Signed total Roman k-domination in directed graphs

Nasrin Dehgardi ${ }^{1 *}$ and Lutz Volkmann ${ }^{2}$
${ }^{1}$ Department of Mathematics and Computer Science, Sirjan University of Technology, Sirjan, Iran n.dehgardi@sirjantech.ac.ir
${ }^{2}$ Lehrstuhl II für Mathematik, RWTH Aachen University, 52056 Aachen, Germany volkm@math2.rwth-aachen.de

Received: 13 September 2016; Accepted: 26 December 2016;

 Available Online: 30 December 2016.Communicated by Alireza Ghaffari-Hadigheh

Abstract

Let D be a finite and simple digraph with vertex set $V(D)$. A signed total Roman k-dominating function (STR $k \mathrm{DF}$) on D is a function f : $V(D) \rightarrow\{-1,1,2\}$ satisfying the conditions that (i) $\sum_{x \in N^{-}(v)} f(x) \geq k$ for each $v \in V(D)$, where $N^{-}(v)$ consists of all vertices of D from which arcs go into v, and (ii) every vertex u for which $f(u)=-1$ has an inner neighbor v for which $f(v)=2$. The weight of an STRkDF f is $\omega(f)=\sum_{v \in V(D)} f(v)$. The signed total Roman k-domination number $\gamma_{s t R}^{k}(D)$ of D is the minimum weight of an STR k DF on D. In this paper we initiate the study of the signed total Roman k-domination number of digraphs, and we present different bounds on $\gamma_{s t R}^{k}(D)$. In addition, we determine the signed total Roman k-domination number of some classes of digraphs. Some of our results are extensions of known properties of the signed total Roman k-domination number $\gamma_{s t R}^{k}(G)$ of graphs G.

Keywords: Digraph, Signed total Roman k-dominating function, Signed total Roman k-domination.

2010 Mathematics Subject Classification: 05C69

[^0]
1. Introduction

Let D be a finite and simple digraph with vertex set $V(D)$ and arc set $A(D)$. The integers $n=n(D)=|V(D)|$ and $m=m(D)=|A(D)|$ are the order and the size of the digraph D, respectively. We write $d_{D}^{+}(v)=d^{+}(v)$ for the outdegree of a vertex v and $d_{D}^{-}(v)=d^{-}(v)$ for its in-degree. The minimum and maximum in-degree are $\delta^{-}(D)=\delta^{-}$and $\Delta^{-}(D)=\Delta^{-}$and the minimum and maximum out-degree are $\delta^{+}(D)=\delta^{+}$and $\Delta^{+}(D)=\Delta^{+}$. The sets $N_{D}^{+}(v)=$ $N^{+}(v)=\{u \mid(v, u) \in A(D)\}$ and $N_{D}^{-}(v)=N^{-}(v)=\{u \mid(u, v) \in A(D)\}$ are called the out-neighborhood and in-neighborhood of the vertex v. Likewise, $N_{D}^{+}[v]=N^{+}[v]=N^{+}(v) \cup\{v\}$ and $N_{D}^{-}[v]=N^{-}[v]=N^{-}(v) \cup\{v\}$. If $S \subseteq V(D)$, then $D[S]$ is the subdigraph induced by S. For an $\operatorname{arc}(u, v) \in A(D)$, the vertex v is an out-neighbor of u and u is an in-neighbor of v, and we also say that u dominates v or v is dominated by u. The underlying graph of a digraph D is that graph obtained by replacing each arc (u, v) or symmetric pairs (u, v), (v, u) of arcs by the edge $u v$. A digraph D is connected if its underlying graph is connected. For a real-valued function $f: V(D) \rightarrow R$, the weight of f is $\omega(f)=\sum_{v \in V(D)} f(v)$, and for $S \subseteq V(D)$, we define $f(S)=\sum_{v \in S} f(v)$, so $\omega(f)=f(V(D))$. Consult [1, 2] for notation and terminology which are not defined here.
A signed total k-dominating function on a digraph D defined in [5] is a function $f: V(D) \rightarrow\{-1,1\}$ such that $\sum_{u \in N^{-(v)}} f(u) \geq k$ for every $v \in V(D)$.
A signed total Roman k-dominating function (STR $k \mathrm{DF}$) on D defined is a function $f: V(D) \rightarrow\{-1,1,2\}$ such that $\sum_{u \in N^{-}(v)} f(u) \geq k$ for every $v \in$ $V(D)$ and every vertex u for which $f(u)=-1$ has an in-neighbor v for which $f(v)=2$. The weight of an STR k DF f on a digraph D is $\omega(f)=\sum_{v \in V(D)} f(v)$. The signed total Roman k-domination number $\gamma_{s t R}^{k}(D)$ of D is the minimum weight of an STR k DF on D. A $\gamma_{s t R}^{k}(D)$-function is a signed total Roman k-dominating function on D of weight $\gamma_{s t R}^{k}(D)$. For an STR k DF f on D, let $V_{i}=V_{i}^{f}=\{v \in V(D): f(v)=i\}$ for $i=-1,1,2$. An STR $k D F$ $f: V(D) \rightarrow\{-1,1,2\}$ can be represented by the ordered partition $\left(V_{-1}, V_{1}, V_{2}\right)$ of $V(D)$. In the special case where $k=1$, the signed total Roman 1-domination number is the usual signed total Roman domination number [8].
The signed total Roman k-domination number exists when $\delta^{-}(D) \geq \frac{k}{2}$. However, for investigations of the signed total Roman k-domination number it is reasonable to claim that $\delta^{-}(D) \geq k$. Thus we assume throughout this paper that $\delta^{-}(D) \geq k$.
Let G be a finite and simple with vertex set $V(G)$, and let $N(v)=N_{G}(v)$ be the neighborhood of the vertex v. A signed total k-dominating function on a graph G defined in [9] is a function $f: V(G) \rightarrow\{-1,1\}$ such that $\sum_{u \in N(v)} f(u) \geq k$ for every $v \in V(G)$. The minimum cardinality of a signed total k-dominating
function is the signed total k-domination number $\gamma_{s t}^{k}(G)$. This parameter is studied by several authors, see for example [3, 4, 10].
A signed total Roman k-dominating function (STR $k \mathrm{DF}$) on a graph G defined in [6] is a function $f: V(G) \rightarrow\{-1,1,2\}$ such that $\sum_{u \in N_{G}(v)} f(u) \geq k$ for every $v \in V(G)$, and every vertex u for which $f(u)=-1$ is adjacent to a vertex v for which $f(v)=2$. The weight of an STR k DF f on a graph G is $\omega(f)=\sum_{v \in V(G)} f(v)$. The signed total Roman k-domination number $\gamma_{s t R}^{k}(G)$ of G is the minimum weight of an $\operatorname{STR} k \mathrm{DF}$ on G. The special case $k=1$ was introduced in [7].
In this paper, we initiate the study of the signed total Roman k-domination number in digraphs. We present different sharp lower and upper bounds on $\gamma_{s t R}^{k}(D)$. In addition, we also determine exact values of some classes of digraphs. Some of our results imply known properties of the signed total Roman k-domination number $\gamma_{s t R}^{k}(G)$ of graphs G given in [6].
The associated digraph $D(G)$ of a graph G is the digraph obtained from G when each edge e of G is replaced by two oppositely oriented arcs with the same ends as e. Since $N_{D(G)}^{-}(v)=N_{G}(v)$ for each vertex $v \in V(G)=V(D(G))$, the following useful observation is valid.

