of $S$ than it has inside of $S$. A defensive alliance $S$ is called global if it forms a dominating set. The global defensive alliance number of a graph $G$ is the minimum cardinality of a global defensive alliance in $G$. In this article we study the global defensive alliances in Cartesian product graphs, strong product graphs and direct product graphs. Specifically, we give several bounds for the global defensive alliance number of these graph products and express them in terms of the global defensive alliance numbers of the factor graphs.

Keywords: Defensive alliances, global defensive alliances, domination, Cartesian product graphs, strong product graphs, direct product graphs.

2010 Mathematics Subject Classification: 05C69, 05C70, 05C76

* Corresponding Author

© 2017 Azarbaijan Shahid Madani University. All rights reserved.
1. Introduction

Alliances in graphs were first described by Kristiansen et al. in [10], where alliances were classified into defensive, offensive or powerful. After this seminal paper, the issue has been studied intensively. Remarkable examples are the articles [14, 15], where alliances were generalized to $k$-alliances, and [6], where the authors presented the first results on offensive alliances. To see more information on alliances in graphs we suggest the recent survey [21] and references cited there. One of the main motivations of this study is based on the NP-hardness of computing the minimum cardinality of (defensive, offensive, powerful) alliances in graphs.

On the other hand, several graphs can be constructed from smaller and simpler components by basic operations like unions, joins, compositions, or multiplications with respect to various products, where properties of the constituents determine the properties of the composite graph. It is therefore desirable to reduce the problem of computing the graph parameters (alliance numbers, for instance) of product graphs, to the problem of computing some parameters of the factor graphs.

Studies on alliances in product graphs have been presented in [1, 2, 17, 18, 20] where the authors presented several tight bounds for the (defensive, offensive or powerful) alliance number of Cartesian product graphs. Also, several exact values for some specific families of Cartesian product graphs were obtained in these articles. In this sense, we continue with these studies for the Cartesian product graphs and extend them to strong product graphs and direct product graphs.

Since defensive alliances defend only a single vertex at a time, Brigham et al. [3] introduced secure sets which are a generalization of defensive alliances. Namely, in general models, a more efficient defensive alliance should be able to defend any attack on the entire alliance or any part of it. Some general results on secure sets were presented in [4, 5], and they have also been studied on different graph products [3, 9, 19], though exact results are known only for a few family of graphs, e.g. grids, cylinders and toruses. Several other styles of studies on alliances in graphs concern variations of it like monopolies or upper alliances. To see some information on these topics and some other related parameter we suggest [7, 11, 16].

We begin by stating the terminology which will be used. Throughout this article, $G = (V, E)$ denotes an undirected non-weighted graph of order $|V| = n$ without loops and multiple edges. We denote two adjacent vertices $u$ and $v$ by $u \sim v$. Given a vertex $v \in V$, the set $N(v) = \{u \in V : u \sim v\}$ is the neighborhood of $v$, and the set $N[v] = N(v) \cup \{v\}$ is the closed neighborhood of $v$. So, the degree of a vertex $v \in V$ is $\delta(v) = |N(v)|$. 

For a nonempty set $S \subseteq V$, and a vertex $v \in V$, $N_S(v)$ denotes the set of neighbors $v$ has in $S$, i.e., $N_S(v) = S \cap N(v)$. The degree of $v$ in $S$ will be denoted by $\delta_S(v) = |N_S(v)|$. The complement of a set $S$ in $V$ is denoted by $\overline{S}$. A set $S \subseteq V$ is a dominating set in $G$ if for every vertex $v \in \overline{S}$, $\delta_S(v) > 0$ (every vertex in $\overline{S}$ is adjacent to at least one vertex in $S$). The domination number of $G$, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set in $G$ [8]. An efficient dominating set is a dominating set $S = \{u_1, u_2, \ldots, u_{\gamma(G)}\}$ such that $N[u_i] \cap N[u_j] = \emptyset$, for every $i, j \in \{1, \ldots, \gamma(G)\}$, $i \neq j$. Examples of graphs having an efficient dominating set are the path graphs $P_n$, the cycle graphs $C_{3k}$ and the cube graph $Q_3$.

