# On trees and the multiplicative sum Zagreb index 

Mehdi Eliasi* and Ali Ghalavand<br>Dept. of Mathematics, Khansar Faculty of Mathematics and Computer Science, Khansar, Iran m.elyasi@khansar-cmc.ac.ir

Received: 28 September 2016; Accepted: 23 December 2016; Published Online: 24 December 2016. Communicated by Ivan Gutman


#### Abstract

For a graph $G$ with edge set $E(G)$, the multiplicative sum Zagreb index of $G$ is defined as $\Pi^{*}(G)=\Pi_{u v \in E(G)}\left[d_{G}(u)+d_{G}(v)\right]$, where $d_{G}(v)$ is the degree of vertex $v$ in $G$. In this paper, we first introduce some graph transformations that decrease this index. In application, we identify the fourteen class of trees, with the first through fourteenth smallest multiplicative sum Zagreb indices among all trees of order $n \geq 13$.


Keywords: Multiplicative sum Zagreb index, Graph transformation, Branching point, Trees.

2010 Mathematics Subject Classification:05C07, 05C05

## 1. Introduction

Throughout this paper, we consider connected graphs without loops and multiple edges. Let $G$ be such a graph and $V(G)$ and $E(G)$ its vertex set and edge set, respectively. For a vertex $v$ in $G$, the degree of $v, d_{G}(v)$, is the number of edges incident to $v ; N[v, G]$ is the set of vertices adjacent to $v$. If $u \in V(G)$ and $u \in N[v, G]$, we then write $u v \in E(G)$. A pendent vertex is a vertex with degree one. We use $\Delta=\Delta(G)$ to denote the maximum degree of $G$. The

[^0]number of edges of $G$ connecting a vertex of degree $i$ with a vertex of degree $j$ will be denoted by $m_{i, j}(G)$.
For a subset $W$ of $E(G)$, we denote by $G-W$ the subgraph of $G$ obtained by deleting the edges of $W$. Similarly, for a subset $U$ of $V(G)$, let $G-U$ be the subgraph of G obtained by deleting the vertices of $U$ and the edges incident to them. For any two nonadjacent vertices $u$ and $v$ of graph $G, G+u v$ denotes the graph obtained from $G$ by adding an edge $u v$.
A tree is a connected acyclic graph. Any tree with at least two vertices has at least two pendant vertices. The set of all $n$-vertex trees will be denoted by $\tau(n)$. We denote the path graph and the star graph (both with $n$ vertices) with $P_{n}$ and $S_{n}$, respectively.
We denote the distance between two arbitrary vertices $x$ and $y$ of a graph $G$ by $d_{G}(x, y)$. This distance is defined as the number of edges in the minimal path connecting the vertices $x$ and $y$. Given an edge $e=u v \in E(G)$ of $G$, let us denote the number of vertices lying closer to the vertex $u$ than to the vertex $v$ of e by $n_{u}(e \mid G)$ and the number of vertices lying closer to the vertex $v$ than to the vertex $u$ by $n_{v}(e \mid G)$. Thus,
$$
n_{u}(e \mid G):=\left|\left\{a \in V(G) \mid d_{G}(u, a)<d_{G}(v, a)\right\}\right| .
$$

A graph invariant (topological index) is a real number related to a graph, which is invariant under graph isomorphism. For a graph $G$, the graph invariant

$$
M_{1}(G)=\sum_{u v \in E(G)}\left[d_{G}(u)+d_{G}(v)\right]
$$

is called the first Zagreb index. It is easy to see that $M_{1}(G)=\sum_{v \in V(G)} d_{G}(v)^{2}$. This index was introduced more than 40 years ago [10], and has many applications in chemistry $[2,11,13]$. Also, the first Zagreb index was subject to a large number of mathematical studies [3-5, 8, 9]. Todeschini et al. [12, 14] have recently proposed to consider multiplicative variants of additive graph invariants. Eliasi et al. [6] applied this idea to the first Zagreb index and defined the first multiplicative Zagreb index as:

$$
\Pi^{*}(G)=\Pi_{u v \in E(G)}\left[d_{G}(u)+d_{G}(v)\right] .
$$

This graph invariant is called the multiplicative sum Zagreb index by Xu and Das [17]. Eliasi et al. [6] proved that among all connected graphs with a given number of vertices, the path has minimal $\Pi^{*}$, and they determined the trees with the second minimal $\Pi^{*}$. Also, Xu and Das [17] characterized the trees,
unicylcic, and bicyclic graphs extremal (maximal and minimal) with respect to the multiplicative sum Zagreb index. Moreover, they used a method different but shorter than that in [6] for determining the minimal multiplicative sum Zagreb index of trees. Other results for this index can be found in $[1,7,15]$.
In this paper, we first introduce some graph transformations, which decrease $\Pi^{*}$. By using these operations, we identify the fourteen class of trees, with the first through fourteenth smallest multiplicative sum Zagreb indices among all trees of order $n \geq 13$.

