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Abstract: Let D be a finite and simple digraph with vertex set V(D). A
signed total Roman k-dominating function (STRkDF) on D is a function f :
V(D) — {-1,1,2} satisfying the conditions that (i) >°,cn— () f(z) = k for
each v € V(D), where N~ (v) consists of all vertices of D from which arcs go

into v, and (ii) every vertex u for which f(u) = —1 has an inner neighbor v
for which f(v) = 2. The weight of an STREDF f is w(f) = ZveV(D) f).

The signed total Roman k-domination number 'yftR(D) of D is the minimum
weight of an STREDF on D. In this paper we initiate the study of the signed
total Roman k-domination number of digraphs, and we present different bounds
on 'yft r(D). In addition, we determine the signed total Roman k-domination
number of some classes of digraphs. Some of our results are extensions of known
properties of the signed total Roman k-domination number v¥, o (G) of graphs
G.
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1. Introduction

Let D be a finite and simple digraph with vertex set V(D) and arc set A(D).
The integers n = n(D) = |V(D)| and m = m(D) = |A(D)| are the order and
the size of the digraph D, respectively. We write dj,(v) = d*(v) for the out-
degree of a vertex v and d,(v) = d~(v) for its in-degree. The minimum and
maximum in-degree are 6~ (D) = §~ and A~ (D) = A~ and the minimum and
maximum out-degree are §7(D) = 6+ and AT(D) = AT. The sets N (v) =
N*t() ={u] (v,u) € A(D)} and N (v) = N~ (v) = {u | (u,v) € A(D)} are
called the out-neighborhood and in-neighborhood of the vertex v. Likewise,
Nf[v] = Nt[v] = N*(v) U {v} and Np[v] = N-[v] = N~ (v) U {v}. If
S C V(D), then DI[S] is the subdigraph induced by S. For an arc (u,v) € A(D),
the vertex v is an out-neighbor of u and u is an in-neighbor of v, and we also say
that u dominates v or v is dominated by u. The underlying graph of a digraph
D is that graph obtained by replacing each arc (u,v) or symmetric pairs (u,v),
(v,u) of arcs by the edge uv. A digraph D is connected if its underlying graph
is connected. For a real-valued function f : V(D) — R, the weight of f is
w(f) = Xyevp) f(v), and for S C V(D), we define f(S) = >_,c5 f(v), so
w(f) = f(V(D)). Consult [1, 2] for notation and terminology which are not
defined here.

A signed total k-dominating function on a digraph D defined in [5] is a function
f: V(D) = {-1,1} such that 3> n-(, f(u) > k for every v € V(D).

A signed total Roman k-dominating function (STREDF) on D defined is a
function f : V(D) — {-1,1,2} such that }_ cn-(, f(u) = k for every v €
V(D) and every vertex u for which f(u) = —1 has an in-neighbor v for which
f(v) = 2. The weight of an STREDF f on adigraph D isw(f) = >_,cy (p) f(v).
The signed total Roman k-domination number v¥, (D) of D is the minimum
weight of an STREDF on D. A ~%.(D)-function is a signed total Roman
k-dominating function on D of weight 7% o(D). For an STRKDF f on D,
let Vi = VI = {v e V(D) : f(v) =i} fori = —1,1,2. An STRADF
f: V(D) — {—1,1,2} can be represented by the ordered partition (V_1, V7, V3)
of V(D). In the special case where k = 1, the signed total Roman 1-domination
number is the usual signed total Roman domination number [8].

The signed total Roman k-domination number exists when (D) > g How-
ever, for investigations of the signed total Roman k-domination number it is
reasonable to claim that 6~ (D) > k. Thus we assume throughout this paper
that 6~ (D) > k.

Let G be a finite and simple with vertex set V(G), and let N(v) = Ng(v) be the
neighborhood of the vertex v. A signed total k-dominating function on a graph
G defined in [9] is a function f: V(G) — {—1,1} such that >_ .y, f(u) = k
for every v € V(G). The minimum cardinality of a signed total k-dominating
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function is the signed total k-domination number 7% (G). This parameter is
studied by several authors, see for example [3, 4, 10].

