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Abstract: Let D = (V,A) be a finite simple directed graph. A function f :
V −→ {−1, 0, 1} is called a twin minus dominating function if f(N−[v]) ≥ 1 and

f(N+[v]) ≥ 1 for each vertex v ∈ V . The twin minus domination number of D
is γ∗−(D) = min{w(f) | f is a twin minus dominating function of D}. In this

paper, we initiate the study of twin minus domination numbers in digraphs and

present some lower bounds for γ∗−(D) in terms of the order, size and maximum
and minimum in-degrees and out-degrees.
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1. Introduction

In this paper, D is a finite simple directed graph (digraph) with vertex set

V and arc set A. The integers n = n(D) = |V | and m = m(D) = |A| are

the order and size of D. A digraph without directed cycles of length 2 is an

oriented digraph. We write d+
D(v) = d+(v) for the out-degree of a vertex v
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150 Twin minus domination numbers in directed graphs

and d−D(v) = d−(v) for its in-degree. The minimum and maximum in-degrees

and minimum and maximum out-degrees of D are denoted by δ−(D) = δ−,

∆−(D) = ∆−, δ+(D) = δ+ and ∆+(D) = ∆+, respectively. If (u, v) is an

arc of D, then we also write u → v, and we say that v is an out-neighbor

of u and u is an in-neighbor of v, and we also say that u dominates v or v

is dominated by u. The sets N−(v) = N−D (v) = {x | (x, v) ∈ A(D)} and

N+(v) = N+
D (v) = {x | (v, x) ∈ A(D)} are called the in-neighborhood and

out-neighborhood of the vertex v. Likewise, N−D [v] = N−[v] = N−(v) ∪ {v}
and N+

D [v] = N+[v] = N+(v)∪{v}. If X ⊆ V (D), then D[X] is the subdigraph

induced by X. If X ⊆ V (D) and v ∈ V (D), then A(X, v) is the set of arcs

from X to v. We denote by A(X,Y ) the set of arcs from a subset X to a subset

Y . The notation D−1 is used for the digraph obtained from D by reversing

the arcs of D. The underlying graph of a digraph D is the graph obtained

from D by removing the direction of each arc. The complete digraph of order

n, K∗n, is a digraph D such that (u, v), (v, u) ∈ A(D) for any two distinct

vertices u, v ∈ V (D). For a real-valued function f : V (D) −→ R the weight

of f is w(f) =
∑
v∈V f(v), and for S ⊆ V , we define f(S) =

∑
v∈S f(v), so

w(f) = f(V ). Consult [15] for the notation and terminology which are not

defined here.

Let D = (V,A) be a finite simple digraph. A subset S of V is called a domi-

nating set of D if every vertex in V \S has an in-neighbor in S. The minimum

cardinality of a dominating set in D, denoted by γ(D), is called the domination

number of D. A dominating set of size γ(D) is called a γ(D)-set. A dominating

set of D is called a twin dominating set if it also is a dominating set of D−1. The

minimum size of a twin dominating set of D is denoted by γ∗(D). This concept

of domination was introduced by Chartrand et al. [8], and has been studied

by several authors [2]. Similarly, the concept of twin Roman domination was

studied in [1].

A Signed Dominating Function (SDF) of D is a function f : V → {−1, 1}
such that f(N−[v])] ≥ 1 for every v ∈ V . The signed domination number of a

digraph D is

γs(D) = min{w(f) | f is a SDF of D}.

A γs(D)-function is a SDF of D of weight γs(D). The signed domination

number of a digraph was introduced by Zelinka in [17], and has been studied

by several authors [4, 11].

Recently, Atapour et al. [6] studied the twin signed domination numbers in

digraphs. A signed dominating function of a digraph D is called a Twin Signed

Dominating Function (TSDF) if it also is a signed dominating function of D−1,

i.e., f(N+[v]) ≥ 1 for every v ∈ V . The twin signed domination number of a

digraph D is γ∗s (D) = min{w(f) | f is an TSDF of D}.
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A Minus Dominating Function (MDF) of D is a function f : V → {−1, 0, 1}
such that f(N−[v])] ≥ 1 for every v ∈ V . The minus domination number for a

digraph D is

γ−(D) = min{w(f) | f is a MDF of D}.

A γ−(D)-function is an MDF of D of weight γ−(D). The minus domination

number of a digraph was introduced by Li and Xing in [12]. We define a Twin

Minus Dominating Function (TMDF) of D as a minus dominating function

of both D and D−1, i.e., f(N−[v]) ≥ 1 and f(N+[v]) ≥ 1 for every v ∈ V .

The twin minus domination number for a digraph D is γ∗−(D) = min{w(f) |
f is an TMDF of D}. an TMDF of a digraph D, of weight γ∗−(D) is called a

γ∗−(D)- function.