## 2. Some Graph Transformations

In this section, we introduce some graph transformations which decrease the multiplicative sum Zagreb index. We start with some definitions and notations which are taken from [16]. A vertex $v$ of a tree $T$ is called a branching point of $T$ if $d_{T}(v) \geq 3$. Let $T_{n}\left(n_{1}, n_{2}, \ldots, n_{m}\right)$ be a starlike tree of order $n$ obtained from the star $S_{m+1}$ by replacing its $m$ edges with $m$ paths $P_{n_{1}}, P_{n_{2}}, \ldots, P_{n_{m}}$, with $\sum_{i=1}^{m} n_{i}=n-1$. Any starlike tree has exactly one branching point. For a tree $T$ of order $n$ with two branching points $v_{1}$ and $v_{2}, d_{T}\left(v_{1}\right)=r$ and $d_{T}\left(v_{2}\right)=t$, and if the orders of $r-1$ components, which are paths of $T-\left\{v_{1}\right\}$, are $p_{1}, p_{2}, \ldots, p_{r-1}$, and the orders of $t-1$ components, which are paths of $T-\left\{v_{2}\right\}$, are $q_{1}, q_{2}, \ldots, q_{t-1}$, then we write the tree as $T=T_{n}\left(p_{1}, p_{2}, \ldots, p_{r-1} ; q_{1}, q_{2}, \ldots, q_{t-1}\right)$. In addition, if $v_{1} v_{2} \in E(T)$ then we write the tree as $T=T_{n}^{\sim}\left(p_{1}, p_{2}, \ldots, p_{r-1} ; q_{1}, q_{2}, \ldots, q_{t-1}\right)$, and if $v_{1} v_{2} \notin E(T)$, then we write $T=T_{n}^{\not \chi}\left(p_{1}, p_{2}, \ldots, p_{r-1} ; q_{1}, q_{2}, \ldots, q_{t-1}\right)$.

Lemma 1. Suppose that $G_{0}$ is a tree with given vertices $v_{1}, v_{2}$, and $v_{3}$, such that $d_{G_{0}}\left(v_{1}\right) \geq 3, d_{G_{0}}\left(v_{2}\right) \geq 2, d_{G_{0}}\left(v_{3}\right)=1$, and $v_{2} v_{3} \in E\left(G_{0}\right)$. In addition, suppose that $G$ is another tree, and $w$ is a vertex in $G$ such that $d_{G_{0}}\left(v_{1}\right) \geq d_{G}(w)$. let $G_{1}$ be the graph obtained from $G_{0}$ and $G$ by attaching vertices $w, v_{1}$, and $G_{2}=G_{1}-w v_{1}+w v_{3}$. Then $\Pi^{*}\left(G_{2}\right)<\Pi^{*}\left(G_{1}\right)$ (see Figure 1).

Proof. Suppose that $d_{G_{0}}\left(v_{1}\right)=x, N\left[v_{1}, G_{0}\right]=\left\{l_{1}, \ldots l_{x}\right\}, d_{G_{0}}\left(l_{i}\right)=d_{i}$, for $i=1, \ldots, x$. Let $d_{G_{0}}\left(v_{2}\right)=m$ and $d_{G}(w)=k$. If $v_{1} \neq v_{2}$, then we have

$$
\begin{align*}
\frac{\Pi^{*}\left(G_{1}\right)}{\Pi^{*}\left(G_{2}\right)} & =\frac{(k+x+2)(m+1) \prod_{i=1}^{x}\left(d_{i}+x+1\right)}{(m+2)(k+3) \prod_{i=1}^{x}\left(d_{i}+x\right)} \\
& >\frac{(k+x+2)(m+1)}{(m+2)(k+3)} \tag{1}
\end{align*}
$$

Figure 1. The trees $G_{0}, G, G_{1}$ and $G_{2}$ in Lemma 1.


But $x \geq 3$ and $m \geq 2$, so $m(x-1) \geq 4$ and $x m \geq m+4$. According to the hypothesis, $x \geq k$. Hence,

$$
\begin{aligned}
(k+x+2)(m+1)-(m+2)(k+3) & =x m+x-(m+k+4) \\
& =[x m-(m+4)]+(x-k) \geq 0
\end{aligned}
$$

and by (1) we have $\frac{\Pi^{*}\left(G_{1}\right)}{\Pi^{*}\left(G_{2}\right)}>1$.
Now, suppose that $v_{1}=v_{2}$. Without loss of generality, we may assume that $l_{1}=v_{3}$. So,

$$
\begin{align*}
\frac{\Pi^{*}\left(G_{1}\right)}{\Pi^{*}\left(G_{2}\right)} & =\frac{(k+x+2)(x+2) \prod_{i=2}^{x}\left(d_{i}+x+1\right)}{(x+2)(k+3) \prod_{i=2}^{x}\left(d_{i}+x\right)} \\
& >\frac{(k+x+2)}{(k+3)}>1 \tag{2}
\end{align*}
$$

because $x \geq 3$.

