

Signed total Roman k-domination in directed graphs

Nasrin Dehgardi^{1*} and Lutz Volkmann²

¹Department of Mathematics and Computer Science, Sirjan University of Technology, Sirjan, Iran n.dehgardi@sirjantech.ac.ir

 $^2 {\rm Lehrstuhl}$ II für Mathematik, RWTH Aachen University, 52056 Aachen, Germany volkm@math2.rwth-aachen.de

Received: 13 September 2016; Accepted: 26 December 2016; Available Online: 30 December 2016.

Communicated by Alireza Ghaffari-Hadigheh

Abstract: Let D be a finite and simple digraph with vertex set V(D). A signed total Roman k-dominating function (STRkDF) on D is a function $f: V(D) \to \{-1, 1, 2\}$ satisfying the conditions that (i) $\sum_{x \in N^-(v)} f(x) \ge k$ for each $v \in V(D)$, where $N^-(v)$ consists of all vertices of D from which arcs go into v, and (ii) every vertex u for which f(u) = -1 has an inner neighbor v for which f(v) = 2. The weight of an STRkDF f is $\omega(f) = \sum_{v \in V(D)} f(v)$. The signed total Roman k-domination number $\gamma^k_{stR}(D)$ of D is the minimum weight of an STRkDF on D. In this paper we initiate the study of the signed total Roman k-domination number of digraphs, and we present different bounds on $\gamma^k_{stR}(D)$. In addition, we determine the signed total Roman k-domination number of our results are extensions of known properties of the signed total Roman k-domination number $\gamma^k_{stR}(G)$ of graphs G.

Keywords: Digraph, Signed total Roman *k*-dominating function, Signed total Roman *k*-domination.

2010 Mathematics Subject Classification: 05C69

* Corresponding Author

1. Introduction

Let D be a finite and simple digraph with vertex set V(D) and arc set A(D). The integers n = n(D) = |V(D)| and m = m(D) = |A(D)| are the order and the size of the digraph D, respectively. We write $d_D^+(v) = d^+(v)$ for the outdegree of a vertex v and $d_D^-(v) = d^-(v)$ for its in-degree. The minimum and maximum in-degree are $\delta^{-}(D) = \delta^{-}$ and $\Delta^{-}(D) = \Delta^{-}$ and the minimum and maximum out-degree are $\delta^+(D) = \delta^+$ and $\Delta^+(D) = \Delta^+$. The sets $N_D^+(v) =$ $N^+(v) = \{u \mid (v, u) \in A(D)\}$ and $N^-_D(v) = N^-(v) = \{u \mid (u, v) \in A(D)\}$ are called the out-neighborhood and in-neighborhood of the vertex v. Likewise, $N_D^+[v] = N^+[v] = N^+(v) \cup \{v\}$ and $N_D^-[v] = N^-[v] = N^-(v) \cup \{v\}$. If $S \subseteq V(D)$, then D[S] is the subdigraph induced by S. For an arc $(u, v) \in A(D)$, the vertex v is an out-neighbor of u and u is an in-neighbor of v, and we also say that u dominates v or v is dominated by u. The underlying graph of a digraph D is that graph obtained by replacing each arc (u, v) or symmetric pairs (u, v), (v, u) of arcs by the edge uv. A digraph D is connected if its underlying graph is connected. For a real-valued function $f: V(D) \to R$, the weight of f is $\omega(f) = \sum_{v \in V(D)} f(v)$, and for $S \subseteq V(D)$, we define $f(S) = \sum_{v \in S} f(v)$, so $\omega(f) = f(V(D))$. Consult [1, 2] for notation and terminology which are not defined here.

A signed total k-dominating function on a digraph D defined in [5] is a function $f: V(D) \to \{-1, 1\}$ such that $\sum_{u \in N^-(v)} f(u) \ge k$ for every $v \in V(D)$.

A signed total Roman k-dominating function (STRkDF) on D defined is a function $f: V(D) \to \{-1, 1, 2\}$ such that $\sum_{u \in N^-(v)} f(u) \ge k$ for every $v \in V(D)$ and every vertex u for which f(u) = -1 has an in-neighbor v for which f(v) = 2. The weight of an STRkDF f on a digraph D is $\omega(f) = \sum_{v \in V(D)} f(v)$. The signed total Roman k-domination number $\gamma_{stR}^k(D)$ of D is the minimum weight of an STRkDF on D. A $\gamma_{stR}^k(D)$ -function is a signed total Roman k-dominating function on D of weight $\gamma_{stR}^k(D)$. For an STRkDF f on D, let $V_i = V_i^f = \{v \in V(D) : f(v) = i\}$ for i = -1, 1, 2. An STRkDF $f: V(D) \to \{-1, 1, 2\}$ can be represented by the ordered partition (V_{-1}, V_1, V_2) of V(D). In the special case where k = 1, the signed total Roman 1-domination number is the usual signed total Roman domination number [8].

