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Abstract: For a graph G with edge set E(G), the multiplicative sum Zagreb
index of G is defined as Π∗(G) = Πuv∈E(G)[dG(u)+dG(v)], where dG(v) is the

degree of vertex v in G. In this paper, we first introduce some graph transfor-

mations that decrease this index. In application, we identify the fourteen class
of trees, with the first through fourteenth smallest multiplicative sum Zagreb

indices among all trees of order n ≥ 13.
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1. Introduction

Throughout this paper, we consider connected graphs without loops and mul-

tiple edges. Let G be such a graph and V (G) and E(G) its vertex set and edge

set, respectively. For a vertex v in G, the degree of v, dG(v), is the number of

edges incident to v; N [v,G] is the set of vertices adjacent to v. If u ∈ V (G)

and u ∈ N [v,G], we then write uv ∈ E(G). A pendent vertex is a vertex with

degree one. We use ∆ = ∆(G) to denote the maximum degree of G. The
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138 On trees and the multiplicative sum Zagreb index

number of edges of G connecting a vertex of degree i with a vertex of degree j

will be denoted by mi,j(G).

For a subset W of E(G), we denote by G−W the subgraph of G obtained by

deleting the edges of W . Similarly, for a subset U of V (G), let G − U be the

subgraph of G obtained by deleting the vertices of U and the edges incident to

them. For any two nonadjacent vertices u and v of graph G, G + uv denotes

the graph obtained from G by adding an edge uv.

A tree is a connected acyclic graph. Any tree with at least two vertices has

at least two pendant vertices. The set of all n-vertex trees will be denoted by

τ(n). We denote the path graph and the star graph (both with n vertices) with

Pn and Sn, respectively.

We denote the distance between two arbitrary vertices x and y of a graph G

by dG(x, y). This distance is defined as the number of edges in the minimal

path connecting the vertices x and y. Given an edge e = uv ∈ E(G) of G, let

us denote the number of vertices lying closer to the vertex u than to the vertex

v of e by nu(e|G) and the number of vertices lying closer to the vertex v than

to the vertex u by nv(e|G). Thus,

nu(e|G) := |{a ∈ V (G)|dG(u, a) < dG(v, a)}|.

A graph invariant (topological index) is a real number related to a graph, which

is invariant under graph isomorphism. For a graph G, the graph invariant

M1(G) =
∑

uv∈E(G)

[dG(u) + dG(v)],

is called the first Zagreb index. It is easy to see that M1(G) =
∑

v∈V (G)

dG(v)2.

This index was introduced more than 40 years ago [10], and has many appli-

cations in chemistry [2, 11, 13]. Also, the first Zagreb index was subject to

a large number of mathematical studies [3–5, 8, 9]. Todeschini et al. [12, 14]

have recently proposed to consider multiplicative variants of additive graph in-

variants. Eliasi et al. [6] applied this idea to the first Zagreb index and defined

the first multiplicative Zagreb index as:

Π∗(G) = Πuv∈E(G)[dG(u) + dG(v)].

This graph invariant is called the multiplicative sum Zagreb index by Xu and

Das [17]. Eliasi et al. [6] proved that among all connected graphs with a given

number of vertices, the path has minimal Π∗, and they determined the trees

with the second minimal Π∗. Also, Xu and Das [17] characterized the trees,
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unicylcic, and bicyclic graphs extremal (maximal and minimal) with respect to

the multiplicative sum Zagreb index. Moreover, they used a method different

but shorter than that in [6] for determining the minimal multiplicative sum

Zagreb index of trees. Other results for this index can be found in [1, 7, 15].

In this paper, we first introduce some graph transformations, which decrease

Π∗. By using these operations, we identify the fourteen class of trees, with the

first through fourteenth smallest multiplicative sum Zagreb indices among all

trees of order n ≥ 13.