Lemma 2. Suppose that $G_{0}$ is a tree with given vertices $v_{1}$ and $v_{2}$ such that $d_{G_{0}}\left(v_{1}\right) \geq 3$, and $P_{k}:=w_{1} w_{2} \ldots w_{k}$ and $Q_{l}:=u_{1} u_{2} \ldots u_{l}$ are two paths, with $k$ and $l$ vertices, respectively. Let $G_{1}$ be the graph obtained from $G_{0}, P_{k}$, and $Q_{l}$ by adding the edges $v_{1} u_{1}$ and $v_{2} w_{1}$. Also, let $G_{2}=G_{1}-v_{1} u_{1}+w_{k} u_{1}$. Then $\Pi^{*}\left(G_{2}\right)<\Pi^{*}\left(G_{1}\right)$ (see Figure 2). This inequality holds, when $d_{G_{0}}\left(v_{1}\right)=2$ and at least one of the neighborhoods of $v_{1}$ has degree less than 13 in $G_{0}$.

Proof. We first suppose that $d_{G_{0}}\left(v_{1}\right) \geq 3$ and $k \geq 2$. Let $H_{0}$ be the tree obtained by joining $G_{0}$ and $P_{k}$ by the edge $v_{2} w_{1}$. Then, $H_{0}$ is a tree with given vertices $v_{1}, w_{k-1}$, and $w_{k}$, such that $d_{H_{0}}\left(v_{1}\right) \geq 3, d_{H_{0}}\left(w_{k}\right)=1$, and $w_{k-1} w_{k} \in E\left(H_{0}\right)$. Since $u_{1}$ is a vertex in $Q_{l}$ and $d_{H_{0}}\left(v_{1}\right) \geq d_{Q_{l}}\left(u_{1}\right)$, Lemma 1 implies $\Pi^{*}\left(G_{2}\right)<\Pi^{*}\left(G_{1}\right)$.
If $k=1$, then $H_{0}$ is a tree with given vertices $v_{1}, v_{2}$, and $w_{k}$, such that

Figure 2. The trees $G_{0}, P_{k}, Q_{l}, G_{1}$ and $G_{2}$ in Lemma 2.

$d_{H_{0}}\left(v_{1}\right) \geq 3, d_{H_{0}}\left(w_{k}\right)=1$, and $v_{2} w_{k} \in E\left(H_{0}\right)$. Since $u_{1}$ is a vertex in $Q_{l}$ and $d_{H_{0}}\left(v_{1}\right) \geq d_{Q_{l}}\left(u_{1}\right)$, Lemma 1 implies that $\Pi^{*}\left(G_{2}\right)<\Pi^{*}\left(G_{1}\right)$ (see Figure 2).
Now, suppose that $d_{G_{0}}\left(v_{1}\right)=2$ and $N\left[v_{1}, G_{0}\right]=\left\{l_{1}, l_{2}\right\}$ and $d_{G_{0}}\left(l_{i}\right)=d_{i}$, for $i=1,2$ and $d_{1} \leq 13$. We distinguish the following eight cases:
(1) $v_{1} \neq v_{2}$ and $l, k \geq 2$,
(2) $v_{1} \neq v_{2}$ and $l \geq 2, k=1$,
(3) $v_{1} \neq v_{2}$ and $l=1, k \geq 2$,
(4) $v_{1} \neq v_{2}$ and $l=1, k=1$,
(5) $v_{1}=v_{2}$ and $l, k \geq 2$,
(6) $v_{1}=v_{2}$ and $l \geq 2, k=1$,
(7) $v_{1}=v_{2}$ and $l=1, k \geq 2$,
(8) $8 v_{1}=v_{2}$ and $l=1, k=1$.

Here, we only give the proof of (1).
Suppose that $v_{1} \neq v_{2}$ and $l, k \geq 2$. Then we have

$$
\begin{equation*}
\frac{\Pi^{*}\left(G_{1}\right)}{\Pi^{*}\left(G_{2}\right)}=\frac{5 \times 3 \times\left(d_{1}+3\right) \times\left(d_{2}+3\right)}{4 \times 4 \times\left(d_{1}+2\right) \times\left(d_{2}+2\right)} \tag{3}
\end{equation*}
$$

But

$$
\begin{aligned}
15\left(d_{1}+3\right)\left(d_{2}+3\right)-16\left(d_{1}+2\right)\left(d_{2}+2\right) & =-d_{1} d_{2}+13 d_{1}+13 d_{2}+71 \\
& =d_{2}\left(13-d_{1}\right)+13 d_{1}+71>0
\end{aligned}
$$

and by (3) we have $\frac{\Pi^{*}\left(G_{1}\right)}{\Pi^{*}\left(G_{2}\right)}>1$.
Now, suppose that $v_{1} \neq v_{2}, l \geq 2$, and $k=1$ (Case 2). Let $d_{G_{0}}\left(v_{2}\right)=z$. Then

$$
\begin{equation*}
\frac{\Pi^{*}\left(G_{1}\right)}{\Pi^{*}\left(G_{2}\right)}=\frac{5 \times 3 \times\left(d_{1}+3\right) \times\left(d_{2}+3\right) \times(z+2)}{4 \times 3 \times\left(d_{1}+2\right) \times\left(d_{2}+2\right) \times(z+3)} \tag{4}
\end{equation*}
$$