Observation 1. If $D(G)$ is the associated digraph of a graph G, then $\gamma_{s t R}^{k}(D(G))=\gamma_{s t R}^{k}(G)$.

Let K_{n} be the complete graph of order n. In [6], the author determines the signed total Roman k-domination number of complete graphs.

Proposition 1. [6] If $n \geq k+2$, then $\gamma_{s t R}^{k}\left(K_{n}\right)=k+2$.

Assume that K_{n}^{*}, complete digraph of order n, is the associated digraph $D\left(K_{n}\right)$ of a graph K_{n}. Using Observation 1 and Proposition 1, we obtain the signed total Roman k-domination number of complete digraphs.

Corollary 1. If $n \geq k+2$, then $\gamma_{s t R}^{k}\left(K_{n}^{*}\right)=k+2$.

Let $K_{p, p}$ be the complete bipartite graph of order $2 p$. In [6], the author determines the signed total Roman k-domination number of complete bipartite graphs.

Proposition 2. [6] If $k \geq 1$ and $p \geq k$, then $\gamma_{s t R}^{k}\left(K_{p, p}\right)=2 k$, with exception of the case that $k=1$ and $p=3$, in which case $\gamma_{s t R}^{1}\left(K_{3,3}\right)=4$.

Assume that $K_{p, p}^{*}$, complete bipartite digraph of order $2 p$, is the associated digraph $D\left(K_{p, p}\right)$ of a graph $K_{p, p}$. Using Observation 1 and Proposition 2, we obtain the signed total Roman k-domination number of complete bipartite digraphs.

Corollary 2. If $k \geq 1$ and $p \geq k$, then $\gamma_{s t R}^{k}\left(K_{p, p}^{*}\right)=2 k$, with exception of the case that $k=1$ and $p=3$, in which case $\gamma_{s t R}^{1}\left(K_{3,3}^{*}\right)=4$.

2. Bounds on the signed total Roman k-domination number

In this section, we present some sharp bounds on the signed total Roman k domination number. We start with some preliminary results.
For an integer $p \geq 1$, a subset S of vertices of a digraph D is called a total p-dominating set if every vertex $v \in V(D)$ has at least p in-neighbors in S.

Proposition 3. If $f=\left(V_{-1}, V_{1}, V_{2}\right)$ is an STRkDF on a digraph D of order n and minimum in-degree $\delta^{-}(D) \geq k$, then

1. $\left|V_{-1}\right|+\left|V_{1}\right|+\left|V_{2}\right|=n$.
2. $\omega(f)=\left|V_{1}\right|+2\left|V_{2}\right|-\left|V_{-1}\right|$.
3. $V_{1} \cup V_{2}$ is a total $\left\lceil\frac{2 k}{3}\right\rceil$-dominating set of D.

Proof. Since (1) and (2) are immediate, we only prove (3). Suppose to the contrary, that there exists a vertex v with at most $\left\lceil\frac{2 k}{3}\right\rceil-1$ in-neighbors in $V_{1} \cup V_{2}$. Then v has at least

$$
\delta^{-}(D)-\left(\left\lceil\frac{2 k}{3}\right\rceil-1\right) \geq k-\left(\left\lceil\frac{2 k}{3}\right\rceil-1\right)
$$

in-neighbors in V_{-1}. It follows that

$$
\begin{aligned}
k & \leq f\left(N^{-}(v)\right) \leq 2\left(\left\lceil\frac{2 k}{3}\right\rceil-1\right)-\left(k-\left\lceil\frac{2 k}{3}\right\rceil+1\right) \\
& =3\left\lceil\frac{2 k}{3}\right\rceil-k-3 \leq \frac{3(2 k+2)}{3}-k-3=k-1,
\end{aligned}
$$

which is a contradiction. Consequently, $V_{1} \cup V_{2}$ is a total $\left\lceil\frac{2 k}{3}\right\rceil$-dominating set of D.