The signed total Roman k-domination number exists when $\delta^{-}(D) \geq \frac{k}{2}$. However, for investigations of the signed total Roman k-domination number it is reasonable to claim that $\delta^{-}(D) \geq k$. Thus we assume throughout this paper that $\delta^{-}(D) \geq k$.

Let G be a finite and simple with vertex set V(G), and let $N(v) = N_G(v)$ be the neighborhood of the vertex v. A signed total k-dominating function on a graph G defined in [9] is a function $f: V(G) \to \{-1, 1\}$ such that $\sum_{u \in N(v)} f(u) \ge k$ for every $v \in V(G)$. The minimum cardinality of a signed total k-dominating function is the signed total k-domination number $\gamma_{st}^k(G)$. This parameter is studied by several authors, see for example [3, 4, 10].

A signed total Roman k-dominating function (STRkDF) on a graph G defined in [6] is a function $f: V(G) \to \{-1, 1, 2\}$ such that $\sum_{u \in N_G(v)} f(u) \ge k$ for every $v \in V(G)$, and every vertex u for which f(u) = -1 is adjacent to a vertex v for which f(v) = 2. The weight of an STRkDF f on a graph G is $\omega(f) = \sum_{v \in V(G)} f(v)$. The signed total Roman k-domination number $\gamma_{stR}^k(G)$ of G is the minimum weight of an STRkDF on G. The special case k = 1 was introduced in [7].

In this paper, we initiate the study of the signed total Roman k-domination number in digraphs. We present different sharp lower and upper bounds on $\gamma_{stR}^k(D)$. In addition, we also determine exact values of some classes of digraphs. Some of our results imply known properties of the signed total Roman k-domination number $\gamma_{stR}^k(G)$ of graphs G given in [6].

The associated digraph D(G) of a graph G is the digraph obtained from Gwhen each edge e of G is replaced by two oppositely oriented arcs with the same ends as e. Since $N_{D(G)}^{-}(v) = N_{G}(v)$ for each vertex $v \in V(G) = V(D(G))$, the following useful observation is valid.

Observation 1. If D(G) is the associated digraph of a graph G, then $\gamma_{stR}^k(D(G)) = \gamma_{stR}^k(G)$.

Let K_n be the complete graph of order n. In [6], the author determines the signed total Roman k-domination number of complete graphs.

Proposition 1. [6] If $n \ge k+2$, then $\gamma_{stR}^k(K_n) = k+2$.

Assume that K_n^* , complete digraph of order n, is the associated digraph $D(K_n)$ of a graph K_n . Using Observation 1 and Proposition 1, we obtain the signed total Roman k-domination number of complete digraphs.

Corollary 1. If $n \ge k+2$, then $\gamma_{stR}^k(K_n^*) = k+2$.

Let $K_{p,p}$ be the complete bipartite graph of order 2*p*. In [6], the author determines the signed total Roman *k*-domination number of complete bipartite graphs.

Proposition 2. [6] If $k \ge 1$ and $p \ge k$, then $\gamma_{stR}^k(K_{p,p}) = 2k$, with exception of the case that k = 1 and p = 3, in which case $\gamma_{stR}^1(K_{3,3}) = 4$.

Assume that $K_{p,p}^*$, complete bipartite digraph of order 2p, is the associated digraph $D(K_{p,p})$ of a graph $K_{p,p}$. Using Observation 1 and Proposition 2, we obtain the signed total Roman k-domination number of complete bipartite digraphs.

Corollary 2. If $k \ge 1$ and $p \ge k$, then $\gamma_{stR}^k(K_{p,p}^*) = 2k$, with exception of the case that k = 1 and p = 3, in which case $\gamma_{stR}^1(K_{3,3}^*) = 4$.

2. Bounds on the signed total Roman *k*-domination number

In this section, we present some sharp bounds on the signed total Roman k-domination number. We start with some preliminary results.

For an integer $p \ge 1$, a subset S of vertices of a digraph D is called a *total* p-dominating set if every vertex $v \in V(D)$ has at least p in-neighbors in S.

Proposition 3. If $f = (V_{-1}, V_1, V_2)$ is an STRkDF on a digraph D of order n and minimum in-degree $\delta^-(D) \ge k$, then

- 1. $|V_{-1}| + |V_1| + |V_2| = n$.
- 2. $\omega(f) = |V_1| + 2|V_2| |V_{-1}|.$
- 3. $V_1 \cup V_2$ is a total $\lceil \frac{2k}{3} \rceil$ -dominating set of D.

Proof. Since (1) and (2) are immediate, we only prove (3). Suppose to the contrary, that there exists a vertex v with at most $\lceil \frac{2k}{3} \rceil - 1$ in-neighbors in $V_1 \cup V_2$. Then v has at least

$$\delta^-(D)-(\lceil\frac{2k}{3}\rceil-1)\geq k-(\lceil\frac{2k}{3}\rceil-1),$$

in-neighbors in V_{-1} . It follows that

$$k \le f(N^{-}(v)) \le 2(\lceil \frac{2k}{3} \rceil - 1) - (k - \lceil \frac{2k}{3} \rceil + 1)$$

= $3\lceil \frac{2k}{3} \rceil - k - 3 \le \frac{3(2k+2)}{3} - k - 3 = k - 1.$

which is a contradiction. Consequently, $V_1 \cup V_2$ is a total $\lceil \frac{2k}{3} \rceil$ -dominating set of D.

