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Abstract: Let R be a commutative ring with identity. An ideal I of a ring
R is called an annihilating ideal if there exists r ∈ R \ {0} such that Ir = (0)

and an ideal I of R is called an essential ideal if I has non-zero intersection

with every other non-zero ideal of R. The sum-annihilating essential ideal
graph of R, denoted by AER, is a graph whose vertex set is the set of all

non-zero annihilating ideals and two vertices I and J are adjacent whenever

Ann(I) + Ann(J) is an essential ideal. In this paper we initiate the study of
the sum-annihilating essential ideal graph. We first characterize all rings whose

sum-annihilating essential ideal graphs are stars or complete graphs and then we

establish sharp bounds on the domination number of this graph. Furthermore,
we determine all isomorphism classes of Artinian rings whose sum-annihilating

essential ideal graphs have genus zero or one.
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graph
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1. Introduction

The history of studying a graph associated to a commutative ring has began by

the paper [6, 9, 21], and then it followed over commutative and noncommutative

rings (see for example [4, 5, 18, 22, 23]). Since then a huge number of works have
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been added to the literature about graphs associated to algebraic structures. In

a recent study [11], the annihilating ideal graph, AG(R), is defined as follows:

The vertex set of this graph is the set of all non-zero annihilating ideals of

R, and two distinct vertices I and J are adjacent if and only if IJ = (0).

The interplay between the ring theoretic properties of a ring R and the graph

theoretic properties of its annihilating ideal graph has been investigated in [1–

3, 8, 10, 24]. In this paper, we continue the study of associating a graph to a

commutative ring.

Throughout this paper, all rings are assumed to be commutative rings with

identity that are not integral domain. If X is either an element or a subset of

R, then the annihilator of X is defined as Ann(X) = {r ∈ R | rX = 0}. An

ideal I of a ring R is called an annihilating ideal if Ann(I) 6= (0). We denote

the set of all maximal ideals, the set of all minimal prime ideals, and the set

of all associated prime ideals of a ring R by Max(R), Min(R) and Ass(R),

respectively. The ring R is said to be reduced if it has no non-zero nilpotent

element. An ideal I of R is called an essential ideal if I has non-zero intersection

with every other non-zero ideal of R.

Let G be a simple graph with the vertex set V (G) and edge set E(G). The

degree of a vertex v ∈ V (G) is defined as dG(v) = |{u ∈ V (G) | uv ∈ E(G)}|.
A graph G is regular or r-regular if dG(v) = r for each vertex v of G. The

distance dG(u, v) between two vertices u and v in a connected graph G is the

length of the shortest uv-path in G. The greatest distance between any pair

of vertices u and v in G is the diameter of G and is denoted by diam(G). A

universal vertex is a vertex that is adjacent to all other vertices of G. If a graph

G contains a universal vertex with no extra edge, then G is called a star graph.

A clique of G is a maximal complete subgraph of G and the number of vertices

in the largest clique of G, denoted by ω(G), is called the clique number of G.

A graph is planar if it has a drawing without crossings. The genus of a graph

G, λ(G), is the minimum integer k such that the graph can be drawn without

crossing itself on a sphere with k handles (i.e. an oriented surface of genus

k). Thus, a planar graph has genus 0, because it can be drawn on a sphere

without self-crossing. Let χ(G) denote the chromatic number of G, that is,

the minimal number of colors needed to color the vertices of G so that no two

adjacent vertices have the same color. Obviously, χ(G) ≥ ω(G). We write Kn

(resp. K∞) for the complete graph of order n (resp. infinite complete graph),

Pn for the path of length n − 1, and Km,n for the complete bipartite graph

with partite sets of size m and n. For terminology and notation not defined

here, the reader is referred to [25].

A set D ⊆ V (G) is a dominating set of G if every vertex of V (G) − D has a

neighbor in D. The domination number γ(G) is the minimum cardinality of

a dominating set in G. The concept of domination in graphs, with its many
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variations, is now well studied in graph theory and the literature on this subject

has been surveyed and detailed in the two books by Haynes, Hedetniemi, and

Slater [12, 13].

