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Abstract: A Roman dominating function on a graph G is a function f :
V (G)→ {0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0

is adjacent to at least one vertex v for which f(v) = 2. A restrained Roman
dominating function f is a Roman dominating function if the vertices with label

0 induce a subgraph with no isolated vertex. The weight of a restrained Roman

dominating function is the value ω(f) =
∑

u∈V (G) f(u). The minimum weight
of a restrained Roman dominating function of G is called the restrained Roman

domination number of G and denoted by γrR(G). In this paper we establish

some sharp bounds for this parameter.
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1. Introduction

Throughout this paper, we only consider finite connected graph G with vertex

set V (G) and edge set E(G) (briefly V and E). A graph is simple if it has no

loops and no two of its links join the same pair of vertices. For every vertex
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v ∈ V , the open neighborhood of v is the set N(v) = {u ∈ V | uv ∈ E} and the

closed neighborhood of v is the set N [v] = N(v) ∪ {v}. The open neighborhood

of a set S ⊆ V is the set N(S) = ∪v∈SN(v), and the closed neighborhood of

S is the set N [S] = N(S) ∪ S. The minimum and maximum degree of G are

respectively denoted by δ(G) and ∆(G). A leaf of a tree T is a vertex of degree

1, a support vertex is a vertex adjacent to a leaf and a strong support vertex

is a vertex adjacent to at least two leaves. The number of leaves (support

vertices, respectively) of a tree T will be denoted by `(T ) (s(T ), respectively).

For r, s ≥ 1, a double star S(r, s) is a tree with exactly two vertices that are not

leaves, with one adjacent to r leaves and the other to s leaves. For a real-valued

function f : V → R the weight of f is ω(f) =
∑

v∈V f(v), and for S ⊆ V we

define f(S) =
∑

v∈S f(v), so ω(f) = f(V ). For a vertex v in a rooted tree

T , let D(v) denotes the set of descendants of v and D[v] = D(v) ∪ {v}. The

maximal subtree at v is the subtree of T induced by D[v], and is denoted by

Tv. A subdivision of an edge uv is obtained by removing the edge uv, adding

a new vertex w, and adding edges uw and wv. The subdivision graph S(G) is

the graph obtained from G by subdividing each edge of G. The subdivision

star S(K1,t) for t ≥ 2, is called a healthy spider St. A wounded spider St is

the graph formed by subdividing at most t− 1 of the edges of the star K1,t for

t ≥ 2. Note that stars are wounded spiders. A spider is a healthy or wounded

spider. We use [10] for terminology and notation which are not defined here.

A subset S of vertices of G is a restrained dominating set if N [S] = V and the

subgraph induced by V − S has no isolated vertex. The restrained domination

number γr(G) is the minimum cardinality of a restrained dominating set of G.

The restrained domination number was introduced by Domke et al. [1] and has

been studied by several authors [2–5].

A Roman dominating function (RDF) on a graph G = (V,E) is defined in

[8, 9] as a function f : V −→ {0, 1, 2} satisfying the condition that every

vertex v for which f(v) = 0 is adjacent to at least one vertex u for which

f(u) = 2. The Roman domination number of a graph G, denoted by γR(G),

equals the minimum weight of an RDF on G. A γR(G)-function is a Roman

dominating function of G with weight γR(G). A Roman dominating function

f : V −→ {0, 1, 2} can be represented by the ordered partition (V0, V1, V2)

(or (V f
0 , V

f
1 , V

f
2 ) to refer f) of V , where Vi = {v ∈ V | f(v) = i}. In this

representation, its weight is ω(f) = |V1|+ 2|V2|.
A Roman dominating function f = (V0, V1, V2) is called restrained Roman

dominating function (RRDF) if the induced subgraph G[V0] has no isolated

vertex. The restrained Roman domination number of G, denoted by γrR(G),

is the minimum weight of an RRDF on G. A γrR(G)-function is an RRDF of

G with weight ω(f) = γrR(G). The restrained Roman domination number was

introduced by P.R. Leely Pushpam and S. Padmapriea [7] and has been also
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studied in [6]. Pushpam and Padmapriea observed that

max{γR(G), γr(G)} ≤ γrR(G) ≤ 2γr(G). (1)

Our purpose in this paper is to establish two sharp bounds on the restrained

Roman domination numbers in graphs. Some of our results improve some

previous results.