But

$$
\begin{align*}
& \Pi^{*}\left(G_{1}\right)-\Pi^{*}\left(G_{2}\right) \\
& \quad=15\left(d_{1}+3\right)\left(d_{2}+3\right)(z+2)-\left[12\left(d_{1}+2\right)\left(d_{2}+2\right)(z+3)\right] \\
& \quad=3 d_{1} d_{2} z-6 d_{1} d_{2}+21 d_{1} z+18 d_{1}+21 d_{2} z+18 d_{2}+87 z+126 \\
& \quad=3 d_{1} d_{2}(z-2)+21 d_{1} z+18 d_{1}+21 d_{2} z+18 d_{2}+87 z+126 . \tag{5}
\end{align*}
$$

Figure 3. The trees $G_{0}, P_{k}, G_{1}$ and $G_{2}$ in Lemma 3.


In (5), take $z=1$. Since $d_{1} \leq 13$, we obtain

$$
\Pi^{*}\left(G_{1}\right)-\Pi^{*}\left(G_{2}\right)=3\left[d_{2}\left(13-d_{1}\right)+13 d_{1}+71\right]>0 .
$$

In (5), if $z \geq 2$, then it is clear that $\Pi^{*}\left(G_{1}\right)-\Pi^{*}\left(G_{2}\right)>0$, which is our claim. The proofs of the remaining cases are similar, and we omit them.

Lemma 3. Suppose that $G_{0}$ is a tree with given vertices $v_{1}, v_{2}$, and $w \in V\left(G_{0}\right)$, such that $d_{G_{0}}\left(v_{1}\right) \geq 2, d_{G_{0}}\left(v_{2}\right) \geq 3$ and $w$ is a pendent vertex in $N\left[v_{2}, G_{0}\right]$. In addition, suppose that $P_{k}:=u_{1} u_{2} \ldots u_{k}$ is a path, with $k \geq 3$ vertices. Let $G_{1}$ be the tree obtained from $G_{0}$ and $P_{k}$ by joining $v_{1}$ and $u_{1}$. Let $2 \leq i \leq k-1$. If $G_{2}=G_{1}-u_{i} u_{i+1}+w u_{i+1}$, then $\Pi^{*}\left(G_{2}\right)<\Pi^{*}\left(G_{1}\right)$ (see Figure 3).

Proof. Suppose that $d_{G_{0}}\left(v_{2}\right)=x$. We consider the following cases: (a) $v_{1} \neq v_{2}$. In this case, it is easy to see that

$$
\frac{\Pi^{*}\left(G_{1}\right)}{\Pi^{*}\left(G_{2}\right)}=\frac{(x+1) \times 4}{(x+2) \times 3}=\frac{4 x+4}{3 x+6}>1
$$

because, $x \geq 3 \Rightarrow 4 x+4-(3 x+6)=x-2 \geq 1 \Rightarrow 4 x+4>3 x+6$.
(b) $v_{1}=v_{2}$. In this case, we have

$$
\begin{equation*}
\frac{\Pi^{*}\left(G_{1}\right)}{\Pi^{*}\left(G_{2}\right)}=\frac{(x+2) \times 4}{(x+3) \times 3}=\frac{4 x+8}{3 x+9} \tag{6}
\end{equation*}
$$

but

$$
\begin{equation*}
4 x+8-(3 x+9)=x-1>0 \tag{7}
\end{equation*}
$$

which completes the proof.

Figure 4. The trees $G_{i}(\mathbf{i}=1,2,3), P_{k}$, and $Q_{l}$ in Lemma 4.


Remark 1. By considering (6) and (7), one can see that if $v_{1}=v_{2}$ and $d_{G_{0}}\left(v_{2}\right)=2$ in Lemma 3, then the inequality $\Pi^{*}\left(G_{2}\right)<\Pi^{*}\left(G_{1}\right)$ holds.

Lemma 4. Suppose that for $i=1,2,3, G_{i}$ are trees with $v_{i} \in V\left(G_{i}\right), d_{G_{1}}\left(v_{1}\right) \geq 2$ and $d_{G_{i}}\left(v_{i}\right) \geq 1(i=2,3)$. In addition, suppose that $P_{l}:=w_{1} w_{2} \ldots w_{l}$ and $Q_{k}:=$ $u_{1} u_{2} \ldots u_{k}$ are two paths, with $l$ and $k$ vertices, respectively. Let $G_{0}$ be the graph obtained from $G_{i}(i=1,2,3), P_{l}$, and $Q_{k}$ by adding the edges $v_{1} w_{1}, w_{l} v_{2}, v_{2} u_{1}$ and $u_{k} v_{3}$. Also, let $G=G_{0}-\left\{v_{1} w_{1}, v_{2} u_{1}\right\}+\left\{v_{1} v_{2}, w_{1} u_{1}\right\}$. Then $\Pi^{*}(G)<\Pi^{*}\left(G_{0}\right)$ (see Figure 4).