Motivated by the work done on annihilating ideal graph of a ring, in this paper

we introduce the sum-annihilating essential ideal graph of a commutative ring

which is not an integral domain and is defined as follows: The vertex set of this

graph is the set of all non-zero annihilating ideals and two vertices I and J are

adjacent whenever Ann(I) + Ann(J) is an essential ideal. For convenience we

denote this graph by AER.

The aim of this article is to study some properties of AER. We first characterize

all rings whose sum-annihilating essential ideal graphs are stars or complete

graphs and then we determine all isomorphism classes of Artinian rings whose

sum-annihilating essential ideal graph has genus zero or one.

We make use of the following observations and results in this paper.

Observation 1. ([11]) Let R be ring. Then every descending chain (resp. as-
cending chain) of non-zero annihilating ideals terminates if and only if R is Artinian
(resp. Noetherian).

Observation 2. If I, J are ideals of R such that I is essential and I ⊆ J , then J
is essential.

Observation 3. For any ideal I of R, I + Ann(I) is an essential ideal.

Proof. Let I be an ideal of R such that I + Ann(I) is not essential. Then

J ∩ (I + Ann(I)) = (0) for some non-zero proper ideal J of R. It follows that

IJ = (0) and so J ⊆ Ann(I) which is a contradiction. Thus I + Ann(I) is

essential.

Observation 4. Let R be a ring and let I, J be two arbitrary non-zero proper
ideals of R. Then

(1) If Ann(I) is essential, then I is a universal vertex in AER.

(2) If IJ = (0), then I and J are adjacent in AER,

(3) If I + J = R, Ann(I) 6= (0) and Ann(J) 6= (0), then Ann(I) and Ann(J) are
adjacent in AER.

Proof. (1) Let J be an arbitrary vertex of AER. By Observation 2, Ann(I)+

Ann(J) is an essential ideal of R and so I and J are adjacent in AER.

Hence, I is a universal vertex.
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(2) Let IJ = (0). Then I ⊆ Ann(J) and so I + Ann(I) ⊆ Ann(I) + Ann(J).

It follows from Observations 2 and 3 that I and J are adjacent in AER.

(3) Let I + J = R. Then Ann(I)∩Ann(J) = (0) and we deduce from (2) that

Ann(I) and Ann(J) are adjacent in AER.

By Observation 4 (part (2)), AG(R) is a spanning subgraph of AER. Hence,

we can use some of results obtained on the annihilating-ideal graph to obtain

the same results for the sum-annihilating essential ideal graph of a ring. The

following examples show that the graphs AG(R) and AER are not the same.

Example 1. If R = Z12, then AER is K4 − e and AG(R) is P4.

Example 2. If p is a prime number and R = Zp4 , then AER is K3 and AG(R) is
the path P3.

Theorem A. ([11]) If R is an Artinian ring, then every non-zero proper ideal I
of R is a vertex of AG(R).

Corollary 1. If R is an Artinian ring, then every non-zero proper ideal I of R is
a vertex of AER.

Theorem B. ([11]) Let R be a ring. Then the following statements are equivalent.

(1) AG(R) is a finite graph.

(2) R has only finitely many ideals.

(3) Every vertex of AG(R) has finite degree.

Moreover, AG(R) has n ≥ 1 vertices if and only if R has n non-zero proper ideals.

Theorem C. ([11]) For every ring R, the annihilating ideal graph AG(R) is con-
nected with diam(AG(R)) ≤ 3.

Next result is an immediate consequence of Theorems B and C and the fact

that AG(R) is a spanning subgraph of AER.

Corollary 2. Let R be a ring. Then

(1) AER is a connected graph and diamAER ≤ 3.

(2) The degree of each vertex in AER is finite if and only if the number of non-zero
proper ideals of R is finite.
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If R = F1 × F2 × F3 where Fi is a field for i = 1, 2, 3, then AER is a connected

graph with diamAER = 3 (see Figure 1), and hence the bound of Corollary 2

is sharp.

2. Properties of sum-annihilating essential ideal graphs

In this section, we investigate the basic properties of the sum-annihilating es-

sential ideal graphs. We recall that a ring R is decomposable if there exist

non-zero rings R1 and R2 such that R = R1 ×R2, otherwise it is indecompos-

able.

First we classify all commutative rings R whose sum-annihilating essential ideal

graphs AER are stars. We start with the following lemma.