Let G be a graph with vertex V and edge set E. For every vertex v ∈ V , the

open neighborhood of v, N(v) is the set {u ∈ V | uv ∈ E} and the closed

neighborhood of v is N [v] = N(v) ∪ {v}. A minus dominating function of G,

introduced by Dunbar et al. [10], is a function f : V → {−1, 0, 1} such that

f(N [v]) ≥ 1 for every v ∈ V . The minus domination number of G, denoted by

γ−(G), is the minimum weight of a minus dominating function on G. The minus

domination in graphs was studied by several authors for example [5, 13, 14, 16].

For any function f : V (D)→ {−1, 0, 1}, on a digraph D, we define P = Pf =

{v ∈ V | f(v) = 1}, Z = Zf = {v ∈ V | f(v) = 0} and M = Mf = {v ∈ V |
f(v) = −1}. Since every TMDF of D is a MDF on both D and D−1 and since

the constant function 1 is an TMDF of D, we have

max{γ−(D), γ−(D−1)} ≤ γ∗−(D) ≤ n. (1)

Let S be a twin dominating set in a digraph D. Then the function f : V (D)→
{−1, 0, 1} that assigns +1 to every vertex in S and 0 to the others, is an TMDF

of D. On the other hand, every TSDF of D is an TMDF and so we have

γ∗−(D) ≤ min{γ∗(D), γ∗s (D)}. (2)

In this paper, we initiate the study of the twin minus domination number in

digraphs and we present some lower bounds on this parameter.

We make use of the following results and remarks in this paper.

Theorem 1. [2] For the directed path
−→
Pn, n ≥ 2, γ∗(

−→
Pn) = dn+1

2
e and for a

directed cycle
−→
C n, with n ≥ 3 vertices, γ∗(

−→
C n) = dn

2
e.

Theorem 2. [12] For any directed cycle
−→
Cn, n ≥ 3, γ−(

−→
Cn) = dn

2
e.
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Next result is an immediate consequence of Propositions 1 and 2, and inequal-

ities (1) and (2).

Corollary 1. If
−→
Pn and

−→
Cn are directed path and cycle on n vertices, then

γ∗
−(
−→
Pn) = dn+1

2
e and γ∗

−(
−→
Cn) = dn

2
e.

2. Basic properties

In this section, we present basic properties of the twin minus domination num-

ber.

Proposition 1. Let D be a digraph of order n. Then γ∗
−(D) = n if and only if

d+(v) = 0 or d−(v) = 0 for every vertex v ∈ V (D).

Proof. The sufficiency is clear. Thus, we only verify the necessity of the

condition. Assume, to the contrary, d−(v) ≥ 1 and d+(v) ≥ 1 for some v ∈
V (D). Define f : V (D)→ {−1, 0, 1} by f(v) = 0 and f(x) = 1 for x ∈ V (D) \
{v}. Obviously, f is an TMDF of D of weight less than n, a contradiction.

This completes the proof.

As we observed in (1), γ∗−(D) ≥ max{γ−(D), γ−(D−1)}. Now we show that

the difference γ∗−(D)−max{γ−(D), γ−(D−1)} can be arbitrarily large.

Theorem 3. For every positive integer k, there exists a digraph D such that

γ∗
−(D)−max{γ−(D), γ−(D−1)} ≥ 4k − 4.

Proof. Let k ≥ 1 be an integer and D be a digraph with vertex set V (D) =

{x, y, ui, vi | 1 ≤ i ≤ 2k} and edge set

A(D) = {(x, ui), (uk+i, x), (y, vk+i), (vi, y), (vi, ui), (uk+i, vk+i) | 1 ≤ i ≤ k}.

Clearly, D ∼= D−1 and so, γ−(D) = γ−(D−1). It is easy to verify that the

function f : V (D)→ {−1, 0, 1} defined by f(ui) = f(vk+i) = −1 for 1 ≤ i ≤ k
and f(u) = 1 otherwise, is an MDF of D, and so γ−(D) ≤ 2. Now let g

be a γ∗−(D)-function. Since N−[w] = {w} for each w ∈ {uk+i, vi | 1 ≤ i ≤
k} and N+[w] = {w} for each w ∈ {ui, vk+i | 1 ≤ i ≤ k}, we must have

g(w) = 1 for each w ∈ V (D) − {x, y}. It follows that γ∗−(D) ≥ 4k − 2. Thus

γ∗−(D)−max{γ−(D), γ−(D−1)} ≥ 4k − 4 and the proof is complete.
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As we observed in (2), γ∗(D) ≥ γ∗−(D) and γ∗s (D) ≥ γ∗−(D). Next we show

that γ∗(D)− γ∗−(D) and γ∗s (D)− γ∗−(D) can be arbitrary large.

Theorem 4. For every positive integer k ≥ 1, there exists a digraph D such that

γ∗(D)− γ∗
−(D) ≥ k.