Theorem 1. Let $k \ge 1$ be an integer, and let D be a digraph of order n with minimum in-degree $\delta^{-}(D) \ge k$. If $\Delta^{+}(D) = \Delta^{+}$ and $\delta^{+}(D) = \delta^{+}$, then

1.
$$(2\Delta^{+} - k)|V_{2}| + (\Delta^{+} - k)|V_{1}| \ge (\delta^{+} + k)|V_{-1}|.$$

2. $(2\Delta^{+} + \delta^{+})|V_{2}| + (\Delta^{+} + \delta^{+})|V_{1}| \ge (\delta^{+} + k)n.$
3. $(\Delta^{+} + \delta^{+})\omega(f) \ge (\delta^{+} + 2k - \Delta^{+})n + (\delta^{+} - \Delta^{+})|V_{2}|.$
4. $\omega(f) \ge \frac{(\delta^{+} + 2k - 2\Delta^{+})n}{(2\Delta^{+} + \delta^{+})} + |V_{2}|.$

Proof. (1) It follows from Proposition 3 (1) that

$$\begin{aligned} k(|V_{-1}| + |V_1| + |V_2|) &= kn \le \sum_{v \in V(D)} f(N^-(v)) = \sum_{v \in V(D)} d^+(v) f(v) \\ &= \sum_{v \in V_2} 2d^+(v) + \sum_{v \in V_1} d^+(v) - \sum_{v \in V_{-1}} d^+(v) \\ &\le 2\Delta^+ |V_2| + \Delta^+ |V_1| - \delta^+ |V_{-1}|. \end{aligned}$$

This inequality chain yields to the desired bound in (1).

(2) Proposition 3 (1) implies that $|V_{-1}| = n - |V_1| - |V_2|$. Using this identity and Part (1) of Proposition 1, we arrive at (2).

(3) According to Proposition 3 and Part (2) of Proposition 1, we obtain Part(3) of Proposition 1 as follows

$$\begin{aligned} (\Delta^+ + \delta^+)\omega(f) &= (\Delta^+ + \delta^+)(2(|V_1| + |V_2|) - n + |V_2|) \\ &\geq 2(\delta^+ + k)n + 2(\Delta^+ + \delta^+)|V_2| - 2(2\Delta^+ + \delta^+)|V_2| \\ &+ (\Delta^+ + \delta^+)(|V_2| - n) \\ &= (\delta^+ + 2k - \Delta^+)n + (\delta^+ - \Delta^+)|V_2|. \end{aligned}$$

(4) The inequality chain in the proof of Part (1) and Proposition 3 (1) show that

$$kn \le 2\Delta^{+} |V_{1} \cup V_{2}| - \delta^{+} |V_{-1}|$$

= $2\Delta^{+} |V_{1} \cup V_{2}| - \delta^{+} (n - |V_{1} \cup V_{2}|)$
= $(2\Delta^{+} + \delta^{+}) |V_{1} \cup V_{2}| - \delta^{+} n,$

and thus

$$|V_1 \cup V_2| \ge \frac{n(\delta^+ + k)}{2\Delta^+ + \delta^+}.$$

Using this inequality and Proposition 3, we obtain

$$\begin{split} \omega(f) &= 2|V_1 \cup V_2| - n + |V_2| \\ &\geq \frac{2n(\delta^+ + k)}{2\Delta^+ + \delta^+} - n + |V_2| \\ &= \frac{n(\delta^+ + 2k - 2\Delta^+)}{2\Delta^+ + \delta^+} + |V_2|. \end{split}$$

This is the bound in Part (4), and the proof is complete.

A digraph D is out-regular or r-out-regular if $\delta^+(D) = \Delta^+(D) = r$.

Corollary 3. Let D be a digraph of order n with minimum in-degree $\delta^- \geq k$, minimum out-degree δ^+ and maximum out-degree Δ^+ . Then

$$\gamma_{stR}^k(D) \ge \left(\frac{2\delta^+ + 3k - 2\Delta^+}{2\Delta^+ + \delta^+}\right)n.$$

Proof. If D is an r-out-regular digraph, then result is an immediate consequence of Theorem 1 part (3). Let D be not out-regular digraph. Multiplying both sides of the inequality in Theorem 1 part (4) by $\Delta^+ - \delta^+$ and adding the resulting inequality to the inequality in Theorem 1 part (3), we obtain the desired lower bound.

Corollary 3 and Observation 1 lead to the next known result.

Corollary 4. [6] Let G be a graph of order n, minimum degree $\delta \geq k$ and maximum degree Δ . If $\Delta > \delta$, then

$$\gamma_{stR}^k(G) \ge (\frac{2\delta + 3k - 2\Delta}{2\Delta + \delta})n.$$

The special case k = 1 of Corollary 4 can be found in [7]. Example 12 in [6] demonstrates that Corollary 4 is sharp. This example together with Observation 1 shows that Corollary 3 is sharp too.