Lemma 1. Let R be a decomposable ring. Then AER is a star if and only if
R = F ×D where F is a field and D is an integral domain.

Proof. Let R = R1×R2 and let AER be a star. If Ri is not a field for i = 1, 2

and Ii is a non-zero proper ideal of Ri, then (R1×(0), (0)×R2, I1×(0), (0)×I2)

is C4 which is a contradiction. Henceforth, we may assume that R1 is a field.

If R2 is an integral domain, then we are done. Suppose R2 is not an integral

domain and J is a non-zero annihilating ideal of R2. Then clearly (0)×R2 and

(0) × J are adjacent to R1 × (0). Since AER is a star, R1 × (0) is the center

of AER and so R1 × (0) is adjacent to R1 × J . It follows that AnnR(R1 ×
(0)) + AnnR(R1 × J) = (0) × R2 + (0) × AnnR2(J) = (0) × R2 is essential, a

contradiction with ((0)×R2)∩(R1×(0)) = (0). Thus R2 is an integral domain.

Conversely, let R = F × D where F is a field and D is an integral domain.

Then V (AER) = {F × (0), (0)× I | (0) 6= I �D}. It is easy to see that AER is

a star with center F × (0).

Corollary 3. Let R be an Artinian ring with at least two non-zero annihilating
ideals. Then AER is a star if and only if AER ' K2.

Proof. Since K2 is a star graph, if part of the Corollary is clear.

Conversely, assume that AER is a star. Either R is local or R is not local. If R

is local, then it follows from Lemma 12 that AER is isomorphic to K2. If R is

not local, then R is decomposable. We deduce from Lemma 1 that R = F ×D
where F is a field and D is an integral domain. Since R is Artinian, we conclude

that D is Artinian and so D is a field. Then clearly AER ' K2.

Theorem 1. Let R be a ring with at least two non-zero proper ideals. Then AER
is a star if and only if one of the following holds:
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(a) R has exactly two non-zero proper ideals.

(b) R = F ×D where F is a field and D is an integral domain which is not a field.

(c) R has a minimal ideal I such that I2 = (0), I is not essential and I is the
annihilator of every non-zero proper ideal different from I.

Proof. If R has exactly two non-zero proper ideals, then R is Artinian and

so |V (AER)| = 2, by Corollary 1. Since AER is connected, we have AER ' K2

as desired. If R = F ×D where F is a field and D is an integral domain that

is not a field, then it follows from Lemma 1 that AER is a star. Now, let R

have a minimal ideal I such that I2 = (0), I is not essential and Ann(J) = I

for each non-zero proper ideal different from I. Since I ⊆ AnnR(I), AnnR(I)

is essential by Observation 3 and so I is a universal vertex. Let J,K be two

arbitrary distinct vertices of AER different from I. If J is adjacent to K then

AnnR(J) + AnnR(K) = I is essential, a contradiction. Hence J and K are not

adjacent and this implies that AER is a star.

Conversely, let AER be a star. If |V (AER)| < ∞, then by Observation 1, R

is Artinian and it follows from Corollary 3 that R is isomorphic to F1 × F2.

Hence, R satisfies (a).

Now, let |V (AER)| =∞. Let I be the universal vertex of AER. We claim that

I is a minimal ideal of R. Assume, to the contrary, that J is a non-zero ideal

of R such that J $ I. Then AnnR(I) + AnnR(J) = AnnR(J). Since I and J

are adjacent in AER, AnnR(J) is an essential ideal of R and so J is a universal

vertex of AER by Observation 4 and this leads to a contradiction. Hence, I is

a minimal ideal of R. Consider two cases.

Case 1. I2 6= (0).

Then I2 = I. By Brauer’s Lemma ([15], p. 172, Lemma 10.22), R is decom-

posable. Since |V (AER)| ≥ 3, we have R = F ×D, where F is a field and D is

an integral domain that is not a field. Hence R satisfies (b).

Case 2. I2 = (0).

Let J 6= I be an arbitrary vertex of AER. Then Ann(J) 6= J , for otherwise ,

Ann(J) is essential by Observation 3 and this implies by Observation 4 (part

(1)) that J = I, a contradiction. Since J.Ann(J) = (0), we deduce from

Observation 4 (part (2)) that J and Ann(J) are adjacent in AER. Since J 6= I,

we have AnnR(J) = I and I is not essential. Thus, R satisfies (c).