A nonempty set $S \subseteq V$ is a global defensive alliance in $G$ if $S$ is a dominating set and

$$\delta_S(v) \geq \delta_{\overline{S}}(v) - 1, \quad \forall v \in S. \quad (1)$$

The global defensive alliance number of $G$, denoted by $\gamma_d(G)$, is defined as the minimum cardinality of a global defensive alliance in $G$. A global defensive alliance of cardinality $\gamma_d(G)$ is called a $\gamma_d(G)$-set.

A global defensive alliance is called strong if

$$\delta_S(v) > \delta_{\overline{S}}(v) - 1, \quad \forall v \in S, \quad (2)$$

or, equivalently,

$$\delta_S(v) \geq \delta_{\overline{S}}(v), \quad \forall v \in S. \quad (3)$$

The global strong defensive alliance number of $G$, denoted by $\gamma_{sd}(G)$, is defined as the minimum cardinality of a global strong defensive alliance in $G$. A global strong defensive alliance of cardinality $\gamma_{sd}(G)$ is called a $\gamma_{sd}(G)$-set.

2. Cartesian product graphs

Given two graphs $G$ and $H$ with set of vertices $V_1 = \{u_1, u_2, \ldots, u_{n_1}\}$ and $V_2 = \{v_1, v_2, \ldots, v_{n_2}\}$, respectively, the Cartesian product of $G$ and $H$ is the graph $G \square H = (V, E)$, where $V = V_1 \times V_2$ and two vertices $(u_i, v_j)$ and $(u_k, v_\ell)$ are adjacent in $G \square H$ if and only if

- $u_i = u_k$ and $v_j \sim v_\ell$, or
- $u_i \sim u_k$ and $v_j = v_\ell$.

Given a set $X \subseteq V_1 \times V_2$ of vertices of $G \square H$, the projections of $X$ over $V_1$ and $V_2$ are denoted by $P_G(X)$ and $P_H(X)$, respectively. Moreover, given a set $C \subseteq V_1$ of vertices of $G$ and a vertex $v \in V_2$, a $G(C, v)$-cell in $G \square H$ is the set $C^v = \{(u, v) \in V : u \in C\}$. A $v$-fiber $G_v$ is the copy of $G$ corresponding to the
vertex $v$ of $H$. For every $v \in V_2$ and $D \subseteq V_1 \times V_2$, let $D_v$ be the set of vertices of $D$ belonging to the same $v$-fiber.

**Theorem 1.** For any two graphs $G$ and $H$ of order $n_1$ and $n_2$, respectively, we have

$$\gamma_d(G \square H) \leq \min\{n_1 \gamma_d(H), n_2 \gamma_d(G)\}.$$ 

Moreover, if $G$ has an efficient dominating set, then

$$\gamma_d(G \square H) \geq \gamma(G) \gamma(H).$$

**Proof.** Let $V_1$ and $V_2$ be the vertex sets of the graphs $G$ and $H$, respectively. Let $A_1$ and $A_2$ be global defensive alliances in $G$ and $H$, respectively. We claim that $A = A_1 \times V_2$ is a global defensive alliance in $G \square H$. It is clear that $A$ is a dominating set. Now, consider a vertex $(u, v) \in A$. We have the following:

$$\delta_A(u, v) = \delta_{A_1}(u) + \delta_H(v) \geq \delta_{A_1}(u) - 1 + \delta_H(v) = \delta_{A_1}(u) + \delta_H(v) - 1 \geq \delta_A(u, v) - 1.$$ 

Thus, $A$ is a global defensive alliance in $G \square H$. Analogously we prove that $V_1 \times A_2$ is a global defensive alliance in $G \square H$ and the proof of the upper bound is complete.

On the other hand, let $S = \{u_1, \ldots, u_{\gamma(G)}\}$ be an efficient dominating set of $G$. Let $\Pi = \{S_1, S_2, \ldots, S_{\gamma(G)}\}$ be a vertex partition of $G$ such that $S_i = N[u_i]$. Let $\{P_1, P_2, \ldots, P_{\gamma(G)}\}$ be a vertex partition of $G \square H$, such that $P_i = S_i \times V_2$ for every $i \in \{1, \ldots, \gamma(G)\}$.