Proof. Let $d_{G_{1}}\left(v_{1}\right)=x$ and $d_{G_{2}}\left(v_{2}\right)=h$. Then

$$
\frac{\Pi^{*}(G)}{\Pi^{*}\left(G_{0}\right)}=\frac{4(x+h+3)}{(h+4)(x+3)}=\frac{4 x+4 h+12}{h x+3 h+4 x+12}<1,
$$

since $x \geq 2$.
Lemma 5. Suppose that for $i=1,2, G_{i}$ are trees such that $\left\{v_{1}, w\right\} \subseteq V\left(G_{1}\right)$, $v_{2} \in V\left(G_{2}\right), d_{G_{i}}\left(v_{i}\right) \geq 2(i=1,2)$ and $d_{G_{1}}(w)=1$. In addition, suppose that $P_{k}:=$ $u_{1} u_{2} \ldots u_{k}$ is a path, with $k$ vertices. Let $G_{0}$ be the graph obtained from $G_{i}(i=1,2)$ and $P_{k}$ by adding the edges $v_{1} u_{1}$ and $u_{k} v_{2}$. Also, let $G=G_{0}-\left\{v_{1} u_{1}, u_{k} v_{2}, v_{1} w\right\}+$ $\left\{v_{1} v_{2}, w u_{1}, v_{1} u_{k}\right\}$. Then $\Pi^{*}(G)<\Pi^{*}\left(G_{0}\right)$ (see Figure 5).

Proof. Let $d_{G_{1}}\left(v_{1}\right)=h$ and $d_{G_{2}}\left(v_{2}\right)=x$. Then

$$
\begin{aligned}
\frac{\Pi^{*}(G)}{\Pi^{*}\left(G_{0}\right)} & =\frac{3(x+h+3)}{(h+3)(x+3)} \\
& =\frac{3 x+3 h+9}{h x+3 h+3 x+9}<1
\end{aligned}
$$

since $x, h \geq 2$.

Figure 5. The trees $G_{i}(\mathrm{i}=\mathbf{1}, \mathbf{2}), P_{k}, G_{0}$, and $G$ in Lemma 5.


## 3. Main Theorems

For positive integers $x_{1}, \ldots, x_{m}$, and $y_{1}, \ldots, y_{m}$, let $T\left(x_{1}^{\left(y_{1}\right)}, \ldots, x_{m}^{\left(y_{m}\right)}\right)$ be the class of trees with $y_{i}$ vertices of the degree $x_{i}, i=1, \ldots, m$.

Theorem 1. Let $\dot{T}$ be a tree in $\tau(n)$, where $n \geq 13$. If $\Delta(\dot{T}) \geq 4$ and $\dot{T} \notin$ $T_{n}\left(n_{1}, n_{2}, n_{3}, n_{4}\right)$, then for each $T \in T_{n}\left(n_{1}, n_{2}, n_{3}, n_{4}\right)$, we have $\Pi^{*}(T)<\Pi^{*}(\dot{T})$. ( $n_{i} \geq 2$, for $i=1,2,3,4$.)

Proof. We consider the following cases:
Case 1. $\Delta(\dot{T})=4$. Since $\dot{T} \notin T_{n}\left(n_{1}, n_{2}, n_{3}, n_{4}\right)$, thus $\dot{T} \in T\left(4^{(1)}, 2^{(n-5)}, 1^{(4)}\right)$ and there exists $i \in\{1,2,3,4\}$ such that $n_{i}=1$ or $\hat{T} \notin T\left(4^{(1)}, 2^{(n-5)}, 1^{(4)}\right)$.
Subcase 1.1 Suppose that $\dot{T} \in T\left(4^{(1)}, 2^{(n-5)}, 1^{(4)}\right)$ and there exists $i \in$ $\{1,2,3,4\}$ such that $n_{i}=1$. Since $n \geq 13$, there exists $j \in\{1,2,3,4\}$ such that $n_{j} \geq 3$. In Lemma 3, put $P_{k}=P_{n_{j}}$ and $w=P_{n_{i}}=P_{1}$. Using Lemma 3 gives us a tree, say $Q \in T_{n}\left(m_{1}, m_{2}, m_{3}, m_{4}\right)$ such that $\mid\left\{m_{i} \mid 1 \leq i \leq 4\right.$ and $m_{i}=$ $1\}|<|\left\{n_{i} \mid 1 \leq i \leq 4\right.$ and $\left.n_{i}=1\right\} \mid$. If $\mid\left\{m_{i} \mid 1 \leq i \leq 4\right.$ and $\left.m_{i}=1\right\} \mid=0$, then $Q \cong T$, and by Lemma $3, \Pi^{*}(T)=\Pi^{*}(Q)<\Pi^{*}(\hat{T})$. Otherwise, we obtain the result by replacing $Q$ with $\hat{T}^{\prime}$ and by repeating the above process.
Subcase 1.2 Suppose that $\dot{T} \notin T\left(4^{(1)}, 2^{(n-5)}, 1^{(4)}\right)$.Then by repeated application of Lemmas 2 we obtain a tree, for example $H$ such that $H \in$ $T\left(4^{(1)}, 2^{(n-5)}, 1^{(4)}\right)$. If for $i=1,2,3,4, n_{i} \geq 2$, Then $H \cong T$ and by Lemma $2, \Pi^{*}(T)<\Pi^{*}(\dot{T})$. Otherwise, we obtain the result by replacing $H$ with $\hat{T}$ in Subcase 1.1.
Case 2. If $\Delta\left(X^{\prime}\right)>4$, then by using Lemma 1 , in finite stages, we can obtain a tree with maximal degree 4 such that the $\Pi^{*}$ of this tree is less than $\Pi^{*}(\hat{T})$. Suppose that $u \in V(\dot{T}), d_{\dot{T}}(u)=\Delta(\dot{T})$, and $\bar{u} \in N[u, \dot{T}]$. In Lemma 1 , we put $v_{1}=u$ and $w=\bar{u}$. By cutting edge $u \bar{u}$ and attaching $\bar{u}$ to a pendent vertex in $n_{u}(u \bar{u} \mid \hat{T})$, we obtain the new tree $T_{1}$ and $d_{T_{1}}(u)=\Delta(\bar{T})-1$. We continue this process until all the vertices of $\dot{T}$ with degree $\Delta(\dot{T})$ are used. In this way, a tree
$\dot{T}_{1}$ of order $n$, and $\Delta\left(\dot{T}_{1}\right)=\Delta(\dot{T})-1$ is obtained. Now, by replacing $\dot{T}_{1}$ with $\dot{T}$, and by repeating above process we obtain a tree, say $M$ such that $\Delta(M)=4$. If $T \in T_{n}\left(n_{1}, n_{2}, n_{3}, n_{4}\right)$, and for $i=1,2,3,4, n_{i} \geq 2$. Then, $M \cong T$ and by Lemma $1, \Pi^{*}(T)<\Pi^{*}(\dot{T})$. Otherwise, we obtain the result by replacing $M$ with $\hat{T}$ in case 1 .