Next, we characterize all Artinian rings R whose sum-annihilating essential

ideal graphs are complete.

Lemma 2. If (R,m) is an Artinian local ring, then AER is a complete graph.



A. Alilou and J. Amjadi 123

Proof. Let I be an arbitrary vertex of AER. Then AnnR(m) ⊆ AnnR(I).

Since R is an Artinian local ring, m is nilpotent ([7], p.89, Proposition 8.4).

Hence, mn = (0) and mn−1 6= (0) for some positive integer n and this implies

that mn−1 ⊆ Ann(I). Let t be the smallest positive integer such that mtI = (0)

and mt−1I 6= (0). It follows that mt−1I ⊆ Ann(m) ∩ I and so Ann(m) is

essential. Since Ann(m) ⊆ AnnR(I), we have that AnnR(I) is essential. It

follows from Observation 4 that I is a universal vertex. Since I is an arbitrary

vertex, we conclude that AER is a complete graph and the proof is complete.

Theorem 2. Let R be an Artinian ring. Then AER is a complete graph if and
only if one of the following holds:

1. R = F1 × F2 where F1 and F2 are fields.

2. R is a local ring.

Proof. One side is clear. Let AER be a complete graph. Since R is Artinian,

R = R1 ×R2 × · · · ×Rn where Ri is an Artinian local ring for each 1 ≤ i ≤ n.

If n ≥ 3, then the vertices R1 × (0) × · · · × (0) and R1 × R2 × (0) × · · · × (0)

are not adjacent in AER which is a contradiction. If n = 1, then R is an

Artinian local ring and we are done. Henceforth, we have n = 2. We claim

that R1 and R2 are fields. Assume, to the contrary, that R1 is not a field. Let

I1 be a non-zero proper ideal of R1. By Theorem A, AnnR1
(I1) 6= (0) and so

AnnR((0)× R2) + AnnR(I1 × R2) = R1 × (0). Since R1 × (0) is not essential,

the vertices (0) × R2 and I1 × R2 are not adjacent in AER, a contradiction.

Hence R1 and R2 are fields. This completes the proof.

Next result classifies all rings with at least one minimal ideal whose sum-

annihilating essential ideal graphs are complete bipartite graph.

Theorem 3. Let R be a ring with at least one minimal ideal. Then AER is a
complete bipartite graph with at least two vertices in each partition if and only if
R = D1 ×D2 where D1 and D2 are integral domains which are not fields.

Proof. Let R = D1×D2 where D1 and D2 are integral domains which are not

fields. Let X = {I × (0)|(0) 6= I �D1} and Y = {(0)× J |(0) 6= J �D2}. Since

D1 and D2 are integral domains, V (AER) = X ∪ Y . Clearly, |X|, |Y | ≥ 2, X

and Y are independent sets and every vertex of X is adjacent to every vertex

of Y . Thus, AER is a complete bipartite graph with desired property.

Conversely, let AER ' Km,n where m,n ≥ 2. Suppose that I is a minimal

ideal of R. If I2 = (0), then AnnR(I) is essential by Observation 3 and so I is

a universal vertex, a contradiction. Thus I2 6= (0). Since I is minimal, I2 = I.
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By Brauer’s Lemma, R = R1 × R2. We claim that R1 and R2 are integral

domains. Assume that R2 is not an integral domain and I2 is a non-zero proper

ideal of R2 such that AnnR2
(I2) 6= (0). As above, we have ((0) × I2)2 6= (0)

and this implies that I2 6= AnnR2(I2). By Observation 3, (R1, 0), (0, I2) and

(0,AnnR2
(I2)) induced a triangle in AER which is a contradiction. Hence, R2

is an integral domain. Similarly, R1 is an integral domain. Since m,n ≥ 2,

it follows from Theorem 1 that R1 and R2 are not fields. This completes the

proof.

Theorem 4. If R is an Artinian ring, then AER ' H ∨ Km where H is a
multipartite graph and m ∈ N ∪ {∞}.