Let $A$ be a $\gamma_d(G \square H)$-set. Now, for every $i \in \{1, \ldots, \gamma(G)\}$, let $A_i = P_H(A \cap P_i)$. If $A_i$ is not a dominating set, then there exist $w \in \overline{A_i}$ such that $N_{A_i}(w) = \emptyset$. So, since $S$ is an efficient dominating set, vertex $(u_i, w)$ satisfies $N_{A_i}(u_i, w) = N_A(u_i, w) = \emptyset$, which is a contradiction. Thus, $A_i$ is a dominating set in $H$. Therefore we have that

$$\gamma_d(G \square H) = |A| = \sum_{i=1}^{\gamma(G)} |A_i| \geq \sum_{i=1}^{\gamma(G)} \gamma(H) = \gamma(G) \gamma(H),$$

and the proof of the lower bound is complete. □

An analogous procedure gives the following result for global strong defensive alliances.
Theorem 2. For any two graphs $G$ and $H$, without isolated vertices, of order $n_1$ and $n_2$, respectively, we have

$$\gamma_{sd}(G \square H) \leq \min\{n_1\gamma_d(H), n_2\gamma_d(G)\}.$$  

Moreover, if $G$ has an efficient dominating set, then

$$\gamma_{sd}(G \square H) \geq \gamma(G)\gamma(H).$$

Proof. By using the same assumptions than in Theorem 1 we consider a vertex $(u, v) \in A$ and we have the following:

$$\delta_A(u, v) = \delta_{A_1}(u) + \delta_H(v)$$

$$\geq \delta_{A_1}(u) - 1 + \delta_H(v)$$

$$\geq \delta_{A_1}(u) - 1 + 1$$

$$= \delta_A(u, v).$$

Thus, $A$ is a global strong defensive alliance in $G \square H$ and the upper bound is proved. The lower bound follows from the fact that $\gamma(G)\gamma(H) \leq \gamma_{sd}(G \square H) \leq \gamma_{sd}(G \square H)$.

Next we improve the upper bound of Theorem 1 by introducing some restrictions in the graphs used in the product. To do so, we need to introduce some terminology. A set $S \subseteq V$ is a total dominating set in $G$ if for every vertex $v \in V(G)$, $\delta_S(v) > 0$ (every vertex of $G$ is adjacent to at least one vertex in $S$). The total domination number of $G$, denoted by $\gamma_t(G)$, is the minimum cardinality of a total dominating set in $G$.

Theorem 3. Let $G$ and $H$ be two graphs with vertex sets $V_1$ and $V_2$, respectively. If the order of $H$ is $n_2$ and, any two vertices $u \in V_1$, $v \in V_2$ satisfy $\delta_H(v) \geq \delta_G(u) - 3$, then

$$\gamma_d(G \square H) \leq n_2\gamma_t(G).$$

Moreover, if any two vertices $u \in V_1$, $v \in V_2$ satisfy $\delta_H(v) \geq \delta_G(u) - 2$, then

$$\gamma_{sd}(G \square H) \leq n_2\gamma_t(G).$$

Proof. Let $A_1$ be a total dominating set in $G$. We claim that $A = A_1 \times V_2$ is a global defensive alliance in $G \square H$. It is clear that $A$ is a dominating set.
Now, consider a vertex \((u, v) \in A\). We have the following:

\[
\delta_A(u, v) = \delta_{A_1}(u) + \delta_H(v) \\
\geq \delta_{A_1}(u) + \delta_G(u) - 3 \\
= \delta_{A_2}(u) + 2\delta_{A_1}(u) - 3 \\
\geq \delta_{A_1}(u) - 1 \\
= \delta_G(u, v) - 1.
\]

Thus, \(A\) is a global defensive alliance in \(G \square H\) and the bound for \(\gamma_d(G \square H)\) follows. The proof of \(\gamma_{sd}(G \square H) \leq n_2 \gamma_t(G)\) is analogous to the one above.