Proof. Let k ≥ 1 be an integer and D be a digraph ob-

tained from the directed path
−→
P 4k : v1v2 . . . v4k by adding 4k

new vertices ui, xi, yi, zi (1 ≤ i ≤ k) and adding new arcs

(v4(i−1)+1, ui),(v4(i−1)+2, ui), (ui, v4(i−1)+3), (ui, v4i), (xi, v4(i−1)+1), (v4(i−1)+2,

xi), (yi, v4(i−1)+2), (v4(i−1)+3, yi), (zi, v4(i−1)+3), (v4i, zi), (1 ≤ i ≤ k). It is

easy to verify that the function f : V (D)→ {−1, 0, 1} defined by f(ui) = −1,

f(xi) = f(yi) = f(zi) = 0 for 1 ≤ i ≤ k and f(v) = +1 otherwise, is an

TMDF of D and so γ∗−(D) ≤ 4k − k = 3k. Now let S be a γ∗(D)-set. Since

N−(w) ∩ S 6= ∅ and N+(w) ∩ S 6= ∅ for each w ∈ {ui, xi, yi, zi | 1 ≤ i ≤ k},
we must have |S| ≥ 4k. It follows that γ∗(D) ≥ 4k. Thus γ∗(D)− γ∗−(D) ≥ k
and the proof is complete.

Theorem 5. For every positive integer k, there exists a digraph D such that

γ∗
s (D)− γ∗

−(D) ≥ k.

Proof. Let k ≥ 1 be an integer and D be a digraph with vertex set V (D) =

{u, v, x1, . . . , xk} and arc set A(D) = {(u, xi), (xi, v) | 1 ≤ i ≤ k}. It is easy

to see that the function f : V (D) → {−1, 0, 1} defined by f(u) = f(v) = +1

and f(x) = 0 otherwise, is an TMDF of D and so γ∗−(D) ≤ 2. Now let g be

a γ∗s (D)-function. Since N+[xi] = {v, xi} and N−[xi] = {u, xi} for 1 ≤ i ≤ k,

N−[u] = {u} and N+[v] = {v}, we must have g(x) = +1 for each x ∈ V (D).

It follows that γ∗s (D) = k + 2. Thus γ∗s (D) − γ∗−(D) ≥ k and the proof is

complete.

Now we show that the twin minus domination number and the twin signed

domination number of digraphs can be arbitrary small.

Theorem 6. For any positive integer k, there exists a digraph D such that

γ∗
−(D) ≤ 6k − 8k2.
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Proof. Let k ≥ 1 be an integer and let D be a digraph obtained from a

complete digraph of order 4k with vertex set V (K∗4k) = {ui1 . . . ui4 | 1 ≤ i ≤ k}
by adding the set {vij , wij | 1 ≤ i ≤ k and 1 ≤ j ≤ 4k − 1} of new vertices and

the set

{(vij , ui1), (vij , ui2), (ui3 , vij ), (ui4 , vij ), (ui1 , wij ), (ui2 , wij ), (wij , ui3),

(wij , ui4) | 1 ≤ i ≤ k, 1 ≤ j ≤ 4k − 1},

of new arcs. It is easy to see that the function f : V (D) → {−1, 0, 1} defined

by f(vij ) = f(wij ) = −1 and f(x) = +1 otherwise, is an TMDF of D and so

γ∗−(D) ≤ 4k − 2(k(4k − 1)) = 6k − 8k2.

The function defined in the proof of Theorem 6 is also an TSDF of D and so

γ∗s (D) ≤ 6k− 8k2. Hence, the twin signed domination number of digraphs can

also be arbitrary small.

A tournament is a digraph in which for every pair of distinct vertices u and v,

either (u, v) ∈ A(D) or (v, u) ∈ A(D), but not both. Next we determine the

exact value of the twin minus domination number for two particular types of

tournaments. The acyclic tournament AT (n) with n vertices has the vertex set

V (AT(n)) = {u1, u2, . . . , un} and arc goes from ui into uj if and only if i < j.

Let n = 2r + 1 for some positive integer r. We define the circulant tour-

nament CT(n) with n vertices as follows. The vertex set of CT(n) is

V (CT(n)) = {u0, u1, . . . , un−1} and for each i, the arcs go from ui to the

vertices ui+1, . . . , ui+r, where r is a positive integer and the sum is modulo n.

Proposition 2. For n ≥ 3, γ∗
−(AT(n)) = 2.

Proof. Let f be an TMDF on AT(n). Since f(N−[ui]) ≥ 1 and f(N+[ui]) ≥
1, we have

f(N−[ui])+f(N+[ui]) = f(u1)+· · ·+f(ui−1)+2f(ui)+f(ui+1)+· · ·+f(un) ≥ 2,

for each 1 ≤ i ≤ n. Summing these inequalities, we obtain (n+1)w(f) ≥ 2n and

so w(f) ≥ 2n
n+1 . Since γ∗−(AT(n)) is an integer, we conclude that γ∗−(AT(n)) =

w(f) ≥ 2. Now define f : V (AT(n)) → {−1, 0,+1} by f(u1) = f(un) = +1

and f(x) = 0 otherwise. It is easy to see that f is an TMDF on AT(n) of

weight 2, which implies that γ∗−(AT(n)) = 2.