Proposition 4. If D is a digraph of order n with minimum in-degree $\delta^- \geq k$, then $\gamma_{stR}^k(D) \leq n$.

Proof. Define the function $f: V(D) \to \{-1, 1, 2\}$ by f(v) = 1 for each vertex $v \in V(D)$. Since $\delta^- \geq k$, the function f is an STR*k*DF on D of weight n and thus $\gamma_{stR}^k(D) \leq n$.

A digraph D is r-regular if $\Delta^{-}(D) = \Delta^{+}(D) = \delta^{-}(D) = \delta^{+}(D) = r$.

Example 1. If D is a k-regular digraph of order n, then it follows from Corollary 3 that $\gamma_{stR}^k(D) \ge n$ and so $\gamma_{stR}^k(D) = n$, according to Proposition 4.

Example 1 demonstrates that Proposition 4 and Corollary 3 are both sharp. If $\delta^- \ge k+2$, then we can improve the bound in Proposition 4.

Theorem 2. If D is a digraph of order n with minimum in-degree $\delta^- \ge k+2$, then

$$\gamma_{stR}^k(D) \le n+1-2\lfloor \frac{\delta^--k}{2} \rfloor.$$

Proof. Define $t = \lfloor \frac{\delta^- - k}{2} \rfloor$. Since

$$n \cdot \Delta^+ \ge \sum_{u \in V(D)} d^+(u) = \sum_{u \in V(D)} d^-(u) \ge n \cdot \delta^-,$$

we observe that $\Delta^+ \geq \delta^- \geq t$. Let $v \in V(D)$ be a vertex of maximum outdegree, and let $A = \{u_1, u_2, \ldots, u_t\}$ be a set of t out-neighbors of v. Define the function $f: V(D) \to \{-1, 1, 2\}$ by f(v) = 2, $f(u_i) = -1$ for $1 \leq i \leq t$ and f(w) = 1 for $w \in V(D) - (A \cup \{v\})$. Then

$$f(N(x)) \ge -t + (\delta^- - t) = \delta^- - 2t = \delta^- - 2\lfloor \frac{\delta^- - k}{2} \rfloor \ge k,$$

for each vertex $x \in V(D)$. Therefore f is an STR*k*DF on D of weight 2 - t + (n - t - 1) = n + 1 - 2t and thus $\gamma_{stR}^k(D) \le n + 1 - 2t = n + 1 - 2\lfloor \frac{\delta^- - k}{2} \rfloor$. \Box

Corollary 5. If D is a digraph of order n with minimum in-degree $\delta^- \ge k+2$, then $\gamma_{stR}^k(D) \le n-1$.

Corollary 5 implies that $\gamma_{stR}^k(D) \leq n(D) - 1$ when $\delta^-(D) \geq k + 2$. Example 1 shows that $\gamma_{stR}^k(D) = n(D)$ is possible when $\delta^-(D) = k$. By Corollary 1, we have $\gamma_{stR}^{n-2}(K_n^*) = n$ and hence $\gamma_{stR}^k(D) = n(D)$ is also possible for $\delta^-(D) = k + 1$. Consequently, $\gamma_{stR}^k(D) \leq n(D) - 1$ is not valid in general when $k \leq \delta^-(D) \leq k + 1$.

Let K_n^* be the complete digraph. If $n \ge k+3$ and n-k-1 is even, then it follows from Corollary 1 that

$$\gamma_{stR}^k(K_n^*) = k + 2 = n + 1 - 2\left\lfloor \frac{\delta^-(K_n^*) - k}{2} \right\rfloor$$

and therefore the bound given in Theorem 2 is sharp.

Proposition 5. If D is a digraph of order n with minimum in-degree $\delta^{-}(D) \ge k$, then $\gamma_{stR}^{k}(D) \ge k + \Delta^{-}(D) - n$.

Proof. Let $v \in V(D)$ be a vertex of maximum in-degree, and f be a $\gamma_{stR}^k(D)$ -function. Then the definitions imply

$$\begin{split} \gamma_{stR}^k(D) &= \sum_{u \in V(D)} f(u) = \sum_{u \in N^-(v)} f(u) + \sum_{u \in V(D) - N^-(v)} f(u) \\ &\geq k + \sum_{u \in V(D) - N^-(v)} f(u) \geq k - (n - \Delta^-(D)) = k + \Delta^-(D) - n, \end{split}$$

and the proof is complete.