Let \(D_1, \ldots, D_k\) be dominating sets of the graph \(G\) with \(|D_i| = \gamma(G)\). For all \(i\) denote with \(G[D_i]\) the induced subgraph on vertices \(D_i\). We define the number

\[
\Omega(G) = \max_{1 \leq i \leq k} \{\delta(G[D_i])\}
\]

as the maximum of minimum degrees of all subgraphs of \(G\) induced on any dominating set \(D_i\), \(i \in \{1, \ldots, k\}\), of size \(\gamma(G)\).

**Theorem 4.** Let \(G\) and \(H\) be two graphs such that \(\delta(H) \geq \Delta(G) - \Omega(G) - 1\). Then

\[
\gamma_d(G \square H) \leq \gamma(G)|V(H)|.
\]

**Proof.** Let \(D = \{u_1, \ldots, u_m\}, \ m = \gamma(G),\) be a minimum dominating set of \(G\) such that \(\Omega(G) = \delta(G[D])\) and let \(V(H) = \{v_1, \ldots, v_n\}\) be the set of vertices of \(H\). Then the set \(S = \{(u_1, v_1), \ldots, (u_1, v_n), (u_2, v_1), \ldots, (u_2, v_n), \ldots, (u_m, v_1), \ldots, (u_m, v_n)\}\) is obviously a dominating set of \(G \square H\). The set \(S\) is also a global defensive alliance since for every \(i \in \{1, \ldots, m\}\) and \(j \in \{1, \ldots, n\}\) it follows that

\[
\delta_S(u_i, v_j) = \delta_D(u_i) + \delta_H(v_j) \\
\geq \delta(G[D]) + \delta(H) \\
= \Omega(G) + \delta(H) \\
\geq \Omega(G) + \Delta(G) - \Omega(G) - 1 \\
= \Delta(G) - 1 \\
\geq \delta_S(u_i, v_j) - 1.
\]
The above result give some interesting consequences like the following ones.

**Corollary 1.** For any two integers \( r, t \geq 2 \) we have

(i) \( \gamma_d(P_r \square P_t) \leq \min \{ t \left\lfloor \frac{r}{3} \right\rfloor, r \left\lfloor \frac{t}{3} \right\rfloor \} \),

(ii) \( \gamma_d(P_r \square C_t) \leq \min \{ t \left\lfloor \frac{r}{3} \right\rfloor, r \left\lfloor \frac{t}{3} \right\rfloor \} \),

(iii) \( \gamma_d(C_r \square C_t) \leq \min \{ t \left\lfloor \frac{r}{3} \right\rfloor, r \left\lfloor \frac{t}{3} \right\rfloor \} \).

**Proof.** The results follow immediately from Theorem 4, from the fact that, for any integer \( n \geq 2 \), \( \delta(P_n) = 1 \), \( \Delta(P_n) = 2 \), \( \Omega(P_n) = 0 \), \( \delta(C_n) = 2 \), \( \Delta(C_n) = 2 \), and \( \Omega(C_n) = 0 \). Thus, if \( G \) is a path or a cycle, then the inequality \( \delta(G) \geq \Delta(G) - \Omega(G) - 1 \) is satisfied. \( \Box \)

The following lemma together with Theorem 4 leads to some equalities for the global defensive alliance numbers of some Cartesian product graphs which shows that the bound of Theorem 4 is sharp.

**Lemma 1.** [12, 13] For every graph \( G \) of order \( n \) and maximum degree \( \Delta \),

\[
\gamma_d(G) \geq \left\lceil \frac{n}{\left\lceil \frac{\Delta+1}{2} \right\rceil + 1} \right\rceil \quad \text{and} \quad \gamma_{sd}(G) \geq \left\lceil \frac{n}{\left\lfloor \frac{\Delta}{2} \right\rfloor + 1} \right\rceil.
\]

The following result is a consequence of the above lemma and Theorem 4.