We make use of the following results.

Let C = (x1x2x3x4x5) be a cycle of length 5. Assume Bp is the graph obtained

from C by adding p ≥ 1 pendant edges at some xi and Bp,q is the graph

obtained from C by adding p ≥ 1 pendant edges at some xi and q ≥ 1 pendant

edges at some xj where d(xi, xj) = 2.

Theorem 1. [7] Let G be a connected graph of order n ≥ 2. Then γrR(G) = n if
and only if G ' C4, C5, Bp, Bp,q or G is a tree with diam(G) ≤ 5.

Observation 1. IfH is a subgraph ofG, then γrR(G) ≤ γrR(H)+|V (G)|−|V (H)|.

2. Bounds on the restrained Roman domination number

In this section we establish two sharp bounds on the restrained Roman domi-

nation number, one of which improves a previous result.

The Dutch-windmill graph, K
(m)
3 with m ≥ 2, is a graph which consists of m

copies of K3 with a vertex in common. Clearly γrR(K
(m)
3 ) = 2. Jafari Rad and

Krzywkowski in [6] proved the following lower bound for the restrained Roman

domination number of general graphs and characterized all extreme graphs.

Theorem 2. For every connected graph G of order n ≥ 3 with m edges we have
γrR(G) ≥ n + 1 − 2m

3
, with equality if and only if G is a Dutch-windmill graph of

order at least 7.

Observation 2. If a graph G has f = (∅, V (G), ∅) as a unique γrR(G)-function,
then G ' K1 or K1,s with s ≥ 1.

Let I denote the set of all mutually non-isomorphic multigraphs with-

out isolated vertices and let H = {H | H is obtained from some F ∈
I, by subdividing each edge of F twice}.

Theorem 3. Let G be a connected graph of order n ≥ 4 and size m. Then

γrR(G) ≥ 2n− 4m

3
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with equality if and only if either G ' K1,3 or G ∈ H.

Proof. Let f = (V0, V1, V2) be a γrR(G)-function, so that |V2| is maximum.

If V2 = ∅, then V1 = V (G) and so f = (∅, V (G), ∅) is the unique γrR-function

of G. Now Observation 2 implies that G = K1,n−1, and we have γrR(G) = n ≥
(2n+ 4)/3 = 2n− 4m/3, with equality if and only if G = K1,3.

Now, consider V2 6= ∅. Let mi be the size of the induced subgraph G[Vi],

for i = 1, 2, 3, m2,0 the number of edges between V2 and V0, and m3 the

number of edges between V1 and V0 ∪ V2. Then m0 = 1
2

∑
v∈V0

degG[V0](v) ≥
1
2 |V0| = 1

2 (n − |V1| − |V2|) because G[V0] has no isolated vertex. Since V2
dominates V0, every vertex in V0 is adjacent to at least one vertex in V2 and

hence m2,0 ≥ |V0| = n− |V1| − |V2|. On the other hand, since G is connected,

we must have m1 +m3 ≥ |V1|. Thus

m ≥ m0 +m1 +m2 +m3 +m2,0

≥ 3n
2 −

3|V2|
2 − |V1|

2 +m2

= 3n
2 −

6|V2|
4 − 3|V1|

4 + |V1|
4 +m2

= 3n
2 −

3
4γrR(G) + |V1|

4 +m2.

This implies that γrR(G) ≥ 2n− 4m
3 .

Suppose γrR(G) = 2n− 4m
3 . Then |V1| = m2 = 0 and all inequalities occurring

in the proof become equalities. Hence

(a) V1 = ∅,
(b) V2 is an independent dominating set of G;

(c) G[V0] is a 1-regular graph;

(d) every vertex in V0 is adjacent to exactly one vertex in V2.

Clearly (a)–(d) lead to G ∈ H.