A signed total Roman k-dominating function (STREDF) on a graph G defined
in [6] is a function f : V(G) — {-1,1,2} such that }_ . n_(, f(u) = k for
every v € V(G), and every vertex u for which f(u) = —1 is adjacent to a
vertex v for which f(v) = 2. The weight of an STREKDF f on a graph G is
w(f) =2 ,ev(q) f(v). The signed total Roman k-domination number vk R (G)
of G is the minimum weight of an STREDF on G. The special case kK = 1 was
introduced in [7].

In this paper, we initiate the study of the signed total Roman k-domination
number in digraphs. We present different sharp lower and upper bounds on
7k r(D). In addition, we also determine exact values of some classes of di-
graphs. Some of our results imply known properties of the signed total Roman
k-domination number v, (G) of graphs G given in [6].

The associated digraph D(G) of a graph G is the digraph obtained from G
when each edge e of G is replaced by two oppositely oriented arcs with the same
ends as e. Since NB(G)(U) = Ng(v) for each vertex v € V(G) = V(D(G)), the
following useful observation is valid.

Observation 1. If D(G) 1is the associated digraph of a graph G, then
Yar(D(G)) = vr(G).

Let K, be the complete graph of order n. In [6], the author determines the
signed total Roman k-domination number of complete graphs.

Proposition 1. [6] If n > k42, then v (K,) = k + 2.

Assume that K, complete digraph of order n, is the associated digraph D(K,,)
of a graph K,,. Using Observation 1 and Proposition 1, we obtain the signed
total Roman k-domination number of complete digraphs.

Corollary 1. Ifn>k+2, then v55(K:) =k +2.

Let K, be the complete bipartite graph of order 2p. In [6], the author de-
termines the signed total Roman k-domination number of complete bipartite
graphs.

Proposition 2. [6] If k > 1 and p > k, then 5,5 (Kp,p) = 2k, with exception of
the case that k = 1 and p = 3, in which case yLp(K33) = 4.
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Assume that K ,, complete bipartite digraph of order 2p, is the associated
digraph D(K,,) of a graph K, ,. Using Observation 1 and Proposition 2,
we obtain the signed total Roman k-domination number of complete bipartite

digraphs.

Corollary 2. Ifk > 1 and p > k, then v5,r(K},) = 2k, with exception of the
case that k = 1 and p = 3, in which case W;tR(K§73) =4.

2. Bounds on the signed total Roman k-domination num-
ber

In this section, we present some sharp bounds on the signed total Roman k-
domination number. We start with some preliminary results.

For an integer p > 1, a subset S of vertices of a digraph D is called a total
p-dominating set if every vertex v € V(D) has at least p in-neighbors in S.

Proposition 3. If f = (V_1,Vi,V2) is an STREDF on a digraph D of order n
and minimum in-degree 6~ (D) > k, then

1. |Voa| + VA + V] = n.
2. w(f) = [Val +21Va| — [V_1].

3. Vi UVa is a total [2]-dominating set of D.

Proof.  Since (1) and (2) are immediate, we only prove (3). Suppose to the
contrary, that there exists a vertex v with at most f%} — 1 in-neighbors in
Vi U V5. Then v has at least

(D)~ (-1 = k- (2] -,

in-neighbors in V_;. It follows that

E< ) <2151 -1) - (k- T3+ 1)

2k 3(2k + 2)
3

=3[5 | —k-3< —k-3=k—1,

which is a contradiction. Consequently, V3 U V5 is a total f%]—dominating set
of D. O

Theorem 1. Let k > 1 be an integer, and let D be a digraph of order n with
minimum in-degree 6 (D) > k. If AT (D) = A" and 61 (D) = 6", then
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1. (287 = B)[Va| + (AT = K)[Va| > (67 + K)[Voal.
2. AT +N)|Va| + (AT +8M)|Va| > (61 + k)n.
3. (AT +6N)w(f) > (6T +2k— AN)n+ (67 — AT)| V4.

st42k—2At
4ow(f) > CFREES 4 ).

Proof. (1) It follows from Proposition 3 (1) that

RVl + il +Val) =kn < Y fFIN"(0)= D d*(v)f(v)

veV(D) veV (D)
= > 2T w)+ > dtw) = Y df(v)
veVs veV] veV_q

< OAHV| + ATVA| - 64V,

This inequality chain yields to the desired bound in (1).

(2) Proposition 3 (1) implies that |V_1| = n — |V4| — |Va|. Using this identity
and Part (1) of Proposition 1, we arrive at (2).