Theorem 7. [12] For n ≥ 3, γ−(CT(n)) = 2.

The next Proposition shows that γ∗−(CT(n)) = γ−(CT(n)) for all odd n ≥ 3.
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Proposition 3. Let n ≥ 3 and n = 2r + 1, where r is a positive integer. Then
γ∗
−(CT(n)) = γ−(CT(n)).

Proof. By (1) and Proposition 7, we have γ∗−(CT(n)) ≥ 2. On the other hand,

the function f : V (CT(n)) → {−1, 0,+1} defined by f(u0) = f(ur+1) = +1

and f(x) = 0 otherwise, is an TMDF of CT(n) of weight 2. This completes the

proof.

3. Lower Bounds on γ∗−(D)

In this section we present some lower bounds for γ∗−(D) in terms of the order,

size, the maximum and minimum in-degrees and out-degrees of D. We begin

with some results on the minus domination number of a digraph.

Remark 1. Let f be any γ−(D)- function of a digraph D of order n. Then
(i) |Mf |+ |Pf |+ |Zf | = n.
(ii) w(f) = |Pf | − |Mf |.

Theorem 8. Let f be an MDF on a digraph D of order n. If ∆+ = ∆+(D),
δ+ = δ+(D), P = Pf , M = Mf and Z = Zf , then

(a) ∆+|P | ≥ (δ+ + 2)|M |+ |Z|.

(b) (∆+ + δ+ + 2)|P |+ (δ+ + 1)|Z| ≥ (δ+ + 2)n.

(c) (δ+ + 1)w(f) ≥ (δ+ −∆+)|P |+ n.

(d) w(f) ≥ ( 2δ+−∆++2
∆+−δ+ )n+ |P |.

Proof. (a) It follows from Remark 1 (i), that

|P |+ |M |+ |Z| = n ≤
∑
v∈V

∑
x∈N−[v]

f(x) =
∑
v∈V

(d+(v) + 1)f(v)

=
∑
v∈P

(d+(v) + 1)−
∑
v∈M

(d+(v) + 1)

≤ (∆+ + 1)|P | − (δ+ + 1)|M |.

This inequality chain yields to the desired bound in (a).

(b) Remark 1 (i) implies that |Z| = n−|P |− |M |. Using this identity and Part

(a), we arrive at (b).

(c) According to Remark 1 and Part (b), we obtain Part (c) as follows:

w(f) = 2|P | − n+ |Z|,
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and

(δ+ + 1)w(f) = (δ+ + 1)(2|P | − n+ |Z|)
= (∆+ + δ+ + 2)|P |+ (δ+ −∆+)|P | − (δ+ + 1)n+ (δ+ + 1)|Z|
≥ (δ+ −∆+)|P | − (δ+ + 1)n+ (δ+ + 2)n

= (δ+ −∆+)|P |+ n.

(d) The inequality chain in the proof of Part (a) and Remark 1 (i) show that

n ≤ (∆+ + 1)|P ∪ Z| − (δ+ + 1)(n− |P ∪ Z|)
= (∆+ − δ+)|P ∪ Z| − (δ+ + 1)n,

and thus

|P ∪ Z| ≥ (
δ+ + 2

∆+ − δ+
)n.

Using this inequality and Remark 1, we obtain

w(f) = |P | − n+ |P ∪ Z| ≥ ( δ++2
∆+−δ+ )n− n+ |P |

= ( 2δ+−∆++2
∆+−δ+ )n+ |P |,

as required.

Corollary 2. Let D be a digraph of order n, minimum out-degree δ+ and maximum
out-degree ∆+. If δ+ < ∆+, then

γ−(D) ≥ (
2δ+ −∆+ + 3

∆+ + 1
)n.

Proof. Multiplying both sides of the inequality in Theorem 8 (Part (d)) by

(∆+ − δ+) and adding the resulting inequality to the inequality in Theorem 8

(Part (c)), we obtain the desired lower bound.

Corollary 3. Let D be a digraph of order n, minimum in-degree δ− and maximum
in-degree ∆−. If δ− < ∆−, then

γ−(D−1) ≥ (
2δ− −∆− + 3

∆− + 1
)n.

The next Corollary is a consequence of (1) and Corollaries 2 and 3.
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Corollary 4. Let D be a digraph of order n, minimum in-degree δ−, maximum
in-degree ∆−, minimum out-degree δ+ and maximum out-degree ∆+. If δ− < ∆−

and δ+ < ∆+, then

γ∗
−(D) ≥ max{ (2δ+ −∆+ + 3

∆+ + 1
)n, (

2δ− −∆− + 3

∆− + 1
)n}.