**Corollary 2.** Let \( G \) and \( H \) be two graphs being paths or cycles of orders \( r \) and \( t \), respectively. Then

\[
\left\lceil \frac{rt}{3} \right\rceil \leq \gamma_d(G \square H) \leq \gamma_{sd}(G \square H) \leq \min \left\{ r \left\lceil \frac{t}{3} \right\rceil, t \left\lceil \frac{r}{3} \right\rceil \right\}.
\]

Moreover, if \( r \equiv 0 \pmod{3} \) or \( t \equiv 0 \pmod{3} \), then \( \gamma_d(G \square H) = \gamma_{sd}(G \square H) = \frac{rt}{3} \).

Next we continue with some other cases of Cartesian product graphs.

**Proposition 1.** For any two complete graphs \( K_r \) and \( K_t \) we have

(i) If \( r = t \), then \( \gamma_d(K_r \square K_t) = \gamma_{sd}(K_r \square K_t) = r \).

(ii) If \( |r - t| = 1 \), then \( \gamma_d(K_r \square K_t) = \min\{r, t\} \) and \( \min\{r, t\} \leq \gamma_{sd}(K_r \square K_t) \leq \max\{r, t\} \).

(iii) If \( |r - t| \neq 1 \), then \( \min\{r, t\} \leq \gamma_d(K_r \square K_t) \leq \gamma_{sd}(K_r \square K_t) \leq \max\{r, t\} \).
Proof. If \( r = t \), then it is clear that every vertex of one copy of \( K_r \) or \( K_t \), say \( K_r \), has as much neighbors inside the copy as it has outside of the copy and also, every copy of \( K_r \) is a dominating set in \( K_r \square K_t \). So, \( \gamma_d(K_r \square K_t) \leq r \) and \( \gamma_{sd}(K_r \square K_t) \leq r \). Now, since \( \gamma_{sd}(K_r \square K_t) \geq \gamma_d(K_r \square K_t) \geq \gamma(K_r \square K_t) = r \), we obtain (i).

If \( |r - t| = 1 \), then we can suppose without loss of generality that \( r = t + 1 \) and let \( A \) be the set of vertices of one copy of \( K_t \) in \( K_r \square K_t \). Notice that \( A \) is a dominating set in \( K_r \square K_t \). Hence, for every vertex \((u, v) \in A \) we have that \( \delta_A(u, v) = t - 1 = r - 2 = \delta_G(u, v) - 1 \). Thus, \( A \) is a global defensive alliance in \( K_r \square K_t \) and \( \gamma_d(K_r \square K_t) \leq \min\{r, t\} \). Now, the equality for \( \gamma_d(K_r \square K_t) \) in (ii) follows from the fact that \( \gamma_d(K_r \square K_t) \geq \gamma(K_r \square K_t) = \min\{r, t\} = t \). Now, let \( B \) be a copy of \( K_r \) in \( K_r \square K_t \). Hence, \( B \) is a dominating set in \( K_r \square K_t \) and for every vertex \((u, v) \in B, \delta_B(u, v) = r = t + 1 > t - 1 \delta_B(u, v) \). So, \( B \) is a global strong defensive alliance in \( K_r \square K_t \) and \( \gamma_{sd}(K_r \square K_t) \leq \max\{r, t\} \). The lower bound for \( \gamma_{sd}(K_r \square K_t) \) in (ii) follows from the fact that \( \gamma_{sd}(K_r \square K_t) \geq \gamma_d(K_r \square K_t) = \min\{r, t\} \).

On the other hand, suppose \( t > r + 1 \). Let \( B \) be the set of vertices of one copy of \( K_t \) in \( K_r \square K_t \). Notice that \( B \) is a dominating set in \( K_r \square K_t \) and for every vertex \((u, v) \in B \) we have that

\[
\delta_B(u, v) = t - 1 > r - 1 = \delta_G(u, v) > \delta_B(u, v) - 1.
\]

Thus, \( B \) is a global (strong) defensive alliance in \( K_r \square K_t \) and \( \gamma_d(K_r \square K_t) \leq \gamma_{sd}(K_r \square K_t) \leq \max\{r, t\} \). Finally the lower bound of (iii) follows from \( \gamma_{sd}(K_r \square K_t) \geq \gamma_d(K_r \square K_t) \geq \gamma(K_r \square K_t) = \min\{r, t\} \).