(3) According to Proposition 3 and Part (2) of Proposition 1, we obtain Part
(3) of Proposition 1 as follows

(AT +07)w(f) = (AT +07)2(|Vi| + [Va]) — n + [ V2])
> 2061 + k)n 4 2(AT +67)[Va| — 2(2AT +67)|V5|
+(AT+67)([Va] = n)
= (0" +2k— AN+ (67 — AT |V

(4) The inequality chain in the proof of Part (1) and Proposition 3 (1) show
that

kn < 2A% (Vi U V| — 6F|V_y|
= 20TV UVo| = 6 (n — [Vi U V3l)
= 2A% + 55V UVa| — 6% n,

and thus 5+ )
n(dT +k

> —

L ey =
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Using this inequality and Proposition 3, we obtain

w(f) =2[ViUVe| —n+ |V
2n(6t + k)
= AT 4o
_ n(d* +2k—2A%)

=" oAty TV

—n+ |Vs

This is the bound in Part (4), and the proof is complete. O

A digraph D is out-regular or r-out-regular if §1(D) = AT (D) =r.

Corollary 3. Let D be a digraph of order n with minimum in-degree 6~ > k,
minimum out-degree 5 and mazimum out-degree AY. Then

+ +
(D) 2 (IR,

Proof. If D is an r-out-regular digraph, then result is an immediate conse-
quence of Theorem 1 part (3). Let D be not out-regular digraph. Multiplying
both sides of the inequality in Theorem 1 part (4) by AT — 6% and adding
the resulting inequality to the inequality in Theorem 1 part (3), we obtain the
desired lower bound. O

Corollary 3 and Observation 1 lead to the next known result.

Corollary 4. [6] Let G be a graph of order n, minimum degree § > k and
mazximum degree A. If A > §, then

26 + 3k — 2A
k > (",

n(G) > (P

The special case k = 1 of Corollary 4 can be found in [7]. Example 12 in [6]
demonstrates that Corollary 4 is sharp. This example together with Observa-
tion 1 shows that Corollary 3 is sharp too.

Proposition 4. If D is a digraph of order n with minimum in-degree 6~ > k,
then vsr(D) < n.

Proof.  Define the function f : V(D) — {—1,1,2} by f(v) =1 for each vertex
v € V(D). Since §~ > k, the function f is an STREDF on D of weight n and
thus 7% o(D) < n. O
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A digraph D is r-regular if A= (D) = AT (D) =6 (D) =6"(D) =r.

Example 1. If D is a k-regular digraph of order n, then it follows from Corollary
3 that 7% (D) > n and so 75,z (D) = n, according to Proposition 4.

Example 1 demonstrates that Proposition 4 and Corollary 3 are both sharp.
If 6~ > k + 2, then we can improve the bound in Proposition 4.

Theorem 2. If D is a digraph of order n with minimum in-degree 6~ > k + 2,
then
0" —k

2 )

’thR(D) <n+1-2|

Proof. Define t = [*5%]. Since

n- At > Z dt(u) = Z d(u)>n-46",

uev (D) uweV (D)

we observe that A™ > §~ > t. Let v € V(D) be a vertex of maximum out-
degree, and let A = {uj,ug,...,us} be a set of ¢ out-neighbors of v. Define
the function f: V(D) — {-1,1,2} by f(v) =2, f(u;) = —1for 1 <i <t and
f(w)=1forwe V(D) - (AU{v}). Then

FIN@) > —t+ (6" —t) =6~ —2=6"—2|

for each vertex x € V(D). Therefore f is an STRADF on D of weight 2 — ¢ +

(n—t—1)=n+1-2tand thus 75, ,(D) <n+1-2t=n+1-2[>5%| O

Corollary 5. If D is a digraph of order n with minimum in-degree 6~ > k + 2,
then v, (D) <n — 1.

Corollary 5 implies that 7% (D) < n(D) — 1 when 6~ (D) > k + 2. Example
1 shows that % (D) = n(D) is possible when §~(D) = k. By Corollary
1, we have 7" 2(K}) = n and hence v¥,,(D) = n(D) is also possible for
§7(D) = k+1. Consequently, v¥ (D) < n(D) — 1 is not valid in general when
k<6 (D)<k+1.