Let G = (V,A) be a digraph. A subdivision digraph of G is a digraph SD(G)

obtained from G by adding new vertex xuv for each arc (u, v) ∈ A(G) and

replacing the arc (u, v) with a directed path uxuvv. (The new vertices are all

of in-degree and out-degree 1.)

Theorem 9. Let D be a digraph of order n and size m. Then γ∗
−(D) ≥ n − m

2

with equality if and only if D is a subdivision digraph.

Proof. Let f be a γ∗−(D)− function. For any v ∈ M , we have |A(v, P )| ≥ 2

and |A(P, v)| ≥ 2, which implies that |A(M,P )| ≥ 2|M | and |A(P,M)| ≥ 2|M |.
Also for any v ∈ Z, we have |A(v, P )| ≥ 1 and |A(P, v)| ≥ 1, which implies

that |A(Z,P )| ≥ |Z| and |A(P,Z)| ≥ |Z|. On the other hand, if w ∈ P ,

then it follows from f(N+[w]) ≥ 1 that |A(w,P )| ≥ |A(w,M)|, which implies

|A(P, P )| ≥ |A(P,M)| ≥ 2|M |. Therefore,

m ≥ |A(M,P )|+ |A(P,M)|+ |A(Z,P )|+ |A(P,Z)|+ |A(P, P )|
≥ 4|M |+ 2|Z|+ |A(P, P )|/2 + |M |. (3)

Hence, we have

γ∗−(D) = w(f) = |P | − |M | = n− 2|M | − |Z| ≥ n− m

2
.

If D is a subdivision digraph of a graph G, then n = |V (D)| = |V (G)|+ |A(G)|
and m = |A(D)| = 2|A(G)|. Define the function f : V (D) → {−1, 0, 1} by

f(w) = +1 for w ∈ V (G) and f(w) = 0 otherwise. Then f is an TMDF of D,

which implies that

γ∗−(D) ≤ f(V (D)) = |V (G)| = n− m

2
.

Thus γ∗−(D) = n− m
2 .

Now let γ∗−(D) = n − m
2 . It follows from the chain inequality (3) that |M | =

0, |A(P, P )| = 0 and |A(Z,P )| = |A(P,Z)| = |Z|. This implies that |A(P,w)| =
|A(w,P )| = +1 and so d+(w) = d−(w) = 1 for each w ∈ Z. Now let G be

the digraph obtained from D by replacing every directed path of length 2 with

central vertex in Z by an arc in the same direction as the path. Obviously, D

is the subdivision digraph of G and the proof is complete.
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A set S ⊆ V (G) is a 2-packing if for each pair of distinct vertices x, y ∈ S,

N [x]∩N [y] = ∅. The 2-packing number ρ(G) is the cardinality of a maximum

2-packing.

Proposition 4. Let G be a graph of order n with minimum degree δ and let D be
an orientation of G. Then

γ∗
−(D) ≥ ρ(G)(δ + 2)− n.

Proof. Let S be a maximum 2-packing of G and f be a γ∗−(D)-function. Since

f(N+[v]) ≥ 1 and f(N−[v]) ≥ 1, we have f(NG[v]) = f(N+[v]) + f(N−[v])−
f(v) ≥ 1 for each v ∈ S. This implies that

γ∗−(D) =
∑
v∈S f(NG[v]) +

∑
v∈V (G)−NG[S] f(v)

≥ |S|+
∑
v∈V (G)−NG[S](−1)

≥ |S| − (n− |S|(δ + 1))

= ρ(G)(δ + 2)− n,

and the proof is complete.

The next proposition presents a lower bound on twin signed domination num-

bers in oriented graphs.

Proposition 5. Let D be an oriented graph of order n. Then

γ∗
s (D) ≥

√
9 + 16n− (n+ 3).

Proof. Let f be a γ∗s (D)- function. If Mf = ∅, then γ∗s (D) = w(f) = n ≥√
9 + 16n − (n + 3). Let Mf 6= ∅. Every vertex in Mf has at least 2 out-

neighbors and at least 2 in-neighbors in Pf . By the Pigeonhole principle, at

least one vertex in Pf say y satisfies |((N+(y) ∪N−(y)) ∩Mf | ≥ 4|Mf |
|Pf | . So we

have

2 ≤ f(N+[y]) + f(N−[y]) = 2 + |(N+(y) ∩ Pf |+ |(N−(y) ∩ Pf |
−|(N+(y) ∩Mf | − |(N−(y) ∩Mf |

= 2 + |((N+(y) ∪N−(y)) ∩ Pf | − |(N+(y) ∪N−(y)) ∩Mf |
≤ 2 + |Pf | − 1− 4|Mf |

|Pf | = 2 + p− 1− 4(n−p)
p ,

where p = |Pf |. This implies that p ≥ −3+
√

9+16n
2 and so γ∗s (D) = w(f) ≥

2p− n ≥
√

9 + 16n− (n+ 3).
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The next proposition presents a lower bound on twin minus domination num-

bers in an oriented graph in terms of its order.