2. Some Graph Transformations

In this section, we introduce some graph transformations which decrease the

multiplicative sum Zagreb index. We start with some definitions and nota-

tions which are taken from [16]. A vertex v of a tree T is called a branch-

ing point of T if dT (v) ≥ 3. Let Tn(n1, n2, . . . , nm) be a starlike tree of or-

der n obtained from the star Sm+1 by replacing its m edges with m paths

Pn1
, Pn2

, . . . , Pnm
, with

∑m
i=1 ni = n − 1. Any starlike tree has exactly one

branching point. For a tree T of order n with two branching points v1 and

v2, dT (v1) = r and dT (v2) = t, and if the orders of r − 1 components, which

are paths of T −{v1}, are p1, p2, . . . , pr−1, and the orders of t− 1 components,

which are paths of T − {v2}, are q1, q2, . . . , qt−1, then we write the tree as

T = Tn(p1, p2, . . . , pr−1; q1, q2, . . . , qt−1). In addition, if v1v2 ∈ E(T ) then we

write the tree as T = T∼n (p1, p2, . . . , pr−1; q1, q2, . . . , qt−1), and if v1v2 /∈ E(T ),

then we write T = T 6∼n (p1, p2, . . . , pr−1; q1, q2, . . . , qt−1).

Lemma 1. Suppose that G0 is a tree with given vertices v1, v2, and v3, such that
dG0(v1) ≥ 3, dG0(v2) ≥ 2, dG0(v3) = 1, and v2v3 ∈ E(G0). In addition, suppose that
G is another tree, and w is a vertex in G such that dG0(v1) ≥ dG(w). let G1 be the
graph obtained from G0 and G by attaching vertices w, v1, and G2 = G1−wv1 +wv3.
Then Π∗(G2) < Π∗(G1) (see Figure 1).

Proof. Suppose that dG0(v1) = x, N [v1, G0] = {l1, . . . lx}, dG0(li) = di, for

i = 1, . . . , x. Let dG0
(v2) = m and dG(w) = k. If v1 6= v2, then we have

Π∗(G1)

Π∗(G2)
=

(k + x+ 2)(m+ 1)
∏x

i=1(di + x+ 1)

(m+ 2)(k + 3)
∏x

i=1(di + x)

>
(k + x+ 2)(m+ 1)

(m+ 2)(k + 3)
. (1)
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Figure 1. The trees G0, G, G1 and G2 in Lemma 1 .

But x ≥ 3 and m ≥ 2, so m(x − 1) ≥ 4 and xm ≥ m + 4. According to the

hypothesis, x ≥ k. Hence,

(k + x+ 2)(m+ 1)− (m+ 2)(k + 3) = xm+ x− (m+ k + 4)

= [xm− (m+ 4)] + (x− k) ≥ 0,

and by (1) we have Π∗(G1)
Π∗(G2) > 1.

Now, suppose that v1 = v2. Without loss of generality, we may assume that

l1 = v3. So,

Π∗(G1)

Π∗(G2)
=

(k + x+ 2)(x+ 2)
∏x

i=2(di + x+ 1)

(x+ 2)(k + 3)
∏x

i=2(di + x)

>
(k + x+ 2)

(k + 3)
> 1, (2)

because x ≥ 3.

Lemma 2. Suppose that G0 is a tree with given vertices v1 and v2 such that
dG0(v1) ≥ 3, and Pk := w1w2 . . . wk and Ql := u1u2 . . . ul are two paths, with k and
l vertices, respectively. Let G1 be the graph obtained from G0, Pk, and Ql by adding
the edges v1u1 and v2w1. Also, let G2 = G1 − v1u1 + wku1. Then Π∗(G2) < Π∗(G1)
(see Figure 2). This inequality holds, when dG0(v1) = 2 and at least one of the
neighborhoods of v1 has degree less than 13 in G0.

Proof. We first suppose that dG0(v1) ≥ 3 and k ≥ 2. Let H0 be the tree

obtained by joining G0 and Pk by the edge v2w1. Then, H0 is a tree with

given vertices v1, wk−1, and wk, such that dH0(v1) ≥ 3, dH0(wk) = 1, and

wk−1wk ∈ E(H0). Since u1 is a vertex in Ql and dH0
(v1) ≥ dQl

(u1), Lemma 1

implies Π∗(G2) < Π∗(G1).