Theorem 1. Let $k \geq 1$ be an integer, and let D be a digraph of order n with minimum in-degree $\delta^{-}(D) \geq k$. If $\Delta^{+}(D)=\Delta^{+}$and $\delta^{+}(D)=\delta^{+}$, then

1. $\left(2 \Delta^{+}-k\right)\left|V_{2}\right|+\left(\Delta^{+}-k\right)\left|V_{1}\right| \geq\left(\delta^{+}+k\right)\left|V_{-1}\right|$.
2. $\left(2 \Delta^{+}+\delta^{+}\right)\left|V_{2}\right|+\left(\Delta^{+}+\delta^{+}\right)\left|V_{1}\right| \geq\left(\delta^{+}+k\right) n$.
3. $\left(\Delta^{+}+\delta^{+}\right) \omega(f) \geq\left(\delta^{+}+2 k-\Delta^{+}\right) n+\left(\delta^{+}-\Delta^{+}\right)\left|V_{2}\right|$.
4. $\omega(f) \geq \frac{\left(\delta^{+}+2 k-2 \Delta^{+}\right) n}{\left(2 \Delta^{+}+\delta^{+}\right)}+\left|V_{2}\right|$.

Proof. (1) It follows from Proposition 3 (1) that

$$
\begin{aligned}
k\left(\left|V_{-1}\right|+\left|V_{1}\right|+\left|V_{2}\right|\right) & =k n \leq \sum_{v \in V(D)} f\left(N^{-}(v)\right)=\sum_{v \in V(D)} d^{+}(v) f(v) \\
& =\sum_{v \in V_{2}} 2 d^{+}(v)+\sum_{v \in V_{1}} d^{+}(v)-\sum_{v \in V_{-1}} d^{+}(v) \\
& \leq 2 \Delta^{+}\left|V_{2}\right|+\Delta^{+}\left|V_{1}\right|-\delta^{+}\left|V_{-1}\right| .
\end{aligned}
$$

This inequality chain yields to the desired bound in (1).
(2) Proposition 3 (1) implies that $\left|V_{-1}\right|=n-\left|V_{1}\right|-\left|V_{2}\right|$. Using this identity and Part (1) of Proposition 1, we arrive at (2).
(3) According to Proposition 3 and Part (2) of Proposition 1, we obtain Part (3) of Proposition 1 as follows

$$
\begin{aligned}
\left(\Delta^{+}+\delta^{+}\right) \omega(f)= & \left(\Delta^{+}+\delta^{+}\right)\left(2\left(\left|V_{1}\right|+\left|V_{2}\right|\right)-n+\left|V_{2}\right|\right) \\
\geq & 2\left(\delta^{+}+k\right) n+2\left(\Delta^{+}+\delta^{+}\right)\left|V_{2}\right|-2\left(2 \Delta^{+}+\delta^{+}\right)\left|V_{2}\right| \\
& +\left(\Delta^{+}+\delta^{+}\right)\left(\left|V_{2}\right|-n\right) \\
= & \left(\delta^{+}+2 k-\Delta^{+}\right) n+\left(\delta^{+}-\Delta^{+}\right)\left|V_{2}\right| .
\end{aligned}
$$

(4) The inequality chain in the proof of Part (1) and Proposition 3 (1) show that

$$
\begin{aligned}
k n & \leq 2 \Delta^{+}\left|V_{1} \cup V_{2}\right|-\delta^{+}\left|V_{-1}\right| \\
& =2 \Delta^{+}\left|V_{1} \cup V_{2}\right|-\delta^{+}\left(n-\left|V_{1} \cup V_{2}\right|\right) \\
& =\left(2 \Delta^{+}+\delta^{+}\right)\left|V_{1} \cup V_{2}\right|-\delta^{+} n,
\end{aligned}
$$

and thus

$$
\left|V_{1} \cup V_{2}\right| \geq \frac{n\left(\delta^{+}+k\right)}{2 \Delta^{+}+\delta^{+}}
$$

Using this inequality and Proposition 3, we obtain

$$
\begin{aligned}
\omega(f) & =2\left|V_{1} \cup V_{2}\right|-n+\left|V_{2}\right| \\
& \geq \frac{2 n\left(\delta^{+}+k\right)}{2 \Delta^{+}+\delta^{+}}-n+\left|V_{2}\right| \\
& =\frac{n\left(\delta^{+}+2 k-2 \Delta^{+}\right)}{2 \Delta^{+}+\delta^{+}}+\left|V_{2}\right| .
\end{aligned}
$$

This is the bound in Part (4), and the proof is complete.
A digraph D is out-regular or r-out-regular if $\delta^{+}(D)=\Delta^{+}(D)=r$.
Corollary 3. Let D be a digraph of order n with minimum in-degree $\delta^{-} \geq k$, minimum out-degree δ^{+}and maximum out-degree Δ^{+}. Then

$$
\gamma_{s t R}^{k}(D) \geq\left(\frac{2 \delta^{+}+3 k-2 \Delta^{+}}{2 \Delta^{+}+\delta^{+}}\right) n
$$

Proof. If D is an r-out-regular digraph, then result is an immediate consequence of Theorem 1 part (3). Let D be not out-regular digraph. Multiplying both sides of the inequality in Theorem 1 part (4) by $\Delta^{+}-\delta^{+}$and adding the resulting inequality to the inequality in Theorem 1 part (3), we obtain the desired lower bound.

Corollary 3 and Observation 1 lead to the next known result.