Proposition 6. Let D be an oriented graph of order n. Then

γ∗
−(D) ≥ b

√
9 + 16nc − (n+ 3).

Proof. Let f be a γ∗−(D)- function. If Zf = ∅, then f is an TSDF on D and

by Proposition 5, γ∗−(D) = w(f) ≥ γ∗s (D) ≥
√

9 + 16n−(n+3) ≥ b
√

9 + 16nc−
(n+ 3). Let Zf 6= ∅. Let n1 = n− |Zf | and D1 be a subdigraph of D induced

by the set V (D)−Zf . Then f |V (D1) is an TSDF on D1 and by Proposition 5,

γ∗−(D) = w(f) ≥ γ∗s (D1) ≥
√

9 + 16n1 − (n1 + 3) ≥ b
√

9 + 16n1c − (n1 + 3).

Now we can easily see that the function g(x) = b
√

9 + 16xc − (x+ 3) is a non

increasing function for any integer x ≥ 1 and so g(n1) ≥ g(n). This implies

that γ∗−(D) ≥ b
√

9 + 16n1c − (n1 + 3) ≥ b
√

9 + 16nc − (n+ 3).

Next we prove that the bounds given in Propositions 5 and 6 are sharp.

For 1 ≤ i ≤ 4 and r ≥ 1, let Di be the circulant Tournament CT (2r + 1) with

vertex set {ui0, . . . , ui2r}. Let H be a digraph obtained from the union of Di’s

by adding the set

{(u1
j , u

2
t ), (u

2
j , u

3
t ), (u

3
j , u

4
t ), (u

4
j , u

1
t )(u

1
j , u

3
t ), (u

2
j , u

4
t ) | 0 ≤ j, t ≤ 2r, }

of new arcs. Let D be obtained from H by adding the set

{vt1, . . . , vt3r+1, w
t
1, . . . , w

t
3r+1, z

t
1, . . . , z

t
2r+1 | 0 ≤ t ≤ 2r},

of new vertices and the set

{(u1
t , v

t
k), (u2

t , v
t
k), (vtk, u

3
t ), (v

t
k, u

4
t ), (w

t
k, u

1
t ), (w

t
k, u

2
t ), (u

3
t , w

t
k), (u4

t , w
t
k), (u1

t , z
t
s),

(u2
t , z

t
s), (z

t
s, u

3
t ), (z

t
s, u

4
t ) | 0 ≤ t ≤ 2r, 1 ≤ k ≤ 3r + 1, 1 ≤ s ≤ 2r + 1},

of new arcs. Then the order of D is n = 16r2 + 22r + 7 and
√

9 + 16n− (n+

3) = −16r2 − 6r + 1. Now define f : V (D) → {−1,+1} by f(x) = +1 for

x ∈ {ui0, . . . , ui2r | 1 ≤ i ≤ 4} and f(x) = −1 otherwise. It is easy to see that f

is an TSDF and also an TMDF on D of weight −16r2 − 6r + 1, which implies

that γ∗s (D) ≤ −16r2 − 6r+ 1 and γ∗−(D) ≤ −16r2 − 6r+ 1. By Propositions 5

and 6, we have γ∗s (D) = γ∗−(D)− 16r2 − 6r + 1.
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4. Twin Minus Domination in Oriented Graphs

Let G be the complete bipartite graph K4,5 with partite sets U =

{u1, u2, u3, u4, u5} and V = {v1, v2, v3, v4}. Let D1 be an orientation of G

such that all arcs go from V1 into V2 and D2 be an orientation of G such that

A(D2) = {(vi, uj), (uj , vr) | i = 1, 2, r = 3, 4 and 1 ≤ j ≤ 5}. It is easy to see

that γ∗−(D1) = 9 and γ∗−(D2) = 4. Thus two distinct orientations of a graph

can have distinct twin minus domination numbers. Motivated by this observa-

tion, we define lower orientable twin minus domination number dom∗−(G) and

upper orientable twin minus domination number Dom∗−(G) of a graph G as

follows:

dom∗−(G) = min{γ∗−(D) | D is an orientation of G},

and

Dom∗−(G) = max{γ∗−(D) | D is an orientation of G}.

Corresponding concepts have been defined and studied for orientable domina-

tion (out-domination) [9], twin domination number [8], twin signed domination

number [6], twin signed total domination number [3] and twin signed Roman

domination number [7].

Since for any orientation D of a graph G, γ∗−(D) ≤ γ∗(D) and γ∗−(D) ≤ γ∗s (D),

we have

dom∗−(G) ≤ dom∗(G) (4)

dom∗−(G) ≤ dom∗s(G) (5)

The proof of the following three theorems can be found in [2].