Let K be the complete digraph. If n > k+ 3 and n — k — 1 is even, then it
follows from Corollary 1 that

fyfmm)mgnﬂﬂwy

2

and therefore the bound given in Theorem 2 is sharp.
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Proposition 5. If D is a digraph of order n with minimum in-degree 6~ (D) > k,
then Y5 (D) > k + A~ (D) — n.

Proof. Let v € V(D) be a vertex of maximum in-degree, and f be a v, ,(D)-
function. Then the definitions imply

VEr(D)= Y flu Z f > fw)

ueV (D) u€EN— ueV(D)fN*(v)

>k+ Y f(u) >k—(n—A(D)=k+A7(D)—n,
u€V(D)—N~(v)

and the proof is complete. O

Example 2. Let kK > 2 and r > 1 be integers such that £k > r, and D be a digraph
obtained from a complete digraph of order k with vertex set V(K}) = {u; | 1 <i < k}
by adding the set {vj,w: | 1 <j<kand1l<t¢<r} of new vertices and the set

{(uiavj)a(uiawt)7(wtavj)| 1 SZS k? 1 S] < k and 1 Stﬁ'r},

of new arcs. It is easy to see that the function f : V(D) — {—1,1,2} defined by
flu;) = 2 for 1 <4 < k and f(z) = —1 otherwise, is an STREDF of D and so
v*,=(D) < k — r. By Proposition 5, we have

VER(D) > k4+ AT (D) —n=Fk+2k— (r+2k)=k—r.

Proposition 6. If D is a digraph of order n > k + 2 with minimum in-degree
57 (D) >k, then y5r(D) > k+3+67 (D) — n.

Proof. Let f be a v%p(D)-function. If f(u) = 1 for all u € V(D), then
YR R(D) =n > k+ 3+ 8 (D) —n. Now assume that there exists a vertex w
with f(w) = —1. Then w has an in-neighbor v with f(v) = 2, and it follows
that

D)= Y flu)= Z f S fw

ueV (D) u€EN~ uEV(D)fN—[v]

> 24k + > f(u) ZQ—I—k—(n—d‘(v)—l)
weV (D)—N—[v]

>k+3+06(D)—n,

and the proof is complete. O
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Corollary 1 shows that Proposition 6 is sharp.
Now we show that the signed total Roman k-domination of digraphs can be
arbitrary small.

Theorem 3. For any positive integer t > 1, there exists a digraph D such that
k
’YstR(D) = —t.

Proof. Let k > 1 be an integer and D be a digraph obtained from a complete
digraph of order k + 1 with vertex set V(K ;) = {u; | 1 <i < k+ 1} by
adding the set {v; | 1 < j <t+k+ 2} of new vertices and the set

{(us,vj) | 1<i<kandl<j<t+k+ 2},

of new arcs. It is easy to see that the function f : V(D) — {—1,1,2} defined
by f(u1) =2, f(u;)) =1for 2 < i < k+1 and f(x) = —1 otherwise, is an
STREDF of D of weight —t and so 7% (D) < —t. By Proposition 6, we have

Ve R(D)>k+3+6 (D) —n=k+3+k—(t+2k+3)=—

This completes the proof. O

We call a set S C V(D) a 2-packing of the digraph D if N~ [u] NN~ [v] = @ for
any two distinct vertices of u,v € S. The maximum cardinality of a 2-packing
in D is the 2-packing number of D, denoted by p(D).

Theorem 4. If D is a digraph of order n such that §~ (D) > k, then 5, z(D) >
p(D)(67 (D) + k) —n.

Proof.  Let {v1,v2,...,v,py} be a 2-packing of D, and f be a 7% ,(D)-

function. If we define the set A = Ufi?) N~ (v;) then, since {v1,v2,...,v,p)}
is a 2-packing of D, we have

p(D
A= 3" d"(v) 2 67 (D) - p(D).
=1

It follows that

p(D)
VD)= D" fw)=> fIN"()+ > flw
ueV (D) i=1 uweV(D)—A
> kp(D) + Z f(u) > kp(D) —n +|A]|
ueV(D)—A

> kp(D)—n+p(D)-6~(D)=p(D)(6 +k)—n.
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O

Let n be an odd positive integer such n = 2r + 1 with a positive integer r. We
define the circulant tournament CT'(n) with n vertices as follows. The vertex
set of CT'(n) is V(CT(n)) = {ug,u1, ..., un—1}. For each i, the arcs are going
from u; to the vertices u;41, Uit2,. .., U1, where the indices are taken modulo
n.