3. Strong product graphs

Given two graphs \( G \) and \( H \) with set of vertices \( V_1 = \{u_1, u_2, \ldots, u_n\} \) and \( V_2 = \{v_1, v_2, \ldots, v_m\} \), respectively, the strong product of \( G \) and \( H \) is the graph \( G \square H = (V, E) \), where \( V = V_1 \times V_2 \) and two vertices \((u_i, v_j)\) and \((u_k, v_{\ell})\) are adjacent in \( G \square H \) if and only if

- \( u_i = u_k \) and \( v_j \sim v_{\ell}, \) or
- \( u_i \sim u_k \) and \( v_j = v_{\ell}, \) or
- \( u_i \sim u_k \) and \( v_j \sim v_{\ell}. \)

Theorem 5. For any two graphs \( G \) and \( H \) of order \( r \) and \( t \), respectively, we have

\[
\gamma_d(G \square H) \leq \min\{r\gamma_d(H), t\gamma_d(G)\}.
\]
Proof. Let $V_1$ and $V_2$ be the vertex set of $G$ and $H$, respectively. Let $S_1 \subseteq V_1$ be a global defensive alliance in $G$ and let $A = A_1 \times V_2$. Since $S_1$ is a dominating set in $G$, we have that $A$ is a dominating set in $G \boxtimes H$. Also, for every vertex $(u, v) \in A$ we have

$$
\delta_A(u, v) = \delta_{A_1}(u) + \delta(v) + \delta(u) \delta_{A_1}(u) \\
\geq \delta_{A_1}(u) - 1 + \delta(v) (\delta_{A_1}(u) - 1) \\
= \delta_{A_1}(u) + \delta(v) \delta_{A_1}(u) - 1 \\
= \delta_{A_1}(u, v) - 1.
$$

So, $A$ is a global defensive alliance in $G \boxtimes H$. Analogously we prove that $V_1 \times A_2$ is also a global defensive alliance in $G \boxtimes H$, where $A_2$ is a global defensive alliance in $H$. Therefore, the result follows.

Let $G$ be the graph of order six obtained by joining with an edge the centers of two star graphs of order three. Notice that $\gamma_d(G) = 2$. Hence, we have that $\gamma_d(G \boxtimes K_2) = 4 = \min \{6 \cdot 1, 2 \cdot 2\}$. Thus, the bound of Theorem 5 is tight. Another case in which this bound is tight is the strong product of two complete graphs $K_r$ and $K_t$ of even orders, where we have that $t \frac{r}{2} = \gamma_d(K_{rt}) = \gamma_d(K_r \boxtimes K_t) = r \frac{t}{2} = t \frac{r}{2}$.

Next, we study some particular cases of strong product graphs. To do so we need the following lemma.

Lemma 2. [12] For any integer $n \geq 2$, $\gamma_d(K_n) = \lceil \frac{n + 1}{2} \rceil$, $\gamma_d(C_n) = \lceil \frac{n}{2} \rceil + \lceil \frac{n}{4} \rceil - \lceil \frac{n}{4} \rceil$, $\gamma_d(P_n) = \lceil \frac{n}{2} \rceil + \lceil \frac{n}{4} \rceil - \lceil \frac{n}{4} \rceil ≤ \lceil \frac{n}{4} \rceil$ if $n \equiv 2 \pmod{4}$ and $\gamma_d(P_n) = \lceil \frac{n}{2} \rceil + \lceil \frac{n}{4} \rceil - \lceil \frac{n}{4} \rceil - 1$ if $n \equiv 0 \pmod{4}$.

Proposition 2. For any two integers $r, n \geq 4$ we have

$$
\frac{rn}{2} \leq \gamma_d(C_r \boxtimes K_n) \leq \min \left\{ r \left\lfloor \frac{n + 1}{2} \right\rfloor, n \left( \left\lfloor \frac{r}{2} \right\rfloor + \left\lfloor \frac{r}{4} \right\rfloor - \left\lfloor \frac{r}{4} \right\rfloor \right) \right\}.
$$

Moreover, if $n$ is an even number, then $\gamma_d(C_r \boxtimes K_n) = \frac{rn}{2}$.