Notations: For a positive number $n \geq 13$, let:

$$
\begin{aligned}
A(n)= & \left\{T \in T\left(3^{(3)}, 2^{(n-8)}, 1^{(5)}\right) \mid m_{1,2}(T)=5, \quad m_{2,3}(T)=5,\right. \\
& \left.m_{3,3}(T)=2, \text { and } m_{2,2}(T)=n-13\right\} .
\end{aligned}
$$

It is easy to see that for each $T \in A(n)$, we have

$$
\begin{equation*}
\Pi^{*}(T)=5^{5} \times 6^{2} \times 3^{5} \times 4^{n-13} \tag{8}
\end{equation*}
$$

Theorem 2. Let $\dot{T}$ be a tree with $\Delta\left(\mathcal{T}^{\prime}\right)=3$ such that the number of its vertices of degree 3 is at least 3 . Then, if $\dot{T} \notin A(n)$ for each $T \in A(n)$, we have $\Pi^{*}(T)<\Pi^{*}(\dot{T})$.

Proof. We consider the following cases:
Case 1. The number of vertices of degree 3 in $\hat{T}$ is equal to 3 . Since $\hat{T} \notin A(n)$, $m_{1,2}(\dot{T}) \neq 5\left(m_{2,3}(\dot{T}) \neq 5\right)$, or $m_{3,3}(\dot{T}) \neq 2$ or both.
Subcase 1.1 Suppose that $m_{1,2}(\dot{T}) \neq 5\left(m_{2,3}(\dot{T}) \neq 5\right)$ and $m_{3,3}(\dot{T}) \neq 2$. Then by repeated application of Lemmas 4, and 5 , we obtain a tree, for example $Q$ such that $m_{3,3}(Q)=2$. If $m_{1,2}(Q)=5\left(m_{2,3}(Q)=5\right)$, then $Q \in A(n)$, and $\Pi^{*}(Q)<\Pi^{*}(\hat{T})$, which completes the proof. If $m_{1,2}(Q) \neq 5\left(m_{2,3}(Q) \neq 5\right)$, then since $n \geq 13$, by repeated application of Lemma 3 we obtain a tree in $A(n)$, with the first multiplicative Zagreb index less than $Q$, and therefore less than $\dot{T}^{\prime}$.
Subcase 1.2 Suppose that $m_{1,2}(\dot{T}) \neq 5\left(m_{2,3}(\dot{T}) \neq 5\right)$ and $m_{3,3}(\dot{T})=2$. Since $n \geq 13$, by repeated application of Lemma 3 we obtain a tree in $A(n)$, with the first multiplicative Zagreb index less than $\dot{T}$.
Subcase 1.3 Suppose that $m_{1,2}(\hat{T})=5\left(m_{2,3}(\dot{T})=5\right)$ and the $m_{3,3}(\dot{T}) \neq 2$. Then by repeated application of Lemmas 4 , and 5 , we obtain a tree, for example $Q$ such that the vertices of $m_{3,3}(Q)=2, Q \in A(n)$, and $\Pi^{*}(Q)<\Pi^{*}(\hat{T})$, which completes the proof.
Case 2. The number of vertices of degree 3 in $\dot{T}$ is greater than 3 . In this case, by repeated application of Lemma 2, we obtain a tree, $T_{m} \in$ $T\left(3^{(3)}, 2^{(n-8)}, 1^{(5)}\right)$. If $m_{1,2}\left(T_{m}\right)=5\left(m_{2,3}\left(T_{m}\right)=5\right)$ and $m_{3,3}\left(T_{m}\right)=2$. Then $T_{m} \in A(n)$, and by Lemma $2, \Pi^{*}\left(T_{m}\right)<\Pi^{*}(\bar{T})$, which completes the proof. Otherwise, we obtain the result by replacing $\hat{T}$ with $T_{m}$ in case 1 .