Theorem 10. For the path Pn, we have dom∗(Pn) = dn+1
2
e.

Theorem 11. For n ≥ 3, dom∗(Kn) = 2.

Theorem 12. For any two positive integers m,n, dom∗(Km,n) ≤ 4.

Proposition 7. For any graph G of order n, γ−(G) ≤ dom∗
−(G).

Proof. Let D be an orientation of G and let f be a γ∗−(D)-function. Then

f(NG[v]) = f(N+
D [v]) + f(N−D [v]) − f(v) for each v ∈ V . Since f(N+

D [v]) ≥ 1

and f(N−D [v]) ≥ 1, we have f(NG[v]) ≥ 1 for each v ∈ V , and so f is an MDF

of G. Therefore γ−(G) ≤ w(f) = dom∗−(G) as desired.

The proof of the next two results are straightforward and therefore omitted.
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Proposition 8. Let G be a graph of order n and v ∈ V (G). If deg(v) = 1,
then for any orientation D of G and any γ∗

−(D)-function f , we have f(v) = +1 and
f(u) ≥ 0 for u ∈ N [v].

Proposition 9. Let G be a graph of order n and v ∈ V (G). If deg(v) ≤ 3, then
for any orientation D of G and any γ∗

−(D)-function f , we have f(v) ≥ 0.

Proposition 10. Let G be a graph of order n. Then dom∗
−(G) = n if and only if

deg(v) ≤ 1 for every v ∈ V (G).

Proof. One side is clear by Proposition 8. Let dom∗−(G) = n. Assume, to

the contrary, there exists a vertex v ∈ V (G) such that deg(v) ≥ 2. Let u

and w be two vertices adjacent to v and D be an orientation of G such that

(u, v), (v, w) ∈ A(D). Then the function f : V (D) → {−1, 0, 1} that assigns 0

to v and +1 to the remaining vertices, is an TMDF of D of weight n − 1 and

so dom∗−(G) ≤ n− 1, a contradiction. This completes the proof.

Proposition 11. For the path Pn, we have dom∗
−(Pn) = dn+1

2
e.

Proof. Let D be an orientation of Pn and let f be a γ∗−(D)-function such

that γ∗−(D) = dom∗−(Pn). By Proposition 9, Mf = ∅ and so Pf is a twin

dominating set on D. Hence

dom∗(Pn) ≤ γ∗(D) ≤ w(f) = dom∗−(Pn).

Now the result follows by (4) and Proposition 10.

We now proceed to determine the lower orientable twin domination numbers

of several classes of graphs including complete graphs and complete bipartite

graphs.

Theorem 13. For n ≥ 3, dom∗
−(Kn) = 2.

Proof. We first show that dom∗−(Kn) ≥ 2. Let D be an orientation of Kn

and let f be a γ∗−(D)-function. If Mf = ∅ and Zf = ∅, then w(f) = n. Let

Zf = ∅ and v ∈Mf . Since f(N+
D [v]) ≥ 1 and f(N−D [v]) ≥ 1, we have

w(f) = f(N+
D [v]) + f(N−D [v])− f(v) ≥ 3.

Let now Mf = ∅ and v ∈ Zf . As above we have

w(f) = f(N+
D [v]) + f(N−D [v])− f(v) ≥ 2.
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This implies that dom∗−(Kn) ≥ 2. Now the result follows by (4) and Proposi-

tion 11.

Proposition 12. For n ≥ 2, dom∗
−(K1,n) = n.

Proof. Let V (K1,n) = {v, u1, . . . , un} where v is the central vertex of K1,n.

Let D be an orientation of K1,n and let f be a γ∗−(D)-function. By Proposition

8, f(ui) = +1 for 1 ≤ i ≤ n, which implies that w(f) ≥ n and so dom∗−(K1,n) ≥
n. Let now D be an orientation of K1,n such that (v, u1), (u2, v) ∈ A(D). Then

the function f : V (D) → {−1, 0, 1} defined by f(v) = 0 and f(x) = +1

otherwise, is an TMDF of D and so γ∗−(D) ≤ n. This completes the proof.

Proposition 13. For n ≥ 2, dom∗
−(K2,n) = 2.

Proof. Consider K2,n with partite sets U = {u1, . . . , un} and V = {v1, v2}.
Let D be an orientation of K2,n and let f be a γ∗−(D)-function. By Proposition

9, f(ui) ≥ 0 for 1 ≤ i ≤ n. First let Mf 6= ∅. Let f(v1) = −1. Then

since f(N−D [v]) ≥ 1 and f(N+
D [v]) ≥ 1 for each v ∈ V (D), it follows that

f(v2) = f(ui) = +1 for all 1 ≤ i ≤ n. This implies that w(f) ≥ n and

so dom∗−(K1,n) = n ≥ 2. Let now Mf = ∅. If Zf = ∅, then w(f) =

n + 1 ≥ 2. Let v ∈ Zf . Since f(N−D [v]) ≥ 1 and f(N+
D [v]) ≥ 1, we have

w(f) ≥ f(N−D [v]) + f(N+
D [v])− f(v) ≥ 2.