Example 2. Let $k \ge 2$ and $r \ge 1$ be integers such that $k \ge r$, and D be a digraph obtained from a complete digraph of order k with vertex set $V(K_k^*) = \{u_i \mid 1 \le i \le k\}$ by adding the set $\{v_j, w_t \mid 1 \le j \le k \text{ and } 1 \le t \le r\}$ of new vertices and the set

$$\{(u_i, v_j), (u_i, w_t), (w_t, v_j) \mid 1 \le i \le k, 1 \le j \le k \text{ and } 1 \le t \le r\},\$$

of new arcs. It is easy to see that the function $f: V(D) \to \{-1, 1, 2\}$ defined by $f(u_i) = 2$ for $1 \leq i \leq k$ and f(x) = -1 otherwise, is an STRkDF of D and so $\gamma_{stR}^k(D) \leq k - r$. By Proposition 5, we have

$$\gamma_{stR}^k(D) \ge k + \Delta^-(D) - n = k + 2k - (r + 2k) = k - r.$$

Proposition 6. If D is a digraph of order $n \ge k+2$ with minimum in-degree $\delta^{-}(D) \ge k$, then $\gamma_{stR}^{k}(D) \ge k+3+\delta^{-}(D)-n$.

Proof. Let f be a $\gamma_{stR}^k(D)$ -function. If f(u) = 1 for all $u \in V(D)$, then $\gamma_{stR}^k(D) = n \ge k + 3 + \delta^-(D) - n$. Now assume that there exists a vertex w with f(w) = -1. Then w has an in-neighbor v with f(v) = 2, and it follows that

$$\begin{split} \gamma^k_{stR}(D) &= \sum_{u \in V(D)} f(u) = f(v) + \sum_{u \in N^-(v)} f(u) + \sum_{u \in V(D) - N^-[v]} f(u) \\ &\geq 2 + k + \sum_{u \in V(D) - N^-[v]} f(u) \geq 2 + k - (n - d^-(v) - 1) \\ &\geq k + 3 + \delta^-(D) - n, \end{split}$$

and the proof is complete.

Corollary 1 shows that Proposition 6 is sharp.

Now we show that the signed total Roman k-domination of digraphs can be arbitrary small.

Theorem 3. For any positive integer $t \ge 1$, there exists a digraph D such that

$$\gamma_{stR}^k(D) = -t.$$

Proof. Let $k \ge 1$ be an integer and D be a digraph obtained from a complete digraph of order k + 1 with vertex set $V(K_{k+1}^*) = \{u_i \mid 1 \le i \le k+1\}$ by adding the set $\{v_j \mid 1 \le j \le t+k+2\}$ of new vertices and the set

$$\{(u_i, v_j) \mid 1 \le i \le k \text{ and } 1 \le j \le t + k + 2\},\$$

of new arcs. It is easy to see that the function $f: V(D) \to \{-1, 1, 2\}$ defined by $f(u_1) = 2$, $f(u_i) = 1$ for $2 \le i \le k+1$ and f(x) = -1 otherwise, is an STR*k*DF of *D* of weight -t and so $\gamma_{stR}^k(D) \le -t$. By Proposition 6, we have

$$\gamma_{stR}^k(D) \ge k + 3 + \delta^-(D) - n = k + 3 + k - (t + 2k + 3) = -t.$$

This completes the proof.

We call a set $S \subseteq V(D)$ a 2-packing of the digraph D if $N^{-}[u] \cap N^{-}[v] = \emptyset$ for any two distinct vertices of $u, v \in S$. The maximum cardinality of a 2-packing in D is the 2-packing number of D, denoted by $\rho(D)$.

Theorem 4. If D is a digraph of order n such that $\delta^{-}(D) \ge k$, then $\gamma_{stR}^{k}(D) \ge \rho(D)(\delta^{-}(D) + k) - n$.

Proof. Let $\{v_1, v_2, \ldots, v_{\rho(D)}\}$ be a 2-packing of D, and f be a $\gamma_{stR}^k(D)$ -function. If we define the set $A = \bigcup_{i=1}^{\rho(D)} N^-(v_i)$ then, since $\{v_1, v_2, \ldots, v_{\rho(D)}\}$ is a 2-packing of D, we have

$$|A| = \sum_{i=1}^{\rho(D)} d^{-}(v_i) \ge \delta^{-}(D) \cdot \rho(D).$$

It follows that

$$\begin{split} \gamma^k_{stR}(D) &= \sum_{u \in V(D)} f(u) = \sum_{i=1}^{\rho(D)} f(N^-(v_i)) + \sum_{u \in V(D) - A} f(u) \\ &\geq k\rho(D) + \sum_{u \in V(D) - A} f(u) \geq k\rho(D) - n + |A| \\ &\geq k\rho(D) - n + \rho(D) \cdot \delta^-(D) = \rho(D)(\delta^- + k) - n. \end{split}$$

Let n be an odd positive integer such n = 2r + 1 with a positive integer r. We define the circulant tournament CT(n) with n vertices as follows. The vertex set of CT(n) is $V(CT(n)) = \{u_0, u_1, ..., u_{n-1}\}$. For each i, the arcs are going from u_i to the vertices $u_{i+1}, u_{i+2}, ..., u_{i+r}$, where the indices are taken modulo n.

In [8], the author determines the signed total Roman domination number of circulant tournament CT(n).

Proposition 7. [8] Let n = 2r + 1 with an integer $r \ge 1$. Then $\gamma_{stR}(CT(3)) = 3$, $\gamma_{stR}(CT(7)) = 5$ and $\gamma_{stR}(CT(n)) = 4$ for $n \ge 5$ with $n \ne 7$.