If k = 1, then H0 is a tree with given vertices v1, v2, and wk, such that
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Figure 2. The trees G0, Pk, Ql, G1 and G2 in Lemma 2.

dH0
(v1) ≥ 3, dH0

(wk) = 1, and v2wk ∈ E(H0). Since u1 is a vertex in Ql and

dH0
(v1) ≥ dQl

(u1), Lemma 1 implies that Π∗(G2) < Π∗(G1) (see Figure 2).

Now, suppose that dG0(v1) = 2 and N [v1, G0] = {l1, l2} and dG0(li) = di, for

i = 1, 2 and d1 ≤ 13 . We distinguish the following eight cases:

(1) v1 6= v2 and l, k ≥ 2, (2) v1 6= v2 and l ≥ 2, k = 1,

(3) v1 6= v2 and l = 1, k ≥ 2, (4) v1 6= v2 and l = 1, k = 1,

(5) v1 = v2 and l, k ≥ 2, (6) v1 = v2 and l ≥ 2, k = 1,

(7) v1 = v2 and l = 1, k ≥ 2, (8) 8v1 = v2 and l = 1, k = 1.

Here, we only give the proof of (1).

Suppose that v1 6= v2 and l, k ≥ 2. Then we have

Π∗(G1)

Π∗(G2)
=

5× 3× (d1 + 3)× (d2 + 3)

4× 4× (d1 + 2)× (d2 + 2)
. (3)

But

15(d1 + 3)(d2 + 3)− 16(d1 + 2)(d2 + 2) = −d1d2 + 13d1 + 13d2 + 71

= d2(13− d1) + 13d1 + 71 > 0,

and by (3) we have Π∗(G1)
Π∗(G2) > 1.

Now, suppose that v1 6= v2, l ≥ 2, and k = 1 (Case 2). Let dG0
(v2) = z. Then

Π∗(G1)

Π∗(G2)
=

5× 3× (d1 + 3)× (d2 + 3)× (z + 2)

4× 3× (d1 + 2)× (d2 + 2)× (z + 3)
. (4)

But

Π∗(G1)−Π∗(G2)

= 15(d1 + 3)(d2 + 3)(z + 2)− [12(d1 + 2)(d2 + 2)(z + 3)]

= 3 d1d2z − 6 d1d2 + 21 d1z + 18 d1 + 21 d2z + 18 d2 + 87 z + 126

= 3 d1d2(z − 2) + 21 d1z + 18 d1 + 21 d2z + 18 d2 + 87 z + 126. (5)
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Figure 3. The trees G0, Pk, G1 and G2 in Lemma 3.

In (5), take z = 1. Since d1 ≤ 13, we obtain

Π∗(G1)−Π∗(G2) = 3[d2(13− d1) + 13d1 + 71] > 0.

In (5), if z ≥ 2, then it is clear that Π∗(G1)−Π∗(G2) > 0, which is our claim.

The proofs of the remaining cases are similar, and we omit them.

Lemma 3. Suppose that G0 is a tree with given vertices v1, v2, and w ∈ V (G0),
such that dG0(v1) ≥ 2, dG0(v2) ≥ 3 and w is a pendent vertex in N [v2, G0]. In
addition, suppose that Pk := u1u2 . . . uk is a path, with k ≥ 3 vertices. Let G1 be
the tree obtained from G0 and Pk by joining v1 and u1. Let 2 ≤ i ≤ k − 1. If
G2 = G1 − uiui+1 + wui+1, then Π∗(G2) < Π∗(G1) (see Figure 3).

Proof. Suppose that dG0
(v2) = x. We consider the following cases:

(a) v1 6= v2. In this case, it is easy to see that

Π∗(G1)

Π∗(G2)
=

(x+ 1)× 4

(x+ 2)× 3
=

4x+ 4

3x+ 6
> 1,

because, x ≥ 3⇒ 4x+ 4− (3x+ 6) = x− 2 ≥ 1⇒ 4x+ 4 > 3x+ 6.