Conversely, let G ∈ H. Hence G is obtained from some F ∈ I by subdividing

each edge of F twice. If F has order n1 and size m1, then n = n1 + 2m1, m =

3m1 and γrR(G) ≥ 2n− 4m
3 = 2n1. Clearly, V (F ) is a restrained dominating set

of G and hence γr(G) ≤ n1. It follows from (1) that γrR(G) ≤ 2γr(G) ≤ 2n1.

Thus γrR(G) = 2n1 and the proof is complete.

Since γrR(G) ≥ 2 for every connected graph G of order n ≥ 3, the aforemen-

tioned bound is useless unless n − 2m/3 ≥ 1. Thus, our first result improves

the bound of Theorem 2

Jafari Rad and Krzywkowski in [6] proved the following lower bound for the

restrained Roman domination number of trees and characterized all extreme

trees.

Theorem 4. For every tree T of diameter at least three, order n, with `(T ) leaves
and s(T ) support vertices, we have γrR(T ) ≥ (2n+ `(T )− s(T ) + 4)/3.
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In the sequel, we present a similar sharp upper bound for the restrained Roman

domination number in trees.

Theorem 5. Let T be a tree of order n ≥ 3. Then

γrR(T ) ≤
⌈
2n+ 5s(T ) + `(T )− 4

3

⌉
.

This bound is sharp for stars.

Proof. The proof is by induction on n. The statement holds for all trees of

order n = 3, 4. For the inductive hypothesis, let n ≥ 5 and suppose that for

every nontrivial tree T of order less than n the result is true. Assume that T is

a tree of order n. If diam(T ) = 2, then T is the star K1,n−1 for which s(T ) =

1, `(T ) = n − 1 and γrR(T ) = n, and so γrR(T ) = n =
⌈
2n+5s(T )+`(T )−4

3

⌉
. If

diam(T ) = 3, then T is a double star S(r, s) for some integers r, s ≥ 1. In this

case, s(T ) = 2, `(T ) = r + s and γrR(T ) = n. Hence γrR(T ) = n <
⌈
3n+4

3

⌉
=⌈

2n+5s(T )+`(T )−4
3

⌉
. Hence we may assume that diam(T ) ≥ 4.

Now, consider T has a strong support vertex. Assume that u is a strong

support vertex and v, w are two leaves adjacent to u. Let T ′ = T − v and

f = (V0, V1, V2) be a γrR(T ′)-function. Then |V (T ′)| = n − 1, s(T ′) = s(T )

and `(T ′) = `(T )− 1. It is easy to see that g = (V0, V1 ∪ {v}, V2) is an RRDF

of T and hence γrR(T ) ≤ γrR(T ′) + 1. It follows from the inductive hypothesis

that
γrR(T ) ≤ γrR(T ′) + 1

≤
⌈
2(n−1)+5s(T ′)+`(T ′)−4

3

⌉
+ 1

=
⌈
2n+5s(T )+`(T )−12

3

⌉
+ 1

<
⌈
2n+5s(T )+`(T )−4

3

⌉
,

as desired.

Now, consider T has no a strong support vertex. If diam(T ) = 4, then T

is a spider and we have s(T ) ≥ 2 and `(T ) + s(T ) ≥ n − 1. It follows from

Theorem 1 that γrR(T ) = n ≤
⌈
2n+5s(T )+`(T )−4

3

⌉
. Suppose diam(T ) ≥ 5.

Let v1v2 . . . vD be a diametral path in T and root T at vD. Since T

has no strong support vertex, we have deg(v2) = deg(vD−1) = 2 and v3 is

only adjacent to a leaf or to a support vertex of degree 2. We consider two cases:

Case 1: deg(v3) ≥ 3.

Let T ′ = T − {v1, v2}. Then |V (T ′)| = n − 2, s(T ′) = s(T ) − 1 and `(T ′) =
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`(T ) − 1. It is easy to see that γrR(T ) ≤ γrR(T ′) + 2. By the inductive

hypothesis, we obtain

γrR(T ) ≤ γrR(T ′) + 2

≤
⌈
2(n−2)+5s(T ′)+`(T ′)−4

3

⌉
+ 2

=
⌈
2n+5s(T )+`(T )−14

3

⌉
+ 2

≤
⌈
2n+5s(T )+`(T )−4

3

⌉
.

Case 2: deg(v3) = 2.

We distinguish the following subcases.