Corollary 4. [6] Let G be a graph of order n, minimum degree $\delta \geq k$ and maximum degree Δ. If $\Delta>\delta$, then

$$
\gamma_{s t R}^{k}(G) \geq\left(\frac{2 \delta+3 k-2 \Delta}{2 \Delta+\delta}\right) n
$$

The special case $k=1$ of Corollary 4 can be found in [7]. Example 12 in [6] demonstrates that Corollary 4 is sharp. This example together with Observation 1 shows that Corollary 3 is sharp too.

Proposition 4. If D is a digraph of order n with minimum in-degree $\delta^{-} \geq k$, then $\gamma_{s t R}^{k}(D) \leq n$.

Proof. Define the function $f: V(D) \rightarrow\{-1,1,2\}$ by $f(v)=1$ for each vertex $v \in V(D)$. Since $\delta^{-} \geq k$, the function f is an $\operatorname{STR} k \mathrm{DF}$ on D of weight n and thus $\gamma_{s t R}^{k}(D) \leq n$.

A digraph D is r-regular if $\Delta^{-}(D)=\Delta^{+}(D)=\delta^{-}(D)=\delta^{+}(D)=r$.
Example 1. If D is a k-regular digraph of order n, then it follows from Corollary 3 that $\gamma_{s t R}^{k}(D) \geq n$ and so $\gamma_{s t R}^{k}(D)=n$, according to Proposition 4.

Example 1 demonstrates that Proposition 4 and Corollary 3 are both sharp. If $\delta^{-} \geq k+2$, then we can improve the bound in Proposition 4 .

Theorem 2. If D is a digraph of order n with minimum in-degree $\delta^{-} \geq k+2$, then

$$
\gamma_{s t R}^{k}(D) \leq n+1-2\left\lfloor\frac{\delta^{-}-k}{2}\right\rfloor .
$$

Proof. Define $t=\left\lfloor\frac{\delta^{-}-k}{2}\right\rfloor$. Since

$$
n \cdot \Delta^{+} \geq \sum_{u \in V(D)} d^{+}(u)=\sum_{u \in V(D)} d^{-}(u) \geq n \cdot \delta^{-}
$$

we observe that $\Delta^{+} \geq \delta^{-} \geq t$. Let $v \in V(D)$ be a vertex of maximum outdegree, and let $A=\left\{u_{1}, u_{2}, \ldots, u_{t}\right\}$ be a set of t out-neighbors of v. Define the function $f: V(D) \rightarrow\{-1,1,2\}$ by $f(v)=2, f\left(u_{i}\right)=-1$ for $1 \leq i \leq t$ and $f(w)=1$ for $w \in V(D)-(A \cup\{v\})$. Then

$$
f(N(x)) \geq-t+\left(\delta^{-}-t\right)=\delta^{-}-2 t=\delta^{-}-2\left\lfloor\frac{\delta^{-}-k}{2}\right\rfloor \geq k
$$

for each vertex $x \in V(D)$. Therefore f is an $\operatorname{STR} k \mathrm{DF}$ on D of weight $2-t+$ $(n-t-1)=n+1-2 t$ and thus $\gamma_{s t R}^{k}(D) \leq n+1-2 t=n+1-2\left\lfloor\frac{\delta^{-}-k}{2}\right\rfloor$.

Corollary 5. If D is a digraph of order n with minimum in-degree $\delta^{-} \geq k+2$, then $\gamma_{s t R}^{k}(D) \leq n-1$.

Corollary 5 implies that $\gamma_{s t R}^{k}(D) \leq n(D)-1$ when $\delta^{-}(D) \geq k+2$. Example 1 shows that $\gamma_{s t R}^{k}(D)=n(D)$ is possible when $\delta^{-}(D)=k$. By Corollary 1, we have $\gamma_{s t R}^{n-2}\left(K_{n}^{*}\right)=n$ and hence $\gamma_{s t R}^{k}(D)=n(D)$ is also possible for $\delta^{-}(D)=k+1$. Consequently, $\gamma_{s t R}^{k}(D) \leq n(D)-1$ is not valid in general when $k \leq \delta^{-}(D) \leq k+1$.
Let K_{n}^{*} be the complete digraph. If $n \geq k+3$ and $n-k-1$ is even, then it follows from Corollary 1 that

$$
\gamma_{s t R}^{k}\left(K_{n}^{*}\right)=k+2=n+1-2\left\lfloor\frac{\delta^{-}\left(K_{n}^{*}\right)-k}{2}\right\rfloor,
$$

and therefore the bound given in Theorem 2 is sharp.

Proposition 5. If D is a digraph of order n with minimum in-degree $\delta^{-}(D) \geq k$, then $\gamma_{s t R}^{k}(D) \geq k+\Delta^{-}(D)-n$.

Proof. Let $v \in V(D)$ be a vertex of maximum in-degree, and f be a $\gamma_{s t R}^{k}(D)$ function. Then the definitions imply

$$
\begin{aligned}
\gamma_{s t R}^{k}(D) & =\sum_{u \in V(D)} f(u)=\sum_{u \in N^{-}(v)} f(u)+\sum_{u \in V(D)-N^{-}(v)} f(u) \\
& \geq k+\sum_{u \in V(D)-N^{-}(v)} f(u) \geq k-\left(n-\Delta^{-}(D)\right)=k+\Delta^{-}(D)-n,
\end{aligned}
$$

and the proof is complete.