Proof. The upper bound follows directly by using Theorem 5 and Lemma 2. Let $V_1 = \{u_0, u_1, \ldots, u_{r-1}\}$ be the vertex set of $C_r$ (vertices with consecutive indices are adjacent in $C_r$ and operations with indices are considered modulo $r$) and let $V_2 = \{v_1, v_2, \ldots, v_n\}$ be the vertex set of $K_n$. Let $S$ be a global defensive alliance of minimum cardinality in $C_r \boxtimes K_n$ and let $(u_i, v_j) \in S$. Hence we have that $\delta_S(u_i, v_j) \geq \delta_{C_r \boxtimes K_n}(u_i, v_j) - 1$, which is equivalent to

$$
\delta_S(u_i, v_j) \geq \frac{\delta_{C_r \boxtimes K_n}(u_i, v_j) - 1}{2} = \frac{3n - 2}{2}.
$$
Now, for every \( i \in \{0, \ldots, r - 1\} \), let \( S_i = S \cap \{u_{i-1}, u_i, u_{i+1}\} \times V_2 \). It is clear that for every \( i \in \{1, \ldots, n\} \), \( S_i \neq \emptyset \). So, from inequality (4) we obtain that 
\[
|S_i| \geq \frac{3n-2}{2} + 1 = \frac{3n}{2}.
\]

Thus, the upper bound is proved.

Notice that, if \( n \) is even, then \( \left\lceil \frac{n+1}{2} \right\rceil = \frac{n}{2} \). Thus, the upper bound is \( \gamma_d(C_r \boxtimes K_n) \leq \frac{rn}{2} \) and the equality follows for \( n \) being even.

The proof of the next result is relatively similar to the above proof.

**Proposition 3.** For any two integers \( r, n \geq 4 \) we have

\[
\frac{n(r-2)}{2} \leq \gamma_d(P_r \boxtimes K_n) \leq \begin{cases} 
\min \{ r \left\lceil \frac{n+1}{2} \right\rceil, n \left( \left\lceil \frac{r}{2} \right\rceil + \left\lceil \frac{r}{4} \right\rceil - \left\lceil \frac{r}{4} \right\rceil \right) \}, & \text{if } n \equiv 2 \pmod{4}, \\
\min \{ r \left\lceil \frac{n+1}{2} \right\rceil, n \left( \left\lceil \frac{r}{2} \right\rceil + \left\lceil \frac{r}{4} \right\rceil - \left\lceil \frac{r}{4} \right\rceil - 1 \} \}, & \text{if } n \equiv 2 \pmod{4}.
\end{cases}
\]

**Proof.** The upper bounds follow directly by using Theorem 5 and Lemma 2. Let \( V_1 = \{u_1, u_1, \ldots, u_r\} \) be the vertex set of \( P_r \) (vertices with consecutive indices are adjacent in \( P_r \)) and let \( V_2 = \{v_1, v_2, \ldots, v_n\} \) be the vertex set of \( K_n \). Let \( S \) be a global defensive alliance of minimum cardinality in \( P_r \boxtimes K_n \) and let \((u_i, v_j) \in S\). Hence, we have that \( \delta_S(u_i, v_j) \geq \delta_S(u_i, v_j) - 1 \), and if \( i \neq 1 \) or \( r \), then this is equivalent to

\[
\delta_S(u_i, v_j) \geq \frac{\delta_{P_r \boxtimes K_n}(u_i, v_j) - 1}{2} = \frac{3n-2}{2}. \tag{5}
\]

Now, for every \( i \in \{1, \ldots, r - 1\} \), let \( S_i = S \cap \{u_{i-1}, u_i, u_{i+1}\} \times V_2 \). It is clear that for every \( i \in \{1, \ldots, n\} \), \( S_i \neq \emptyset \). So, from inequality (5) we obtain that 
\[
|S_i| \geq \frac{3n-2}{2} + 1 = \frac{3n}{2}. \]