Subcase 2.1: deg(v4) ≥ 3.

Let T ′ = T − Tv3 and f be a γrR(T ′)-function. Then |V (T ′)| = n− 3, s(T ′) =

s(T ) − 1 and `(T ′) = `(T ) − 1. Clearly, f can be extended to an RRDF of

T by assigning 1 to v1, v2, v3. Thus γrR(T ) ≤ γrR(T ′) + 3. By the inductive

hypothesis, we have

γrR(T ) ≤ γrR(T ′) + 3

≤
⌈
2(n−3)+5s(T ′)+`(T ′)−4

3

⌉
+ 3

=
⌈
2n+5s(T )+`(T )−16

3

⌉
+ 3

≤
⌈
2n+5s(T )+`(T )−4

3

⌉
.

Subcase 2.2: deg(v4) = 2 and deg(v5) ≥ 3.

Let T ′ = T − Tv4 and f be a γrR(T ′)-function. Then |V (T ′)| = n− 4, s(T ′) =

s(T ) − 1 and `(T ′) = `(T ) − 1. Obviously, f can be extended to an RRDF of

T by assigning 1 to v1, v2, v3, v4. Thus γrR(T ) ≤ γrR(T ′) + 4. It follows from

the inductive hypothesis that

γrR(T ) ≤ γrR(T ′) + 4

≤
⌈
2(n−4)+5s(T ′)+`(T ′)−4

3

⌉
+ 4

=
⌈
2n+5s(T )+`(T )−18

3

⌉
+ 4

≤
⌈
2n+5s(T )+`(T )−4

3

⌉
.

Subcase 2.3: deg(v4) = deg(v5) = 2 and deg(v6) ≥ 3.
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If v5 is a support vertex, then T = P6 for which the result is true. So, suppose

v5 is not a support vertex. Let T ′ = T−Tv5 and f be a γrR(T ′)-function. Then

|V (T ′)| = n−5, s(T ′) = s(T )−1 and `(T ′) = `(T )−1. Then f can be extended

to an RRDF of T by assigning 1 to v1, v2, v3, v4, v5. Thus γrR(T ) ≤ γrR(T ′)+5.

By the inductive hypothesis, we have

γrR(T ) ≤ γrR(T ′) + 5

≤
⌈
2(n−5)+5s(T ′)+`(T ′)−4

3

⌉
+ 5

=
⌈
2n+5s(T )+`(T )−20

3

⌉
+ 5

≤
⌈
2n+5s(T )+`(T )−4

3

⌉
.

Subcase 2.4: deg(v4) = deg(v5) = deg(v6) = 2.

If v6 is a support vertex, then T = P7 for which the result is true. So, suppose

v6 is not a support vertex. If deg(v7) ≥ 3, then assume that T ′ = T − Tv6
and f is a γrR(T ′)-function. Then |V (T ′)| = n − 6, s(T ′) = s(T ) − 1 and

`(T ′) = `(T )− 1. Clearly, f can be extended to an RRDF of T by assigning 1

to v1, v2, v3, v4, v5, v6. Thus γrR(T ) ≤ γrR(T ′)+6. By the inductive hypothesis

we have
γrR(T ) ≤ γrR(T ′) + 6

≤
⌈
2(n−6)+5s(T ′)+`(T ′)−4

3

⌉
+ 6

≤
⌈
2n+5s(T )+`(T )−22

3

⌉
+ 6

=
⌈
2n+5s(T )+`(T )−4

3

⌉
.

Now let deg(v7) = 2. If v7 is a support vertex, then T = P8 and the result is

clearly true. Hence, we suppose that v7 is not a support vertex. Let T ′ = T−Tv7
and f be a γrR(T ′)-function. Then |V (T ′)| = n − 7, s(T ′) = s(T ) − 1 and

`(T ′) = `(T ) − 1. Then f can be extended to an RRDF of T by assigning

2 to v1, v4, v7 and 0 to v2, v3, v5, v6. Thus γrR(T ) ≤ γrR(T ′) + 6. It follows

from the inductive hypothesis that γrR(T ) <
⌈
2n+5s(T )+`(T )−4

3

⌉
and the proof

is complete.
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