Table 1. Trees with smallest values of $\Pi^{*} \quad\left(n_{i}, m_{i}, \geq 2\right)$.

| Notation | Notation | $\Pi^{*}$ |
| :--- | :--- | :--- |
| $P_{n}$ |  | $3^{2} \times 4^{n-3}$ |
| $T_{n}\left(n_{1}, n_{2}, n_{3}\right)$ | $5^{3} \times 3^{3} \times 4^{n-7}$ |  |
| $T_{n}\left(n_{1}, n_{2}, 1\right)$ | $5^{2} \times 3^{2} \times 4^{n-5}$ |  |
| $T_{n}\left(n_{1}, 1,1\right)$ | $5 \times 3 \times 4^{n-3}$ |  |
| $T_{n}^{\sim}\left(p_{n_{1}}, p_{n_{2}}: q_{m_{1}}, q_{m_{2}}\right)$ |  | $5^{4} \times 6 \times 3^{4} \times 4^{n-10}$ |
| $T_{n}^{\nsim}\left(p_{n_{1}}, p_{n_{2}}: q_{m_{1}}, q_{m_{2}}\right)$ |  | $5^{6} \times 3^{4} \times 4^{n-11}$ |
| $T_{n}^{\sim}\left(p_{n_{1}}, p_{n_{2}}: q_{m_{1}}, 1\right)$ |  | $5^{3} \times 6 \times 3^{3} \times 4^{n-8}$ |
| $T_{n}^{\nsim}\left(p_{n_{1}}, p_{n_{2}}: q_{m_{1}}, 1\right)$ |  | $5^{5} \times 3^{3} \times 4^{n-9}$ |
| $T_{n}^{\sim}\left(p_{n_{1}}, 1: q_{m_{1}}, 1\right)$ | $T_{n}^{\sim}\left(p_{n_{1}}, p_{n_{2}}: 1,1\right)$ | $5^{2} \times 6 \times 3^{2} \times 4^{n-6}$ |
| $T_{n}^{\nsim}\left(p_{n_{1}}, 1: q_{m_{1}}, 1\right)$ | $T_{n}^{\nsim}\left(p_{n_{1}}, p_{n_{2}}: 1,1\right)$ | $5^{4} \times 3^{2} \times 4^{n-7}$ |
| $T_{n}^{\sim}\left(p_{n_{1}}, 1: 1,1\right)$ |  | $5 \times 6 \times 3 \times 4^{n-4}$ |
| $T_{n}^{\nsim}\left(p_{n_{1}}, 1: 1,1\right)$ |  | $5^{3} \times 3 \times 4^{n-5}$ |
| $T_{n}^{\nsim}(1,1: 1,1)$ | $5^{2} \times 4^{n-3}$ |  |
| $T_{n}\left(n_{1}, n_{2}, n_{3}, n_{4}\right)$ | $6^{4} \times 3^{4} \times 4^{n-9}$ |  |

Figure 6. The trees in Theorem 3.


Theorem 3. Let $G$ be a tree with $n$ vertices, except the trees given in Table 1. If $n \geq 13$ and $T_{1}:=P_{n}, T_{2} \in T_{n}\left(n_{1}, n_{2}, n_{3}\right), T_{3} \in T_{n}\left(n_{1}, n_{2}, 1\right), T_{4} \in T_{n}\left(n_{1}, 1,1\right), T_{5} \in$ $T_{n}^{\sim}\left(p_{n_{1}}, p_{n_{2}}: q_{m_{1}}, q_{m_{2}}\right), T_{6} \in T_{n}^{\nsim}\left(p_{n_{1}}, p_{n_{2}}: q_{m_{1}}, q_{m_{2}}\right), T_{7} \in T_{n}^{\sim}\left(p_{n_{1}}, p_{n_{2}}:\right.$ $\left.q_{m_{1}}, 1\right), T_{8} \in T_{n}^{\alpha}\left(p_{n_{1}}, p_{n_{2}}: q_{m_{1}}, 1\right), T_{9} \in T_{n}^{\sim}\left(p_{n_{1}}, 1: q_{m_{1}}, 1\right) \cup T_{n}^{\sim}\left(p_{n_{1}}, p_{n_{2}}:\right.$ $1,1), T_{10} \in T_{n}^{\chi}\left(p_{n_{1}}, 1: q_{m_{1}}, 1\right) \cup T_{n}^{\chi}\left(p_{n_{1}}, p_{n_{2}}: 1,1\right), T_{11} \in T_{n}^{\sim}\left(p_{n_{1}}, 1: 1,1\right), T_{12} \in$ $T_{n}^{\nprec}\left(p_{n_{1}}, 1: 1,1\right), T_{13} \in T_{n}^{\not \gamma}(1,1: 1,1)$, and $T_{14} \in T_{n}\left(n_{1}, n_{2}, n_{3}, n_{4}\right)$, then we have