Example 2. Let $k \geq 2$ and $r \geq 1$ be integers such that $k \geq r$, and D be a digraph obtained from a complete digraph of order k with vertex set $V\left(K_{k}^{*}\right)=\left\{u_{i} \mid 1 \leq i \leq k\right\}$ by adding the set $\left\{v_{j}, w_{t} \mid 1 \leq j \leq k\right.$ and $\left.1 \leq t \leq r\right\}$ of new vertices and the set

$$
\left\{\left(u_{i}, v_{j}\right),\left(u_{i}, w_{t}\right),\left(w_{t}, v_{j}\right) \mid 1 \leq i \leq k, 1 \leq j \leq k \text { and } 1 \leq t \leq r\right\},
$$

of new arcs. It is easy to see that the function $f: V(D) \rightarrow\{-1,1,2\}$ defined by $f\left(u_{i}\right)=2$ for $1 \leq i \leq k$ and $f(x)=-1$ otherwise, is an $\operatorname{STR} k \mathrm{DF}$ of D and so $\gamma_{s t R}^{k}(D) \leq k-r$. By Proposition 5, we have

$$
\gamma_{s t R}^{k}(D) \geq k+\Delta^{-}(D)-n=k+2 k-(r+2 k)=k-r .
$$

Proposition 6. If D is a digraph of order $n \geq k+2$ with minimum in-degree $\delta^{-}(D) \geq k$, then $\gamma_{s t R}^{k}(D) \geq k+3+\delta^{-}(D)-n$.

Proof. Let f be a $\gamma_{s t R}^{k}(D)$-function. If $f(u)=1$ for all $u \in V(D)$, then $\gamma_{s t R}^{k}(D)=n \geq k+3+\delta^{-}(D)-n$. Now assume that there exists a vertex w with $f(w)=-1$. Then w has an in-neighbor v with $f(v)=2$, and it follows that

$$
\begin{aligned}
\gamma_{s t R}^{k}(D) & =\sum_{u \in V(D)} f(u)=f(v)+\sum_{u \in N^{-}(v)} f(u)+\sum_{u \in V(D)-N^{-}[v]} f(u) \\
& \geq 2+k+\sum_{u \in V(D)-N^{-}[v]} f(u) \geq 2+k-\left(n-d^{-}(v)-1\right) \\
& \geq k+3+\delta^{-}(D)-n,
\end{aligned}
$$

and the proof is complete.

Corollary 1 shows that Proposition 6 is sharp.
Now we show that the signed total Roman k-domination of digraphs can be arbitrary small.

Theorem 3. For any positive integer $t \geq 1$, there exists a digraph D such that

$$
\gamma_{s t R}^{k}(D)=-t
$$

Proof. Let $k \geq 1$ be an integer and D be a digraph obtained from a complete digraph of order $k+1$ with vertex set $V\left(K_{k+1}^{*}\right)=\left\{u_{i} \mid 1 \leq i \leq k+1\right\}$ by adding the set $\left\{v_{j} \mid 1 \leq j \leq t+k+2\right\}$ of new vertices and the set

$$
\left\{\left(u_{i}, v_{j}\right) \mid 1 \leq i \leq k \text { and } 1 \leq j \leq t+k+2\right\}
$$

of new arcs. It is easy to see that the function $f: V(D) \rightarrow\{-1,1,2\}$ defined by $f\left(u_{1}\right)=2, f\left(u_{i}\right)=1$ for $2 \leq i \leq k+1$ and $f(x)=-1$ otherwise, is an $\operatorname{STR} k$ DF of D of weight $-t$ and so $\gamma_{s t R}^{k}(D) \leq-t$. By Proposition 6, we have

$$
\gamma_{s t R}^{k}(D) \geq k+3+\delta^{-}(D)-n=k+3+k-(t+2 k+3)=-t .
$$

This completes the proof.
We call a set $S \subseteq V(D)$ a 2-packing of the digraph D if $N^{-}[u] \cap N^{-}[v]=\varnothing$ for any two distinct vertices of $u, v \in S$. The maximum cardinality of a 2-packing in D is the 2-packing number of D, denoted by $\rho(D)$.

Theorem 4. If D is a digraph of order n such that $\delta^{-}(D) \geq k$, then $\gamma_{s t R}^{k}(D) \geq$ $\rho(D)\left(\delta^{-}(D)+k\right)-n$.

Proof. Let $\left\{v_{1}, v_{2}, \ldots, v_{\rho(D)}\right\}$ be a 2 -packing of D, and f be a $\gamma_{s t R}^{k}(D)$ function. If we define the set $A=\bigcup_{i=1}^{\rho(D)} N^{-}\left(v_{i}\right)$ then, since $\left\{v_{1}, v_{2}, \ldots, v_{\rho(D)}\right\}$ is a 2-packing of D, we have

$$
|A|=\sum_{i=1}^{\rho(D)} d^{-}\left(v_{i}\right) \geq \delta^{-}(D) \cdot \rho(D)
$$

It follows that

$$
\begin{aligned}
\gamma_{s t R}^{k}(D) & =\sum_{u \in V(D)} f(u)=\sum_{i=1}^{\rho(D)} f\left(N^{-}\left(v_{i}\right)\right)+\sum_{u \in V(D)-A} f(u) \\
& \geq k \rho(D)+\sum_{u \in V(D)-A} f(u) \geq k \rho(D)-n+|A| \\
& \geq k \rho(D)-n+\rho(D) \cdot \delta^{-}(D)=\rho(D)\left(\delta^{-}+k\right)-n .
\end{aligned}
$$

Let n be an odd positive integer such $n=2 r+1$ with a positive integer r. We define the circulant tournament $C T(n)$ with n vertices as follows. The vertex set of $C T(n)$ is $V(C T(n))=\left\{u_{0}, u_{1}, \ldots, u_{n-1}\right\}$. For each i, the arcs are going from u_{i} to the vertices $u_{i+1}, u_{i+2}, \ldots, u_{i+r}$, where the indices are taken modulo n.
In [8], the author determines the signed total Roman domination number of circulant tournament $C T(n)$.