We obtain the signed total Roman k-domination number of circulant tournament CT(n) when $k \ge 2$.

Theorem 5. Let n = 2r + 1 with an integer $r \ge k \ge 2$. Then $\gamma_{stR}^k(CT(n)) = n$ for r = k and $\gamma_{stR}^k(CT(n)) = 2k + 2$ when r > k.

Proof. According to Proposition 4, $\gamma_{stR}^k(CT(n)) \leq n$. First let r = k and f be a $\gamma_{stR}^k(CT(n))$ -function. If f(u) = 1 for each $u \in V(CT(n))$, then $\omega(f) = n$. Thus let $u \in V(CT(n))$ such that f(u) = -1. Therefore there exists a vertex, say u_r , such that $f(u_r) = 2$. Consider the sets $N^-(u_0) = \{u_{r+1}, u_{r+2}, \ldots, u_{2r}\}$ and $N^-(u_r) = \{u_0, u_1, \ldots, u_{r-1}\}$. Since f is an STRkDF on CT(n), we deduce that

$$\omega(f) = f(N^{-}(u_0)) + f(N^{-}(u_r)) + f(u_r) \ge k + k + 2 = 2k + 2 > 2k + 1 = n,$$

which is a contradiction. Hence $\gamma_{stR}^k(CT(n)) = n = 2k + 1$ when r = k. Now let r > k and f be a $\gamma_{stR}^k(CT(n))$ -function. If f(u) = 1 for each $u \in V(CT(n))$, then $\omega(f) = n > 2k + 2$ when r > k. Thus assume that f(u) = -1 for a vertex $u \in V(CT(n))$. Then there exists a vertex, say u_r , such that $f(u_r) = 2$. Consider the sets $N^-(u_0) = \{u_{r+1}, u_{r+2}, \ldots, u_{2r}\}$ and $N^-(u_r) = \{u_0, u_1, \ldots, u_{r-1}\}$. As f is an STRkDF on CT(n), we deduce that

$$\omega(f) = f(N^{-}(u_0)) + f(N^{-}(u_r)) + f(u_r) \ge k + k + 2 = 2k + 2.$$

Consequently, $\gamma_{stR}^k(CT(n)) \ge 2k+2$ when r > k. Since $r > k \ge 2$, then $n \ge 7$. To prove the equality $\gamma_{stR}^k(CT(n)) = 2k+2$ for $n \ge 7$ and r > k, we consider two cases.

Case 1. Let r be even. We consider the following subcases.

Subcase 1.1. $k \equiv 0 \pmod{4}$.

Define the function $g:V(CT(n))\to\{-1,1,2\}$ as follows

$$g(u_i) = \begin{cases} 2 & \text{if } i = 0, \ 1 \le i \le \frac{k}{2} \text{ or } r+1 \le i \le r+\frac{k}{2}, \\ -1 & \text{if } \frac{k}{2}+1 \le i \le \frac{r}{2}+\frac{k}{4} \text{ or } r+\frac{k}{2}+1 \le i \le \frac{3r}{2}+\frac{k}{4}, \\ 1 & \text{if } \frac{r}{2}+\frac{k}{4}+1 \le i \le r \text{ or } \frac{3r}{2}+\frac{k}{4}+1 \le i \le 2r. \end{cases}$$

Obviously, g is an STRkDF on CT(n) of weight 2k+2 and thus $\gamma_{stR}^k(CT(n)) \leq 2k+2$ when $k \equiv 0 \pmod{4}$.

Subcase 1.2. $k \equiv 1 \pmod{4}$.

Define the function $g:V(CT(n))\to\{-1,1,2\}$ as follows

$$g(u_i) = \begin{cases} 2 & \text{if } i = 0, \ 1 \le i \le \frac{k+1}{2} \text{ or } r+1 \le i \le r+\frac{k+1}{2}, \\ -1 & \text{if } \frac{k+1}{2}+1 \le i \le \frac{r}{2}+\frac{k+3}{4} \text{ or } r+\frac{k+1}{2}+1 \le i \le \frac{3r}{2}+\frac{k+3}{4}, \\ 1 & \text{if } \frac{r}{2}+\frac{k+3}{4}+1 \le i \le r \text{ or } \frac{3r}{2}+\frac{k+3}{4}+1 \le i \le 2r. \end{cases}$$

Obviously, g is an STRkDF on CT(n) of weight 2k+2 and thus $\gamma_{stR}^k(CT(n)) \leq 2k+2$ when $k \equiv 1 \pmod{4}$.