(b) v1 = v2. In this case, we have

Π∗(G1)

Π∗(G2)
=

(x+ 2)× 4

(x+ 3)× 3
=

4x+ 8

3x+ 9
, (6)

but

4x+ 8− (3x+ 9) = x− 1 > 0, (7)

which completes the proof.
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Figure 4. The trees Gi (i=1,2,3), Pk, and Ql in Lemma 4.

Remark 1. By considering (6) and (7), one can see that if v1 = v2 and dG0(v2) = 2
in Lemma 3, then the inequality Π∗(G2) < Π∗(G1) holds.

Lemma 4. Suppose that for i = 1, 2, 3, Gi are trees with vi ∈ V (Gi), dG1(v1) ≥ 2
and dGi(vi) ≥ 1(i = 2, 3). In addition, suppose that Pl := w1w2 . . . wl and Qk :=
u1u2 . . . uk are two paths, with l and k vertices, respectively. Let G0 be the graph
obtained from Gi (i = 1, 2, 3), Pl, and Qk by adding the edges v1w1, wlv2, v2u1 and
ukv3. Also, let G = G0 − {v1w1, v2u1} + {v1v2, w1u1}. Then Π∗(G) < Π∗(G0) (see
Figure 4).

Proof. Let dG1(v1) = x and dG2(v2) = h. Then

Π∗(G)

Π∗(G0)
=

4(x+ h+ 3)

(h+ 4)(x+ 3)
=

4x+ 4h+ 12

hx+ 3h+ 4x+ 12
< 1,

since x ≥ 2.

Lemma 5. Suppose that for i = 1, 2, Gi are trees such that {v1, w} ⊆ V (G1),
v2 ∈ V (G2), dGi(vi) ≥ 2(i = 1, 2) and dG1(w) = 1. In addition, suppose that Pk :=
u1u2 . . . uk is a path, with k vertices. Let G0 be the graph obtained from Gi (i = 1, 2)
and Pk by adding the edges v1u1 and ukv2. Also, let G = G0 − {v1u1, ukv2, v1w} +
{v1v2, wu1, v1uk}. Then Π∗(G) < Π∗(G0) (see Figure 5).

Proof. Let dG1(v1) = h and dG2(v2) = x. Then

Π∗(G)

Π∗(G0)
=

3(x+ h+ 3)

(h+ 3)(x+ 3)

=
3x+ 3h+ 9

hx+ 3h+ 3x+ 9
< 1,

since x, h ≥ 2.
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Figure 5. The trees Gi (i=1,2), Pk, G0, and G in Lemma 5.

3. Main Theorems

For positive integers x1, . . . , xm, and y1, . . . , ym, let T (x
(y1)
1 , . . . , x

(ym)
m ) be the

class of trees with yi vertices of the degree xi, i = 1, . . . ,m.

Theorem 1. Let T́ be a tree in τ(n), where n ≥ 13. If ∆(T́ ) ≥ 4 and T́ /∈
Tn(n1, n2, n3, n4), then for each T ∈ Tn(n1, n2, n3, n4), we have Π∗(T ) < Π∗(T́ ).
(ni ≥ 2, for i = 1, 2, 3, 4.)

Proof. We consider the following cases:

Case 1. ∆(T́ ) = 4. Since T́ 6∈ Tn(n1, n2, n3, n4), thus T́ ∈ T (4(1), 2(n−5), 1(4))

and there exists i ∈ {1, 2, 3, 4} such that ni = 1 or T́ 6∈ T (4(1), 2(n−5), 1(4)).

Subcase 1.1 Suppose that T́ ∈ T (4(1), 2(n−5), 1(4)) and there exists i ∈
{1, 2, 3, 4} such that ni = 1. Since n ≥ 13, there exists j ∈ {1, 2, 3, 4} such

that nj ≥ 3. In Lemma 3, put Pk = Pnj
and w = Pni

= P1. Using Lemma 3

gives us a tree, say Q ∈ Tn(m1,m2,m3,m4) such that |{mi|1 ≤ i ≤ 4 and mi =

1}| < |{ni|1 ≤ i ≤ 4 and ni = 1}|. If |{mi|1 ≤ i ≤ 4 and mi = 1}| = 0, then

Q ∼= T , and by Lemma 3, Π∗(T ) = Π∗(Q) < Π∗(T́ ). Otherwise, we obtain the

result by replacing Q with T́ and by repeating the above process.