Proposition 7. [8] Let $n=2 r+1$ with an integer $r \geq 1$. Then $\gamma_{s t R}(C T(3))=3$, $\gamma_{s t R}(C T(7))=5$ and $\gamma_{s t R}(C T(n))=4$ for $n \geq 5$ with $n \neq 7$.

We obtain the signed total Roman k-domination number of circulant tournament $C T(n)$ when $k \geq 2$.

Theorem 5. Let $n=2 r+1$ with an integer $r \geq k \geq 2$. Then $\gamma_{s t R}^{k}(C T(n))=n$ for $r=k$ and $\gamma_{s t R}^{k}(C T(n))=2 k+2$ when $r>k$.

Proof. According to Proposition 4, $\gamma_{s t R}^{k}(C T(n)) \leq n$. First let $r=k$ and f be a $\gamma_{s t R}^{k}(C T(n))$-function. If $f(u)=1$ for each $u \in V(C T(n))$, then $\omega(f)=n$. Thus let $u \in V(C T(n))$ such that $f(u)=-1$. Therefore there exists a vertex, say u_{r}, such that $f\left(u_{r}\right)=2$. Consider the sets $N^{-}\left(u_{0}\right)=\left\{u_{r+1}, u_{r+2}, \ldots, u_{2 r}\right\}$ and $N^{-}\left(u_{r}\right)=\left\{u_{0}, u_{1}, \ldots, u_{r-1}\right\}$. Since f is an STR $k \operatorname{DF}$ on $C T(n)$, we deduce that

$$
\omega(f)=f\left(N^{-}\left(u_{0}\right)\right)+f\left(N^{-}\left(u_{r}\right)\right)+f\left(u_{r}\right) \geq k+k+2=2 k+2>2 k+1=n,
$$

which is a contradiction. Hence $\gamma_{s t R}^{k}(C T(n))=n=2 k+1$ when $r=k$.
Now let $r>k$ and f be a $\gamma_{s t R}^{k}(C T(n))$-function. If $f(u)=1$ for each $u \in$ $V(C T(n))$, then $\omega(f)=n>2 k+2$ when $r>k$. Thus assume that $f(u)=-1$ for a vertex $u \in V(C T(n))$. Then there exists a vertex, say u_{r}, such that $f\left(u_{r}\right)=2$. Consider the sets $N^{-}\left(u_{0}\right)=\left\{u_{r+1}, u_{r+2}, \ldots, u_{2 r}\right\}$ and $N^{-}\left(u_{r}\right)=$ $\left\{u_{0}, u_{1}, \ldots, u_{r-1}\right\}$. As f is an $\operatorname{STR} k \operatorname{DF}$ on $C T(n)$, we deduce that

$$
\omega(f)=f\left(N^{-}\left(u_{0}\right)\right)+f\left(N^{-}\left(u_{r}\right)\right)+f\left(u_{r}\right) \geq k+k+2=2 k+2 .
$$

Consequently, $\gamma_{s t R}^{k}(C T(n)) \geq 2 k+2$ when $r>k$. Since $r>k \geq 2$, then $n \geq 7$. To prove the equality $\gamma_{s t R}^{k}(C T(n))=2 k+2$ for $n \geq 7$ and $r>k$, we consider two cases.
Case 1. Let r be even. We consider the following subcases.

Subcase 1.1. $k \equiv 0$ (mode 4).
Define the function $g: V(C T(n)) \rightarrow\{-1,1,2\}$ as follows

$$
g\left(u_{i}\right)=\left\{\begin{aligned}
& 2 \text { if } i=0,1 \leq i \leq \frac{k}{2} \text { or } r+1 \leq i \leq r+\frac{k}{2}, \\
&-1 \text { if } \\
& \frac{k}{2}+1 \leq i \leq \frac{r}{2}+\frac{k}{4} \text { or } r+\frac{k}{2}+1 \leq i \leq \frac{3 r}{2}+\frac{k}{4}, \\
& 1 \text { if } \\
& \frac{r}{2}+\frac{k}{4}+1 \leq i \leq r \text { or } \frac{3 r}{2}+\frac{k}{4}+1 \leq i \leq 2 r .
\end{aligned}\right.
$$

Obviously, g is an STR k DF on $C T(n)$ of weight $2 k+2$ and thus $\gamma_{s t R}^{k}(C T(n)) \leq$ $2 k+2$ when $k \equiv 0$ (mode 4).
Subcase 1.2. $k \equiv 1$ (mode 4).
Define the function $g: V(C T(n)) \rightarrow\{-1,1,2\}$ as follows

$$
g\left(u_{i}\right)=\left\{\begin{aligned}
2 & \text { if } i=0,1 \leq i \leq \frac{k+1}{2} \text { or } r+1 \leq i \leq r+\frac{k+1}{2} \\
-1 & \text { if } \frac{k+1}{2}+1 \leq i \leq \frac{r}{2}+\frac{k+3}{4} \text { or } r+\frac{k+1}{2}+1 \leq i \leq \frac{3 r}{2}+\frac{k+3}{4}, \\
1 & \text { if } \frac{r}{2}+\frac{k+3}{4}+1 \leq i \leq r \text { or } \frac{3 r}{2}+\frac{k+3}{4}+1 \leq i \leq 2 r .
\end{aligned}\right.
$$