Proof. Since R is Artinian, then R = R1×· · ·×Rn where n = |Max(R)|. Let

X = {I1 × · · · × In|Ii �Ri for 1 ≤ i ≤ n} − {(0)× · · · × (0)}

X1 = {(R1 × I2 × · · · × In)|Ii �Ri, 2 ≤ i ≤ n} − {R1 × · · · ×Rn} and

Xi = {I1 × · · · × Ii−1 ×Ri × Ii+1 × · · · × In|Ij �Rj for 1 ≤ j ≤ i− 1

and Ij �Rj for i+ 1 ≤ j ≤ n}

for each 2 ≤ i ≤ n.

It is easy to verify that V (AER) = X∪X1∪. . .∪Xn and that the setsX1, . . . , Xn

are independent sets. Let H denote the induced subgraph AER[X1 ∪ . . .∪Xn].

Then H is a n-partite graph. Assume now that I1 × · · · × In ∈ X. Since Ri

is an Artinian local ring, AnnRi(Ii) is an essential ideal of Ri for each i. It

follows that AnnR(I1 × · · · × In) is an essential ideal of R which implies that

I1 × · · · × In is adjacent to all vertices of AER. In particular, the subgraph

induced by X is a clique. Thus AER ' H∨K|X| and the proof is complete.

Corollary 4. Let R = R1×· · ·×Rn (n ≥ 2) be the product of Artinian local rings
R1, . . . , Rn. If Ri has only finitely many ideals for each i, then χ(AER) = ω(AER) =
n− 1 +

∏n
i=1 ni, where ni is the number of proper ideals of Ri.

Proof. Using notation of Theorem 4, we have |X| =
∏n

i=1 ni − 1 and AER =

H∨K|X|. Since Xi is an independent set for each i, we conclude that ω(AER) ≤
χ(AER) ≤ n− 1 +

∏n
i=1 ni.

To prove the inverse inequality, we observe that the subgraph induced by the

set

X ∪ {R1 × (0)× · · · × (0), (0)×R2 × · · · × (0), . . . , (0)× · · · × (0)×Rn}
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is a clique which implies that χ(AER) ≥ ω(AER) ≥ n+ |X| = n− 1 +
∏n

i=1 ni,

as desired. This completes the proof.

Corollary 5. If n = pα1
1 pα2

2 . . . pαm
m (m ≥ 2) is the decomposition of the positive

integer n into primes, then χ(AEZn) = ω(AEZn) = m+ α1α2 . . . αm − 1.

Corollary 6. If R = F1 × · · · × Fn is the product of fields F1, . . . , Fn, then
χ(AER) = ω(AER) = n.

Theorem 5. Let R be a ring. Then AER is a k- regular graph if and only if
R = F1×F2 where F1 and F2 are fields and k = 1 or R is an Artinian local ring with
exactly k + 1 non-zero proper ideals.

Proof. One side is clear. Let AER be a k-regular graph. By Corollary 2 (part

2), R is Artinian and so R = R1 × · · · ×Rn where Ri is an Artinian local ring

for each 1 ≤ i ≤ n . If Ri is a field for each i, then n = 2. For otherwise,

deg((0) × R2 × · · · × Rn) 6= deg(R1 × (0) × · · · × (0)) contradicting regularity

of AER.

Thus, we may assume that R1 is not a field. Suppose that m1 is the maximal

ideal of R1. Then m1 6= (0) and so m1 × (0) × · · · × (0) ∈ V (AER). Since

Ann(m1) is an essential ideal in R1 (see the proof of Lemma 2), we deduce that

m1× (0)×· · ·× (0) is adjacent to every vertex of AER. Since AER is k-regular,

AER is a complete graph of order k + 1. It follows from Theorem 2 that R is

an Artinian local and the proof is complete.

3. Domination number of AER

In this section, we investigate the domination number of the sum-annihilating

essential ideal graph of a ring. The first observation shows that γ(AER) can

be arbitrary large.

Observation 5. If R = F1 × F2 × · · · × Fn (n ≥ 3), where Fi is a field for each
i ∈ {1, 2, . . . , n}, then γ(AER) = n.