Let now D be an orientation of K2,n such that A(D) = {(v1, ui), (ui, v2)| 1 ≤
i ≤ n}. Then the function f : V (D) → {−1, 0, 1} defined by f(v1) = f(v2) =

+1 and f(x) = 0 otherwise, is an TMDF of D and so γ∗−(D) ≤ 2. This

completes the proof.

Proposition 14. For n ≥ 3, dom∗
−(K3,n) = 3.

Proof. Consider K3,n with partite sets U = {u1, u2, . . . , un} and V =

{v1, v2, v3}. Let D be an orientation of K3,n and let f be a γ∗−(D)-function.

By Proposition 9, f(ui) ≥ 0 for 1 ≤ i ≤ n. First let Mf 6= ∅. Let f(v1) = −1.

Then obviously, f(v2) = +1 or f(v3) = +1 and f(ui) = +1 for all 1 ≤ i ≤ n

and so w(f) ≥ n ≥ 3.

Let now Mf = ∅. If f(x) = +1 for every x ∈ U or f(y) = +1 for every y ∈ V ,

then obviously w(f) ≥ 3. If f(x) = 0 and f(y) = 0 for some x ∈ U and y ∈ V ,

then f(N−D [x]) ≥ 1, f(N+
D [x]) ≥ 1, f(N−D [y]) ≥ 1 and f(N+

D [y]) ≥ 1 implies

that f(X) ≥ 2 and f(Y ) ≥ 2 and so w(f) ≥ 4.

Let now D be an orientation of K3,n such that A(D) =

{(v1, ui), (ui, v2), (ui, v3)| 1 ≤ i ≤ n}. Then the function f : V (D)→ {−1, 0, 1}
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defined by f(v1) = f(v2) = f(v3) = +1 and f(x) = 0 otherwise, is an TMDF

of D and so γ∗−(D) ≤ 3. This completes the proof.

Proposition 15. For n,m ≥ 4, dom∗
−(Km,n) = 4.

Proof. Consider Km,n with partite sets X and Y . By (4) and Proposition

12 we have dom∗−(Km,n) ≤ 4. Let now D be an orientation of Km,n and let

f be a γ∗−(D)-function. First let Mf 6= ∅. Let v ∈ X and f(v) = −1. Since

f(N−D [v]) ≥ 1 and f(N+
D [v]) ≥ 1, we have f(Y ) ≥ 4. On the other hand,

f(N−D (u)) ≥ 0 and f(N+
D (u)) ≥ 0 for any u ∈ Y and so f(X) ≥ 0. This implies

that w(f) ≥ 4.

Let now Mf = ∅. If f(x) = +1 for any x ∈ X or f(y) = +1 for any y ∈ Y , then

obviously w(f) ≥ 4. Let f(x) = 0 and f(y) = 0 for some x ∈ X and y ∈ Y .

Since f(N−D [x]) ≥ 1, f(N+
D [x]) ≥ 1, f(N−D [y]) ≥ 1 and f(N+

D [y]) ≥ 1, we have

f(X) ≥ 2 and f(Y ) ≥ 2 and so w(f) ≥ 4. This completes the proof.

The wheel, Wn, is a graph with vertex set {v0, v1, . . . , vn} and edge set {v0vi |
1 ≤ i ≤ n} ∪ {v1v2, v2v3, . . . , vn−1vn, vnv1}. Next we determine the lower

orientable twin minus domination number of wheels.

Theorem 14. [2] For n ≥ 4, dom∗(Wn) =

{
dn−1

3
e n = 5

dn−1
3
e+ 1 otherwise.

Proposition 16. For n ≥ 5, dom∗
−(Wn) = dom∗(Wn).

Proof. By (4), we have dom∗−(Wn) ≤ dom∗(Wn). We show that dom∗−(Wn) ≥
dom∗(Wn). Let V (Wn) = {v0, v1, . . . , vn} and E(Wn) = {vivi+1, v0vi | 1 ≤ i ≤
n−1}∪{v0vn, vnv1}. Let D be an orientation of Wn and f be a γ∗s (D)-function.

It follows from Proposition 9 that f(vi) ≥ 0 for each i ≥ 1. If f(v0) = −1,

then f(vi) = +1 for i ≥ 1 and so w(f) = n− 1, which leads to a contradiction.

Therefore f(v0) ≥ 0 and so Pf is a twin dominating set of D. This implies that

γ∗−(D) = w(f) = |Pf | ≥ γ∗(D) ≥ dom∗(Wn).
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