Obviously, g is an STR k DF on $C T(n)$ of weight $2 k+2$ and thus $\gamma_{s t R}^{k}(C T(n)) \leq$ $2 k+2$ when $k \equiv 1$ (mode 4).
Subcase 1.3. $k \equiv 2$ (mode 4).
Define the function $g: V(C T(n)) \rightarrow\{-1,1,2\}$ as follows

$$
g\left(u_{i}\right)=\left\{\begin{aligned}
& 2 \text { if } i=0,1 \leq i \leq \frac{k}{2}+1 \text { or } r+1 \leq i \leq r+\frac{k}{2}+1 \\
&-1 \text { if } \\
& \frac{k}{2}+2 \leq i \leq \frac{r}{2}+\frac{k+2}{4}+1 \text { or } r+\frac{k}{2}+2 \leq i \leq \frac{3 r}{2}+\frac{k+2}{4}+1, \\
& 1 \text { if } \frac{r}{2}+\frac{k+2}{4}+2 \leq i \leq r \text { or } \frac{3 r}{2}+\frac{k+2}{4}+2 \leq i \leq 2 r
\end{aligned}\right.
$$

Obviously, g is an STR k DF on $C T(n)$ of weight $2 k+2$ and thus $\gamma_{s t R}^{k}(C T(n)) \leq$ $2 k+2$ when $k \equiv 2$ (mode 4).
Subcase 1.4. $k \equiv 3$ (mode 4).
Define the function $g: V(C T(n)) \rightarrow\{-1,1,2\}$ as follows

$$
g\left(u_{i}\right)=\left\{\begin{array}{c}
2 \text { if } i=0,1 \leq i \leq \frac{k-1}{2} \text { or } r+1 \leq i \leq r+\frac{k-1}{2}, \\
-1 \text { if } \frac{k-1}{2}+1 \leq i \leq \frac{r}{2}+\frac{k+1}{4}-1 \\
\text { or } r+\frac{k-1}{2}+1 \leq i \leq \frac{3 r}{2}+\frac{k+1}{4}-1, \\
1 \text { if } \frac{r}{2}+\frac{k+1}{4} \leq i \leq r \text { or } \frac{3 r}{2}+\frac{k+1}{4} \leq i \leq 2 r .
\end{array}\right.
$$

Obviously, g is an STR k DF on $C T(n)$ of weight $2 k+2$ and thus $\gamma_{s t R}^{k}(C T(n)) \leq$ $2 k+2$ when $k \equiv 3$ (mode 4). Then $\gamma_{s t R}^{k}(C T(n))=2 k+2$ when r is even.
Case 2. Let r be odd. We consider the following subcases.
Subcase 2.1. $k \equiv 0(\operatorname{mode} 4)$.
Define the function $g: V(C T(n)) \rightarrow\{-1,1,2\}$ as follows

$$
g\left(u_{i}\right)=\left\{\begin{aligned}
2 & \text { if } i=0,1 \leq i \leq \frac{k}{2}-1 \text { or }+1 \leq i \leq r+\frac{k}{2}-1, \\
-1 & \text { if } \frac{k}{2} \leq i \leq \frac{r-1}{2}+\frac{k}{4}-1 \text { or } r+\frac{k}{2} \leq i \leq \frac{3 r-1}{2}+\frac{k}{4}-1, \\
1 & \text { if } \frac{r-1}{2}+\frac{k}{4} \leq i \leq r \text { or } \frac{3 r-1}{2}+\frac{k}{4} \leq i \leq 2 r .
\end{aligned}\right.
$$

Obviously, g is an STR k DF on $C T(n)$ of weight $2 k+2$ and thus $\gamma_{s t R}^{k}(C T(n)) \leq$ $2 k+2$ when $k \equiv 0$ (mode 4).
Subcase 2.2. $k \equiv 1$ (mode 4).
Define the function $g: V(C T(n)) \rightarrow\{-1,1,2\}$ as follows

$$
g\left(u_{i}\right)=\left\{\begin{aligned}
& 2 \text { if } i=0,1 \leq i \leq \frac{k-1}{2} \text { or } r+1 \leq i \leq r+\frac{k-1}{2} \\
&-1 \text { if } \frac{k-1}{2}+1 \leq i \leq \frac{r-1}{2}+\frac{k-1}{4} \text { or } r+\frac{k-1}{2}+1 \leq i \leq \frac{3 r-1}{2}+\frac{k-1}{4} \\
& 1 \text { if } \frac{r-1}{2}+\frac{k-1}{4}+1 \leq i \leq r \text { or } \frac{3 r-1}{2}+\frac{k-1}{4}+1 \leq i \leq 2 r
\end{aligned}\right.
$$

Obviously, g is an STR k DF on $C T(n)$ of weight $2 k+2$ and thus $\gamma_{s t R}^{k}(C T(n)) \leq$ $2 k+2$ when $k \equiv 1$ (mode 4).
Subcase 2.3. $k \equiv 2$ (mode 4).
Define the function $g: V(C T(n)) \rightarrow\{-1,1,2\}$ as follows

$$
g\left(u_{i}\right)=\left\{\begin{aligned}
2 & \text { if } i=0,1 \leq i \leq \frac{k}{2} \text { or } r+1 \leq i \leq r+\frac{k}{2} \\
-1 & \text { if } \frac{k}{2}+1 \leq i \leq \frac{r-1}{2}+\frac{k+2}{4} \text { or } r+\frac{k}{2}+1 \leq i \leq \frac{3 r-1}{2}+\frac{k+2}{4}, \\
1 & \text { if } \frac{r-1}{2}+\frac{k+2}{4}+1 \leq i \leq r \text { or } \frac{3 r-1}{2}+\frac{k+2}{4}+1 \leq i \leq 2 r
\end{aligned}\right.
$$