Proof. Let D = {F1, F2, . . . , Fn}. We show that D is a dominating set of

AER. Assume I1 × · · · × In is a vertex of AER. Since I1 × · · · × In 6= R, we

have Ii = (0) for some i. Then Ann(I1 × · · · × In) + Ann(Fi) = R and so

I1× · · ·× In and Fi are adjacent in AER. Therefore D is a dominating set and

hence γ(AER) ≤ n.

To show that γ(AER) ≥ n, let D be any γ(AER)-set and F̂i = F1×· · ·×Fi−1×
(0)×Fi+1× · · · ×Fn for each i. Obviously deg(F̂i) = 1 and F̂i is only adjacent
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to Fi for each i. Hence |D∩{Fi, F̂i}| ≥ 1 for each i which implies that |D| ≥ n
and so γ(AER) = n.

Next we provide some sufficient conditions for a ring R to have γ(AER) = 1.

Proposition 1. Let R be a ring. Then γ(AER) = 1 if and only if R has a non-zero
proper ideal I such that Ann(I) is essential.

Proof. If R has a non-zero proper ideal I such that Ann(I) is essential, then

it follows from Observation 4 (1) that γ(AER) = 1.

Conversely, let γ(AER) = 1 and let {I} be a dominating set of AER. If I is

not maximal, then there is a maximal ideal m such that I $ m. Since I and m

are adjacent, we deduce that Ann(I) + Ann(m) = Ann(I) is essential and we

are done. Henceforth, we assume that I is a maximal ideal of R. First let R be

local. If R has exactly one non-zero proper ideal, then clearly I = Ann(I) is

essential. Let J be a non-zero proper ideal of R different from I. Since J and

I are adjacent and since J $ I, we conclude that Ann(J) + Ann(I) = Ann(J)

is essential and we are done again.

Now R is not local. We consider two cases.

Case 1. R has exactly two maximal ideals.

Let I and m be two distinct maximal ideals of R and let J(R) = I∩m. Clearly,

J(R) $ I. If J(R) = (0), then by Chinese remainder theorem ([7], Proposition

1.10, pp 7) we have R ' R
I ×

R
m which contradicts Observation 5. Thus J(R) 6=

(0). Since I and J(R) are adjacent, we deduce that Ann(I) + Ann(J(R)) =

Ann(J(R)) is essential and we are done.

Case 2. R has at least three maximal ideals.

Let I,m1 and m2 be three distinct maximal ideals of R. Then we have Im1 6=
(0), for otherwise we have Im1 ⊆ m2 and this implies that either I ⊆ m2 or

m1 ⊆ m2 which is a contradiction. Since Im1 $ I and since I and Im1 are

adjacent, we conclude that Ann(I) + Ann(Im1) = Ann(Im1) is essential and

the proof is complete.

Corollary 7. Let R = R1 × · · · ×Rn (n ≥ 2) where Ri is not an integral domain
for some i. Then γ(AER) = 1 if and only if γ(AERi) = 1 for some i.

Proof. Let γ(AERi
) = 1 for some i, say i = 1. By Proposition 1, R1 has a

non-zero proper ideal I1 such that Ann(I1) is essential. Then clearly

AnnR(I1 × (0)× · · · × (0)) = AnnR1(I1)×R2 × · · · ×Rn

is an essential ideal of R and hence γ(AER) = 1 by Proposition 1.
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Now let γ(AER) = 1. By Proposition 1, R has a non-zero proper ideal I1 ×
· · · × In whose annihilator is essential. Thus AnnR1

(I1) × · · · × AnnRn
(In) is

essential. Assume without loss of generality that AnnR1
(I1) 6= (0). Clearly

AnnR1(I1) is an essential ideal of R1 and hence γ(AER1) = 1 by Proposition

1.

Corollary 8. If R is a non-reduced ring, then γ(AER) = 1.

Proof. Since R is non-reduced, R has a non-zero ideal I such that I2 = (0).

It follows from Observation 3 that Ann(I) = I + Ann(I) is an essential ideal of

R and hence γ(AER) = 1 by Proposition 1.

Next, we determine the domination number of the sum-annihilating essential

ideal graph of a Noetherian reduced ring.

Observation 6. Let S be a multiplicatively closed subset of a commutative ring
R such that S∩Z(R) = ∅ and I be a finitely generated ideal of R. Then Ann(I) 6= (0)
if and only if AnnS−1R(S−1I) 6= (0).