Thus, we have that 
\[
|S| \geq \frac{1}{3} \sum_{i=2}^{r-1} |S_i| \geq \frac{1}{3} \sum_{i=2}^{r-1} \frac{3n}{2} = \frac{n(r-2)}{2}
\]

and the lower bound is proved.

\[\square\]

4. Direct product graphs

Given two graphs \( G \) and \( H \) with set of vertices \( V_1 = \{u_1, u_2, \ldots, u_{n_1}\} \) and \( V_2 = \{v_1, v_2, \ldots, v_{n_2}\} \), respectively, the direct product of \( G \) and \( H \) is the graph \( G \times H = (V, E) \), where \( V = V_1 \times V_2 \) and two vertices \((u_i, v_j)\) and \((u_k, v_{\ell})\) are adjacent in \( G \times H \) if and only if \( u_i \sim u_k \) and \( v_j \sim v_{\ell} \).
**Theorem 6.** For any two graphs $G$ and $H$ of order $n_1$ and $n_2$, respectively, we have

$$\gamma_{sd}(G \times H) \leq \min\{n_1\gamma_{sd}(H), n_2\gamma_{sd}(G)\}.$$ 

**Proof.** Let $V_1$ and $V_2$ be the vertex sets of the graphs $G$ and $H$, respectively. If $A_1$ and $A_2$ are global strong defensive alliances in $G$ and $H$, respectively, then we claim that $A = A_1 \times V_2$ is a global strong defensive alliance in $G \times H$. Notice that $A$ is a dominating set. We consider a vertex $(u, v) \in A$. So, by inequality (3) we have that

$$\delta_A(u, v) = \delta_{A_1}(u)\delta(v) \geq \delta_{A_1}(u)\delta(v) \geq \delta_A(u, v).$$

Thus, $A$ is a global strong defensive alliance in $G \times H$. Analogously, one can prove that $V_1 \times A_2$ is a global strong defensive alliance in $G \times H$ and the proof is complete. \hfill \Box

By using similar techniques like the ones used in Propositions 2 and 3 for strong product graphs we can obtain the following lower bounds.

**Proposition 4.** For any two integers $r, n \geq 4$ we have

$$\gamma_{sd}(C_r \times K_n) \geq \frac{rn}{3} + \frac{r}{3} \quad \text{and} \quad \gamma_{sd}(P_r \times K_n) \geq \frac{n(r-2)}{3} + \frac{r-2}{3}.$$ 

**Proof.** Let $V_1 = \{u_0, u_1, \ldots, u_{r-1}\}$ be the vertex set of $C_r$ (vertices with consecutive indices are adjacent in $C_r$ and operations with the subindices are done modulo $r$) and let $V_2 = \{v_1, v_2, \ldots, v_n\}$ be the vertex set of $K_n$. Let $S$ be a global strong defensive alliance of minimum cardinality in $C_r \times K_n$ and let $(u_i, v_j) \in S$. Hence, we have that

$$\delta_S(u_i, v_j) \geq \frac{\delta_{C_r \times K_n}(u_i, v_j)}{2} = \frac{2n}{2} = n.$$

Now, for every $i \in \{0, \ldots, r-1\}$, let $S_i = S \cap \{u_{i-1}, u_i, u_{i+1}\} \times V_2$. It is clear that for every $i \in \{1, \ldots, n\}$, $S_i \neq \emptyset$. So, from inequality (6) we have that $|S_i| \geq n + 1$. Thus, we obtain

$$|S| \geq \frac{1}{3} \sum_{i=0}^{r-1} |S_i| \geq \frac{1}{3} \sum_{i=0}^{r-1} (n + 1) = \frac{rn}{3} + \frac{r}{3}.$$
Now, if $V_1 = \{u_1, u_1, \ldots, u_r\}$ is the vertex set of $P_r$ (vertices with consecutive indices are adjacent in $P_r$), then by using a similar procedure we have that

$$|S| \geq \frac{1}{3} \sum_{i=2}^{r-1} |S_i| \geq \frac{1}{3} \sum_{i=2}^{r-1} (n + 1) = \frac{n(r - 2)}{3} + \frac{r - 2}{3}.$$ 

References