Subcase 1.3. $k \equiv 2 \pmod{4}$. Define the function $g: V(CT(n)) \rightarrow \{-1, 1, 2\}$ as follows

$$g(u_i) = \begin{cases} 2 & \text{if } i = 0, \ 1 \le i \le \frac{k}{2} + 1 \text{ or } r + 1 \le i \le r + \frac{k}{2} + 1, \\ -1 & \text{if } \frac{k}{2} + 2 \le i \le \frac{r}{2} + \frac{k+2}{4} + 1 \text{ or } r + \frac{k}{2} + 2 \le i \le \frac{3r}{2} + \frac{k+2}{4} + 1, \\ 1 & \text{if } \frac{r}{2} + \frac{k+2}{4} + 2 \le i \le r \text{ or } \frac{3r}{2} + \frac{k+2}{4} + 2 \le i \le 2r. \end{cases}$$

Obviously, g is an STR*k*DF on CT(n) of weight 2k+2 and thus $\gamma_{stR}^k(CT(n)) \leq 2k+2$ when $k \equiv 2 \pmod{4}$.

Subcase 1.4. $k \equiv 3 \pmod{4}$.

Define the function $g: V(CT(n)) \to \{-1, 1, 2\}$ as follows

$$g(u_i) = \begin{cases} 2 & \text{if } i = 0, \ 1 \le i \le \frac{k-1}{2} \text{ or } r+1 \le i \le r+\frac{k-1}{2}, \\ -1 & \text{if } \frac{k-1}{2}+1 \le i \le \frac{r}{2}+\frac{k+1}{4}-1 \\ & \text{or } r+\frac{k-1}{2}+1 \le i \le \frac{3r}{2}+\frac{k+1}{4}-1, \\ 1 & \text{if } \frac{r}{2}+\frac{k+1}{4} \le i \le r \text{ or } \frac{3r}{2}+\frac{k+1}{4} \le i \le 2r. \end{cases}$$

Obviously, g is an STRkDF on CT(n) of weight 2k+2 and thus $\gamma_{stR}^k(CT(n)) \le 2k+2$ when $k \equiv 3 \pmod{4}$. Then $\gamma_{stR}^k(CT(n)) = 2k+2$ when r is even. **Case 2.** Let r be odd. We consider the following subcases. **Subcase 2.1.** $k \equiv 0 \pmod{4}$.

Define the function $g:V(CT(n)) \to \{-1,1,2\}$ as follows

$$g(u_i) = \begin{cases} 2 & \text{if } i = 0, \ 1 \le i \le \frac{k}{2} - 1 \text{ or } + 1 \le i \le r + \frac{k}{2} - 1, \\ -1 & \text{if } \frac{k}{2} \le i \le \frac{r-1}{2} + \frac{k}{4} - 1 \text{ or } r + \frac{k}{2} \le i \le \frac{3r-1}{2} + \frac{k}{4} - 1, \\ 1 & \text{if } \frac{r-1}{2} + \frac{k}{4} \le i \le r \text{ or } \frac{3r-1}{2} + \frac{k}{4} \le i \le 2r. \end{cases}$$

Obviously, g is an STRkDF on CT(n) of weight 2k+2 and thus $\gamma_{stR}^k(CT(n)) \leq 2k+2$ when $k \equiv 0 \pmod{4}$.

Subcase 2.2. $k \equiv 1 \pmod{4}$.

Define the function $g: V(CT(n)) \to \{-1, 1, 2\}$ as follows

$$g(u_i) = \begin{cases} 2 & \text{if } i = 0, \ 1 \le i \le \frac{k-1}{2} \text{ or } r+1 \le i \le r+\frac{k-1}{2}, \\ -1 & \text{if } \frac{k-1}{2}+1 \le i \le \frac{r-1}{2}+\frac{k-1}{4} \text{ or } r+\frac{k-1}{2}+1 \le i \le \frac{3r-1}{2}+\frac{k-1}{4}, \\ 1 & \text{if } \frac{r-1}{2}+\frac{k-1}{4}+1 \le i \le r \text{ or } \frac{3r-1}{2}+\frac{k-1}{4}+1 \le i \le 2r. \end{cases}$$

Obviously, g is an STR*k*DF on CT(n) of weight 2k+2 and thus $\gamma_{stR}^k(CT(n)) \leq 2k+2$ when $k \equiv 1 \pmod{4}$.

Subcase 2.3. $k \equiv 2 \pmod{4}$.

Define the function $g: V(CT(n)) \to \{-1, 1, 2\}$ as follows

$$g(u_i) = \begin{cases} 2 & \text{if } i = 0, \ 1 \le i \le \frac{k}{2} \text{ or } r+1 \le i \le r+\frac{k}{2}, \\ -1 & \text{if } \frac{k}{2}+1 \le i \le \frac{r-1}{2}+\frac{k+2}{4} \text{ or } r+\frac{k}{2}+1 \le i \le \frac{3r-1}{2}+\frac{k+2}{4}, \\ 1 & \text{if } \frac{r-1}{2}+\frac{k+2}{4}+1 \le i \le r \text{ or } \frac{3r-1}{2}+\frac{k+2}{4}+1 \le i \le 2r. \end{cases}$$

Obviously, g is an STR*k*DF on CT(n) of weight 2k+2 and thus $\gamma_{stR}^k(CT(n)) \leq 2k+2$ when $k \equiv 2 \pmod{4}$.