$$
\begin{gathered}
\Pi^{*}\left(T_{1}\right)<\Pi^{*}\left(T_{2}\right)<\Pi^{*}\left(T_{3}\right)<\Pi^{*}\left(T_{4}\right)<\Pi^{*}\left(T_{5}\right)<\Pi^{*}\left(T_{6}\right)<\Pi^{*}\left(T_{7}\right)<\Pi^{*}\left(T_{8}\right)< \\
\Pi^{*}\left(T_{9}\right)<\Pi^{*}\left(T_{10}\right)<\Pi^{*}\left(T_{11}\right)<\Pi^{*}\left(T_{12}\right)<\Pi^{*}\left(T_{13}\right)<\Pi^{*}\left(T_{14}\right)<\Pi^{*}(G) .
\end{gathered}
$$

Proof. Table 1 shows that:

$$
\begin{gathered}
\Pi^{*}\left(T_{1}\right)<\Pi^{*}\left(T_{2}\right)<\Pi^{*}\left(T_{3}\right)<\Pi^{*}\left(T_{4}\right)<\Pi^{*}\left(T_{5}\right)<\Pi^{*}\left(T_{6}\right)<\Pi^{*}\left(T_{7}\right)<\Pi^{*}\left(T_{8}\right)< \\
\Pi^{*}\left(T_{9}\right)<\Pi^{*}\left(T_{10}\right)<\Pi^{*}\left(T_{11}\right)<\Pi^{*}\left(T_{12}\right)<\Pi^{*}\left(T_{13}\right)<\Pi^{*}\left(T_{14}\right)
\end{gathered}
$$

If $\Delta(G) \geq 4$, then Theorem 1 gives us the result. If $\Delta(G)=3$ and the number of vertices of degree 3 is at least 3 , then Theorem 2 , and since for each $T \in A(n)$, $\Pi^{*}\left(T_{14}\right)<\Pi^{*}(T)$, completes the proof.
Otherwise, $G$ is included in Table 1.

## References

[1] M. Azari and A. Iranmanesh, Some inequalities for the multiplicatiove sum zagreb index of graph operations, J Math. Inequal. 9 (2015), 727-738.
[2] A. T. Balaban, I. Motoc, D. Bonchev, and O. Mekenyan, Topological indices for structure-activity correlations, Topics Curr. Chem. 114 (1983), 21-55.
[3] C. Bey, An upper bound on the sum of squares of degrees in a hypergraph, Discrete Math. 269 (2003), 259-263.
[4] K.C. Das, Sharp bounds for the sum of the squares of the degrees of a graph, Kragujevac J. Math. 25 (2003), 31-49.
[5] D. de Caen, An upper bound on the sum of squares of degrees in a graph, Discrete Math. 185 (1998), 245-248.
[6] M. Eliasi, A. Iranmanesh, and I. Gutman, Multiplicative versions of first zagreb index, MATCH Commun. Math. Comput. Chem. 68 (2012), 217230.
[7] M. Eliasi and D. Vukicević, Comparing the multiplicative zagreb indices, MATCH Commun. Math. Comput. Chem. 69 (2013), 765-773.
[8] I. Gutman, Graphs with smallest sum of squares of vertex degrees, MATCH Commun. Math. Comput. Chem. 25 (2003), 51-54.
[9] I. Gutman and K. C. Das, The first zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004), 83-92.
[10] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. total p-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972), 535-538.
[11] S. Nikolić, G. Kovacević, Milićević, and A. N. Trinajstić, The zagreb indices 30 years after, Croat. Chem. Acta 76 (2003), 113-124.
[12] R. Todeschini, D. Ballabio, and V. Consonni, Novel molecular descriptors based on functions of new vertex degrees. in:i. gutman and b. furtula (eds.), novel molecular structure descriptors-theory and applicationsi, Univ. Kragujevac (2010), 73-100.
[13] R. Todeschini and V. Consonni, Handbook of molecular descriptors, WileyVCH Weinheim, 2000.
[14] _, New local vertex invariants and molecular descriptors based on functions of the vertex degrees, MATCH Commun. Math. Comput. Chem. 64 (2010), 359-372.
[15] H. Wang and H. Bao, A note on multiplicative sum zagreb index, South Asian J. Math. 2 (2012), 578-583.
[16] K. Xu, Trees with the seven smallest and eight greatest harary indices, Discrete Appl. Math. 160 (2012), 321-331.
[17] K. Xu and K. Das, Trees, unicyclic and bicyclic graphs extremal with respect to multiplicative sum zagreb index, MATCH Commun. Math. Comput. Chem. 68 (2012), 257-272.


[^0]:    * Corresponding Author