Proof. Since I is finitely generated ideal, we have AnnS−1R(S−1I) ∼=
S−1(AnnR(I)). Now the result follows from the fact that I = (0) if and only if

S−1I = (0).

Observation 7. Let R be a ring, I a non-zero ideal of R and S a multiplicatively
closed subset of R with S ∩ Z(R) = ∅ such that I ∩ S = ∅. Then I is an essential
ideal of R if and only if S−1I is an essential ideal of S−1R.

Proof. Let I be an essential ideal of R. Assume J is a non-zero ideal of S−1R.

Then there is a non-zero ideal K of R such that J = S−1K. Since I is essential,

I ∩K 6= (0) which implies that S−1I ∩J = S−1I ∩S−1K = S−1(I ∩K) 6= (0).

Thus S−1(I) is an essential ideal of S−1R. The proof of other side is similar.

Observation 8. Let R be a Noetherian ring and S be a multiplicatively closed
subset of R with S ∩ Z(R) = ∅. Then γ(AES−1R) ≤ γ(AER).

Proof. Assume that E is a γ(AER)-set and let D = {S−1I | I ∈ E}. Suppose

J is an arbitrary vertex in V (AES−1R) \ D. Then there is an ideal I of R

such that J = S−1I. Clearly I 6∈ E. Since AnnS−1R(J ) 6= (0), we have

AnnR(I) 6= 0 and so I ∈ V (AER)\E. Since E is a γ(AER)-set, I is adjacent to

a vertexK ∈ E. Therefore Ann(I)+Ann(K) is an essential ideal ofR. It follows

from Observation 7 that S−1(Ann(I) + Ann(K)) = Ann(S−1I) + Ann(S−1K)
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is an essential ideal of S−1R. This implies that S−1K and J are adjacent in

AES−1R where S−1K ∈ D. So D is a dominating set of AES−1R and the proof

is complete.

Proposition 2. Let R be a Noetherian reduced ring which is not an integral
domain. Then γ(AER) = |Min(R)|.

Proof. Since R is Noetherian and Min(R) ⊆ Ass(R), we have |Min(R)| ≤
|Ass(R)| < ∞. Let Min(R) = {P1, . . . , Pk} and let Pi = Ann(xi) for some

xi ∈ R − {0} (1 ≤ i ≤ k). Let I be a vertex of AER. Then I ⊆ Pi for

some 1 ≤ i ≤ k ([16], Proposition 1.2(part 2)). As above, we conclude that

{Rx1, Rx2, . . . , Rxk} is a dominating set of AER implying that γ(AER) ≤
|Min(R)| ≤ k.

Now we show that γ(AER) ≥ |Min(R)|. Let S = R − ∪ki=1Pi. Then S−1R =

RP1
× · · · ×RPk

where RP1
, . . . , RPi

are fields ([16], Propositions 1.1 and 1.5).

By Observations 5 and 8, we have γ(AER) ≥ γ(AES−1R) = k. Thus γ(AER) =

|Min(R)| and the proof is complete.

Nikandish and Maimani [17] proved the if R a Noetherian ring, then

γ(AG(R)) ≤ |Ass(R)| < ∞. Since AG(R) is a spanning subgraph of AER,

we have the next result.

Corollary 9. For any Noetherian ring R, γ(AER) ≤ |Ass(R)| <∞.

4. Classification of Artinian rings with genus zero or one

In this section we characterize all Artinian rings with genus zero or one. The

proof of the following result can be found in [14].

Theorem D. A graph is planar if and only if it does not contain a subdivision of
K5 or K3,3.

Proposition 3. Let R be an Artinian ring. Then AER is a planar graph if and
only if one of the following holds:

(a) R has at most four non-zero proper ideals.

(b) R = F1 × F2 × F3, where F1, F2 and F3 are fields.