In [8], the author determines the signed total Roman domination number of
circulant tournament CT'(n).

Proposition 7. [8] Let n = 2r+1 with an integer r > 1. Then v:r(CT(3)) = 3,
Ystr(CT (7)) =5 and vstr(CT(n)) =4 forn > 5 withn # 7.

We obtain the signed total Roman k-domination number of circulant tourna-
ment CT'(n) when k > 2.

Theorem 5. Let n = 2r 4+ 1 with an integer r > k > 2. Then v%5(CT(n)) = n
forr =k and ¥,z (CT(n)) = 2k + 2 when r > k.

Proof.  According to Proposition 4, ¥, »(CT(n)) < n. First let r = k and f
be a vX, o (CT(n))-function. If f(u) = 1 for each u € V(CT(n)), then w(f) = n.
Thus let w € V(CT(n)) such that f(u) = —1. Therefore there exists a vertex,
say u,, such that f(u,) = 2. Consider the sets N~ (ug) = {41, Urt2, ..., U2}
and N~ (u,) = {ug, u1,...,ur_1}. Since f is an STREDF on CT'(n), we deduce
that

w(f) = F(N"(uo)) + F(N~(uy)) + fluy) >k +k+2=2k+2>2k+1=n,

which is a contradiction. Hence 7%, ,(CT(n)) = n = 2k + 1 when r = k.

Now let 7 > k and f be a v¥5(CT(n))-function. If f(u) = 1 for each u €
V(CT(n)), then w(f) =n > 2k + 2 when r > k. Thus assume that f(u) = —1
for a vertex u € V(CT(n)). Then there exists a vertex, say u,, such that
f(ur) = 2. Consider the sets N~ (ug) = {tupi1,Ury2,...,us} and N~ (u,) =
{ug,u1,y...,ur—1}. As f is an STREDF on CT(n), we deduce that

w(f)=f(N"(uo)) + f(N"(ur)) + f(uy) > k+k+2=2k+2.

Consequently, v* »(CT(n)) > 2k +2 when r > k. Since 7 > k > 2, then n > 7.
To prove the equality 7% o (CT(n)) = 2k + 2 for n > 7 and r > k, we consider
two cases.

Case 1. Let r be even. We consider the following subcases.
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Subcase 1.1. k£ =0 (mode 4).
Define the function g : V(CT'(n)) — {—1, 1,2} as follows

2if i=0,1<i<forr+1<i<r+4%,
glu) =< -1if E+1<i<i4+blorr+b+1<i<¥4k
Lif 2424+ 1<i<ro®+ii1<i<orn

Obviously, g is an STREDF on CT(n) of weight 2k+2 and thus 7%, 5 (CT(n)) <
2k + 2 when k£ =0 (mode 4).

Subcase 1.2. k=1 (mode 4).

Define the function g : V(CT(n)) — {—1,1,2} as follows

2if i=0,1<i<®lorr+1<i<r+ ki
glu) =3¢ -1if Bl p1<i<f+ B3 orp 4 Bl 41 <i<d 4 28
Lif 2458 11 <i<pror 345483 11 <<

Obviously, g is an STREDF on CT(n) of weight 2k+2 and thus 7%, 5 (CT(n)) <
2k + 2 when k =1 (mode 4).

Subcase 1.3. k£ =2 (mode 4).

Define the function g : V(CT(n)) — {—1,1,2} as follows

Etlorr+1<i<r+f41,
+E2 o+ b p2<i< i 4 B2
z§ror%+%+2§i§2r.

Obviously, g is an STREDF on CT(n) of weight 2k+2 and thus 7%, 5 (CT(n)) <
2k + 2 when k = 2 (mode 4).

Subcase 1.4. k = 3 (mode 4).