Subcase 1.2 Suppose that T́ 6∈ T (4(1), 2(n−5), 1(4)).Then by repeated ap-

plication of Lemmas 2 we obtain a tree, for example H such that H ∈
T (4(1), 2(n−5), 1(4)). If for i = 1, 2, 3, 4, ni ≥ 2, Then H ∼= T and by Lemma

2, Π∗(T ) < Π∗(T́ ). Otherwise, we obtain the result by replacing H with T́ in

Subcase 1.1.

Case 2. If ∆(T́ ) > 4, then by using Lemma 1, in finite stages, we can obtain

a tree with maximal degree 4 such that the Π∗ of this tree is less than Π∗(T́ ).

Suppose that u ∈ V (T́ ), dT́ (u) = ∆(T́ ), and ū ∈ N [u, T́ ]. In Lemma 1, we put

v1 = u and w = ū. By cutting edge uū and attaching ū to a pendent vertex in

nu(uū|T́ ), we obtain the new tree T1 and dT1
(u) = ∆(T́ )− 1. We continue this

process until all the vertices of T́ with degree ∆(T́ ) are used. In this way, a tree
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T́1 of order n, and ∆(T́1) = ∆(T́ )−1 is obtained. Now, by replacing T́1 with T́ ,

and by repeating above process we obtain a tree, say M such that ∆(M) = 4.

If T ∈ Tn(n1, n2, n3, n4), and for i = 1, 2, 3, 4, ni ≥ 2. Then, M ∼= T and by

Lemma 1, Π∗(T ) < Π∗(T́ ). Otherwise, we obtain the result by replacing M

with T́ in case 1.

Notations: For a positive number n ≥ 13, let:

A(n) = {T ∈ T (3(3), 2(n−8), 1(5))| m1,2(T ) = 5, m2,3(T ) = 5,

m3,3(T ) = 2, and m2,2(T ) = n− 13}.

It is easy to see that for each T ∈ A(n), we have

Π∗(T ) = 55 × 62 × 35 × 4n−13 . (8)

Theorem 2. Let T́ be a tree with ∆(T́ ) = 3 such that the number of its vertices of
degree 3 is at least 3. Then, if T́ /∈ A(n) for each T ∈ A(n), we have Π∗(T ) < Π∗(T́ ).

Proof. We consider the following cases:

Case 1. The number of vertices of degree 3 in T́ is equal to 3. Since T́ 6∈ A(n),

m1,2(T́ ) 6= 5(m2,3(T́ ) 6= 5), or m3,3(T́ ) 6= 2 or both.

Subcase 1.1 Suppose that m1,2(T́ ) 6= 5(m2,3(T́ ) 6= 5) and m3,3(T́ ) 6= 2. Then

by repeated application of Lemmas 4, and 5, we obtain a tree, for example Q

such that m3,3(Q) = 2. If m1,2(Q) = 5(m2,3(Q) = 5), then Q ∈ A(n), and

Π∗(Q) < Π∗(T́ ), which completes the proof. If m1,2(Q) 6= 5(m2,3(Q) 6= 5),

then since n ≥ 13, by repeated application of Lemma 3 we obtain a tree in

A(n), with the first multiplicative Zagreb index less than Q, and therefore less

than T́ .

Subcase 1.2 Suppose that m1,2(T́ ) 6= 5(m2,3(T́ ) 6= 5) and m3,3(T́ ) = 2. Since

n ≥ 13, by repeated application of Lemma 3 we obtain a tree in A(n), with the

first multiplicative Zagreb index less than T́ .

Subcase 1.3 Suppose that m1,2(T́ ) = 5(m2,3(T́ ) = 5) and the m3,3(T́ ) 6= 2.

Then by repeated application of Lemmas 4, and 5, we obtain a tree, for exam-

ple Q such that the vertices of m3,3(Q) = 2, Q ∈ A(n), and Π∗(Q) < Π∗(T́ ),

which completes the proof.