Subcase 2.4. $k \equiv 3 \pmod{4}$.

Define the function $g: V(CT(n)) \to \{-1, 1, 2\}$ as follows

$$g(u_i) = \begin{cases} 2 & \text{if } i = 0, \ 1 \le i \le \frac{k+1}{2} \text{ or } r+1 \le i \le r+\frac{k+1}{2}, \\ -1 & \text{if } \frac{k+1}{2}+1 \le i \le \frac{r-1}{2}+\frac{k+1}{4}+1 \\ & \text{or } r+\frac{k+1}{2}+1 \le i \le \frac{3r-1}{2}+\frac{k+1}{4}+1, \\ 1 & \text{if } \frac{r-1}{2}+\frac{k+1}{4}+2 \le i \le r \text{ or } \frac{3r-1}{2}+\frac{k+!}{4}+2 \le i \le 2r \end{cases}$$

Obviously, g is an STRkDF on CT(n) of weight 2k+2 and thus $\gamma_{stR}^k(CT(n)) \leq 2k+2$ when $k \equiv 3 \pmod{4}$. Then $\gamma_{stR}^k(CT(n)) = 2k+2$ when r is odd and this completes the proof.

The complement \overline{D} of a digraph D is the digraph with vertex set V(D) such that for any two distinct vertices u and v the arc (u, v) belongs to \overline{D} if and only if (u, v) does not belong to D. Finally, we present a so called Nordhaus-Gaddum type inequality for the signed total Roman k-domination number of regular digraphs.

Theorem 6. If D is an r-regular digraph of order n such that $r \ge k$ and $n-r-1 \ge k$, then

$$\gamma_{stR}^k(D) + \gamma_{stR}^k(\overline{D}) \ge \frac{4kn}{n-1}.$$

If n is even, then $\gamma_{stR}^k(D) + \gamma_{stR}^k(\overline{D}) \ge \frac{4k(n-1)}{n-2}$.

Proof. Since D is r-regular, the complement \overline{D} is (n-r-1)-regular. Therefore it follows from Corollary 3 that

$$\gamma_{stR}^k(D) + \gamma_{stR}^k(\overline{D}) \ge kn(\frac{1}{r} + \frac{1}{n-r-1}).$$

The conditions $r \ge k$ and $n - r - 1 \ge k$ imply that $k \le r \le n - k - 1$. As the function $f(x) = \frac{1}{x} + \frac{1}{n-x-1}$ has its minimum for $x = \frac{(n-1)}{2}$ when $k \le x \le n - k - 1$, we obtain

$$\gamma^k_{stR}(D) + \gamma^k_{stR}(\overline{D}) \ge kn(\frac{1}{r} + \frac{1}{n-r-1}) \ge kn(\frac{2}{n-1} + \frac{2}{n-1}) = \frac{4kn}{n-1}$$

and this is the desired bound. If n is even, then the function f has its minimum for $r = x = \frac{n-2}{2}$ or $r = x = \frac{n}{2}$, since r is an integer. Hence this case leads to

$$\gamma_{stR}^k(D) + \gamma_{stR}^k(\overline{D}) \ge kn(\frac{1}{r} + \frac{1}{n-r-1}) \ge kn(\frac{2}{n} + \frac{2}{n-2}) = \frac{4k(n-1)}{n-2},$$

and the proof is complete.

Let $k \geq 2$ be an even integer, and D and \overline{D} be k-regular digraphs of order n = 2k + 1. By Example 1, we have $\gamma_{stR}^k(D) = \gamma_{stR}^k(\overline{D}) = n$. Consequently,

$$\gamma_{stR}^k(D) + \gamma_{stR}^k(\overline{D}) = 2n = \frac{4kn}{n-1}.$$

Thus the Nordhaus-Gaddum bound of Theorem 6 is sharp for even k.

References

- T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Domination in graphs: advanced topics, Marcel Dekker, 1998.
- [2] _____, Fundamentals of domination in graphs, CRC Press, 1998.
- [3] M.A. Henning, Signed total domination in graphs, Discrete Math. 278 (2004), no. 1, 109–125.
- [4] E. Shan and T.C.E. Cheng, Remarks on the minus (signed) total domination in graphs, Discrete Math. 308 (2008), no. 15, 3373–3380.
- [5] S.M. Sheikholeslami and L. Volkmann, Signed total k-domination numbers of a directed graphs, An. St. Univ. Ovidius Constanta. 18 (2010), no. 2, 241–252.

- [6] L. Volkmann, Signed total Roman k-domination in graphs, submitted.
- [7] _____, Signed total Roman domination in graphs, J. Comb. Optim. 32 (2016), no. 3, 855–871.
- [8] _____, Signed total Roman domination in digraphs, Discuss. Math. Graph Theory. 37 (2017), no. 1, 261–272.
- [9] C. Wang, The signed k-domination numbers in graphs, Ars Combin. 106 (2012), 205–211.
- [10] B. Zelinka, Signed total domination numbers of a graph, Czechoslovak Math. J. 51 (2001), no. 2, 225–229.