Define the function g : V(CT(n)) — {—1,1,2} as follows

2if i=0, 1<i<ELlorr4+1<i<r+ b2
1if Bl yr<i< 4 R
orr+ Al 41 <g <3y kil g

Lif 2+58 <i<rord+51 <i<or

g(u;) =

Obviously, g is an STREDF on CT(n) of weight 2k+2 and thus 7%, ,(CT(n)) <
2k + 2 when k = 3 (mode 4). Then v¥,5(CT(n)) = 2k + 2 when r is even.
Case 2. Let r be odd. We consider the following subcases.

Subcase 2.1. k=0 (mode 4).

Define the function g : V(CT(n)) — {—1, 1,2} as follows

2if i=0,1<i<f—Tor+1<i<r+%-1,
gu) =9 -1if b<i<t 4k _Jorrpb<i<ily b
1 if 7’§1+§§2§r0r3r—;1+2§i§2r.
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Obviously, g is an STREDF on CT(n) of weight 2k+2 and thus 7%, 5 (CT(n)) <
2k + 2 when k =0 (mode 4).

Subcase 2.2. k=1 (mode 4).

Define the function g : V(CT(n)) — {—1,1,2} as follows

2ﬁ@:Q1§¢§21mr+1g <r+ A2
glug) = § -1 if FFH4+1<i <13 +%or+7+1§ < Sl kgl
1 if §1+%§+1§ <ror Il 4l 4] <<

Obviously, g is an STREDF on CT(n) of weight 2k+2 and thus 7%, 5 (CT(n)) <
2k + 2 when k£ =1 (mode 4).

Subcase 2.3. k =2 (mode 4).

Define the function g : V(CT(n)) — {—1,1,2} as follows

i<Eor r+1<i<r+w
§T21+worr+ +1<Z<3T21+k1_27

1 if T_1+TQ+1< gror%—l+k+2+1§z§2r.

Obviously, g is an STREDF on CT(n) of weight 2k+2 and thus 7%, 5 (CT(n)) <
2k + 2 when k = 2 (mode 4).

Subcase 2.4. k = 3 (mode 4).

Define the function g : V(CT(n)) — {—1,1,2} as follows

2if i=0, 1<i<EH orr4+1<i<r+4 5t

= PRSI
glu;) = orr—l—%—&-lgiﬁg’ﬂ;lﬁ-%—kl
k

Lif 45 po<i<ror Il 4 B 42 <<

+

Obviously, g is an STREDF on CT(n) of weight 2k+2 and thus 7%, ,(CT(n)) <
2k + 2 when k = 3 (mode 4). Then v%,;(CT(n)) = 2k + 2 when 7 is odd and
this completes the proof. O

The complement D of a digraph D is the digraph with vertex set V(D) such
that for any two distinct vertices u and v the arc (u,v) belongs to D if and
only if (u,v) does not belong to D. Finally, we present a so called Nordhaus-
Gaddum type inequality for the signed total Roman k-domination number of
regular digraphs.

Theorem 6. If D is an r-regular digraph of order n such thatr >k andn—r—1>
k, then

4kn

n—1

'7§tR(D) + 'VEtR(E) >

If n is even, then v5,z(D) + ¥, p(D) > -1

- n—2
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Proof.  Since D is r-regular, the complement D is (n—r—1)-regular. Therefore
it follows from Corollary 3 that

— 1 1
k k
D)+ D) > kn(- +
Vstr(D) + vgr(D) = n(r ]

).

The conditions » > k and n —r — 1 > k imply that K < r < n—k — 1.

As the function f(z) = % + n7;71 has its minimum for x = ("2;1) when

k<z<n-—k-—1, we obtain

1 2 2 4kn
>k =
>_ n(nfl+n71)

1
k k
D D)>kn(-+ ———
VstR( )+’78tR< )— n<7"+7l7’l"*1

n—1’
and this is the desired bound. If n is even, then the function f has its minimum
forr=z= ”T*Q orr =x = g, since 7 is an integer. Hence this case leads to

— 1 1 2 2 4k(n —1)
k k

D)+ D) > kn(— + > kn(—+ =
Vstr(D) + vsir(D) = n(r n—r—l)* n(n n—2) n_9

and the proof is complete. O

Let & > 2 be an even integer, and D and D be k-regular digraphs of order
n = 2k + 1. By Example 1, we have v (D) = 4% (D) = n. Consequently,

4kn
n—1

'thR(D) + 'VftR(ﬁ> =2n =

Thus the Nordhaus-Gaddum bound of Theorem 6 is sharp for even k.
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