Case 2. The number of vertices of degree 3 in T́ is greater than 3. In

this case, by repeated application of Lemma 2, we obtain a tree, Tm ∈
T (3(3), 2(n−8), 1(5)). If m1,2(Tm) = 5(m2,3(Tm) = 5) and m3,3(Tm) = 2. Then

Tm ∈ A(n), and by Lemma 2, Π∗(Tm) < Π∗(T́ ), which completes the proof.

Otherwise, we obtain the result by replacing T́ with Tm in case 1.
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Table 1. Trees with smallest values of Π∗ ( ni,mi,≥ 2).

Notation Notation Π∗

Pn 32 × 4n−3

Tn(n1, n2, n3) 53 × 33 × 4n−7

Tn(n1, n2, 1) 52 × 32 × 4n−5

Tn(n1, 1, 1) 5 × 3 × 4n−3

T∼n (pn1 , pn2 : qm1 , qm2 ) 54 × 6 × 34 × 4n−10

T 6∼n (pn1 , pn2 : qm1 , qm2 ) 56 × 34 × 4n−11

T∼n (pn1 , pn2 : qm1 , 1) 53 × 6 × 33 × 4n−8

T 6∼n (pn1 , pn2 : qm1 , 1) 55 × 33 × 4n−9

T∼n (pn1 , 1 : qm1 , 1) T∼n (pn1 , pn2 : 1, 1) 52 × 6 × 32 × 4n−6

T 6∼n (pn1 , 1 : qm1 , 1) T 6∼n (pn1 , pn2 : 1, 1) 54 × 32 × 4n−7

T∼n (pn1 , 1 : 1, 1) 5 × 6 × 3 × 4n−4

T 6∼n (pn1 , 1 : 1, 1) 53 × 3 × 4n−5

T 6∼n (1, 1 : 1, 1) 52 × 4n−3

Tn(n1, n2, n3, n4) 64 × 34 × 4n−9

Figure 6. The trees in Theorem 3.
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Theorem 3. Let G be a tree with n vertices, except the trees given in Table 1. If
n ≥ 13 and T1 := Pn, T2 ∈ Tn(n1, n2, n3), T3 ∈ Tn(n1, n2, 1), T4 ∈ Tn(n1, 1, 1), T5 ∈
T∼n (pn1 , pn2 : qm1 , qm2), T6 ∈ T 6∼n (pn1 , pn2 : qm1 , qm2), T7 ∈ T∼n (pn1 , pn2 :
qm1 , 1), T8 ∈ T 6∼n (pn1 , pn2 : qm1 , 1), T9 ∈ T∼n (pn1 , 1 : qm1 , 1) ∪ T∼n (pn1 , pn2 :
1, 1), T10 ∈ T 6∼n (pn1 , 1 : qm1 , 1) ∪ T 6∼n (pn1 , pn2 : 1, 1), T11 ∈ T∼n (pn1 , 1 : 1, 1), T12 ∈
T 6∼n (pn1 , 1 : 1, 1), T13 ∈ T 6∼n (1, 1 : 1, 1), and T14 ∈ Tn(n1, n2, n3, n4), then we have

Π∗(T1) < Π∗(T2) < Π∗(T3) < Π∗(T4) < Π∗(T5) < Π∗(T6) < Π∗(T7) < Π∗(T8) <

Π∗(T9) < Π∗(T10) < Π∗(T11) < Π∗(T12) < Π∗(T13) < Π∗(T14) < Π∗(G).

Proof. Table 1 shows that:

Π∗(T1) < Π∗(T2) < Π∗(T3) < Π∗(T4) < Π∗(T5) < Π∗(T6) < Π∗(T7) < Π∗(T8) <

Π∗(T9) < Π∗(T10) < Π∗(T11) < Π∗(T12) < Π∗(T13) < Π∗(T14).

If ∆(G) ≥ 4, then Theorem 1 gives us the result. If ∆(G) = 3 and the number

of vertices of degree 3 is at least 3, then Theorem 2, and since for each T ∈ A(n),

Π∗(T14) < Π∗(T ), completes the proof.

Otherwise, G is included in Table 1.
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