Obviously, g is an STR k DF on $C T(n)$ of weight $2 k+2$ and thus $\gamma_{s t R}^{k}(C T(n)) \leq$ $2 k+2$ when $k \equiv 2$ (mode 4).
Subcase 2.4. $k \equiv 3$ (mode 4).
Define the function $g: V(C T(n)) \rightarrow\{-1,1,2\}$ as follows

$$
g\left(u_{i}\right)=\left\{\begin{aligned}
2 & \text { if } \quad i=0,1 \leq i \leq \frac{k+1}{2} \text { or } r+1 \leq i \leq r+\frac{k+1}{2} \\
-1 & \text { if } \quad \frac{k+1}{2}+1 \leq i \leq \frac{r-1}{2}+\frac{k+1}{4}+1 \\
& \text { or } r+\frac{k+1}{2}+1 \leq i \leq \frac{3 r-1}{2}+\frac{k+1}{4}+1 \\
1 & \text { if } \quad \frac{r-1}{2}+\frac{k+1}{4}+2 \leq i \leq r \text { or } \frac{3 r-1}{2}+\frac{k+!}{4}+2 \leq i \leq 2 r
\end{aligned}\right.
$$

Obviously, g is an STR k DF on $C T(n)$ of weight $2 k+2$ and thus $\gamma_{s t R}^{k}(C T(n)) \leq$ $2 k+2$ when $k \equiv 3$ (mode 4). Then $\gamma_{s t R}^{k}(C T(n))=2 k+2$ when r is odd and this completes the proof.

The complement \bar{D} of a digraph D is the digraph with vertex set $V(D)$ such that for any two distinct vertices u and v the $\operatorname{arc}(u, v)$ belongs to \bar{D} if and only if (u, v) does not belong to D. Finally, we present a so called NordhausGaddum type inequality for the signed total Roman k-domination number of regular digraphs.

Theorem 6. If D is an r-regular digraph of order n such that $r \geq k$ and $n-r-1 \geq$ k, then

$$
\gamma_{s t R}^{k}(D)+\gamma_{s t R}^{k}(\bar{D}) \geq \frac{4 k n}{n-1}
$$

If n is even, then $\gamma_{s t R}^{k}(D)+\gamma_{s t R}^{k}(\bar{D}) \geq \frac{4 k(n-1)}{n-2}$.

Proof. Since D is r-regular, the complement \bar{D} is $(n-r-1)$-regular. Therefore it follows from Corollary 3 that

$$
\gamma_{s t R}^{k}(D)+\gamma_{s t R}^{k}(\bar{D}) \geq k n\left(\frac{1}{r}+\frac{1}{n-r-1}\right)
$$

The conditions $r \geq k$ and $n-r-1 \geq k$ imply that $k \leq r \leq n-k-1$. As the function $f(x)=\frac{1}{x}+\frac{1}{n-x-1}$ has its minimum for $x=\frac{(n-1)}{2}$ when $k \leq x \leq n-k-1$, we obtain

$$
\gamma_{s t R}^{k}(D)+\gamma_{s t R}^{k}(\bar{D}) \geq k n\left(\frac{1}{r}+\frac{1}{n-r-1}\right) \geq k n\left(\frac{2}{n-1}+\frac{2}{n-1}\right)=\frac{4 k n}{n-1}
$$

and this is the desired bound. If n is even, then the function f has its minimum for $r=x=\frac{n-2}{2}$ or $r=x=\frac{n}{2}$, since r is an integer. Hence this case leads to

$$
\gamma_{s t R}^{k}(D)+\gamma_{s t R}^{k}(\bar{D}) \geq k n\left(\frac{1}{r}+\frac{1}{n-r-1}\right) \geq k n\left(\frac{2}{n}+\frac{2}{n-2}\right)=\frac{4 k(n-1)}{n-2},
$$

and the proof is complete.
Let $k \geq 2$ be an even integer, and D and \bar{D} be k-regular digraphs of order $n=2 k+1$. By Example 1, we have $\gamma_{s t R}^{k}(D)=\gamma_{s t R}^{k}(\bar{D})=n$. Consequently,

$$
\gamma_{s t R}^{k}(D)+\gamma_{s t R}^{k}(\bar{D})=2 n=\frac{4 k n}{n-1}
$$

Thus the Nordhaus-Gaddum bound of Theorem 6 is sharp for even k.

References

[1] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Domination in graphs: advanced topics, Marcel Dekker, 1998.
[2] _ Fundamentals of domination in graphs, CRC Press, 1998.
[3] M.A. Henning, Signed total domination in graphs, Discrete Math. 278 (2004), no. 1, 109-125.
[4] E. Shan and T.C.E. Cheng, Remarks on the minus (signed) total domination in graphs, Discrete Math. 308 (2008), no. 15, 3373-3380.
[5] S.M. Sheikholeslami and L. Volkmann, Signed total k-domination numbers of a directed graphs, An. St. Univ. Ovidius Constanta. 18 (2010), no. 2, 241-252.
[6] L. Volkmann, Signed total Roman k-domination in graphs, submitted.
[7] , Signed total Roman domination in graphs, J. Comb. Optim. 32 (2016), no. 3, 855-871.
[8] _ Signed total Roman domination in digraphs, Discuss. Math. Graph Theory. 37 (2017), no. 1, 261-272.
[9] C. Wang, The signed k-domination numbers in graphs, Ars Combin. 106 (2012), 205-211.
[10] B. Zelinka, Signed total domination numbers of a graph, Czechoslovak Math. J. 51 (2001), no. 2, 225-229.

[^0]: * Corresponding Author