Proof. If R satisfies (a), then the result is immediate. Let R = F1 × F2 × F3

where F1, F2 and F3 are fields. Then AER is the graph illustrated in Figure 1

and so AER is planar.
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t
t

t t t t

(0) × F2 × F3

F1 × (0) × (0)

(0) × F2 × (0)

F1 × (0) × F3F1 × F2 × (0)

(0) × (0) × F3

Figure 1. The graph AER(F1 × F2 × F3)

Conversely, let AER be a planar graph. Since R is Artinian, V (AER) contains

all non-zero proper ideals of R. If |V (AER)| ≤ 4, then R satisfies (a). Suppose

that |V (AER)| ≥ 5. Since R is Artininan, R = R1 ×R2 × · · · ×Rn where Ri is

an Artinian local ring for each 1 ≤ i ≤ n. If n ≥ 4, then the subgraph induced

by the set

{R1 × (0) × · · · × (0), (0) × · · · (0) × Rn, R1 × (0) × · · · (0) × Rn, (0) × R2 ×
(0)× · · · × (0), (0)×R2 ×R3 × (0)× · · · × (0), (0)× (0)×R3 × (0)× · · · × (0)}
contains the complete bipartite graph K3,3 with partite sets X = {R1 × (0)×
· · · × (0), (0)× · · · (0)×Rn, R1× (0)× · · · (0)×Rn} and Y = {(0)×R2× (0)×
· · · × (0), (0) × R2 × R3 × (0) × · · · × (0), (0) × (0) × R3 × (0) × · · · × (0)}, a

contradiction. Thus n ≤ 3. If n = 1, then R is an Artinian local ring and we

get a contradiction by Lemma 2 and Theorem D. Hence n = 2 or 3. Let mi be

the maximal ideal of Ri for i = 1, 2, 3.

First let n = 3. We claim that R1, R2 and R3 are fields. Assume, to the

contrary, that Ri is not a field for some i, say i = 3. Then the induced

subgraph by the set

{R1×0×(0), R1×(0)×m3, (0)×(0)×m3, (0)×R2×(0), (0)×R2×m3, (0)×R2×R3}

contains K3,3 with partite sets X = {R1×(0)×(0), R1×(0)×m3, (0)×(0)×m3}
and Y = {(0)×R2 × (0), (0)×R2 ×m3, (0)×R2 ×R3}, a contradiction. Thus

R satisfies (b).

Let now n = 2. Since |V (AER)| ≥ 5, Ri is not a field for some i, say i = 2. If

R1 is a field, then it follows from |V (AER)| ≥ 5 that R2 has at least two distinct

non-zero proper ideals I and J . It is easy to see that the subgraph induced by

the set {R1 × (0), R1 × I,R1 × J, (0)×R2, (0)× I, (0)× J} contains K3,3 with
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partite sets X = {R1× (0), R1× I,R1×J} and Y = {(0)×R2, (0)× I, (0)×J}
contradicting planarity of AER. Assume that R1 is not a field. Then the

subgraph induced by the set {m1×(0), (0)×m2, R1×m2, (0)×R2,m1×(0),m1×
R2} contains K3,3 with partite sets X = {m1 × (0), (0) × m2, R1 × m2} and

Y = {(0) × R2,m1 × (0),m1 × R2} contradicting the planarity of AER. This

completes the proof.
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Figure 2. toroidal embedding of AER(F1 × F2 × F3 × F4)
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F1 × F2 F1 × F2 × m3

Figure 3. toroidal embedding of AER(F1 × F2 × R3) where R3 has exactly one non-zero proper
ideal

Next, we characterize all Artinian rings whose the sum-annihilating essential

ideal graphs have genus one. The proof of the following results can be found

in Ringel and Youngs [20]; Ringel [19], respectively.
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Theorem E. For n ≥ 3, λ(Kn) = d 1
12

(n− 3)(n− 4)e. In particular, λ(Kn) = 1 if
n = 5, 6, 7.

Theorem F. For m,n ≥ 2, λ(Km,n) = d (m−2)(n−2)
4

e.

We begin with the following lemma.

Lemma 3. Let R = F1 × · · · × Fn (n ≥ 4) where Fi is a field for each 1 ≤ i ≤ n.
Then λ(AER) = 1 if and only if n = 4.

Proof. If n = 4, then AER is the graph illustrated in Figure 2 and it follows

from Proposition 3 that λ(AER) = 1 .

Conversely, let λ(AER) = 1. If n ≥ 5, then the subgraph induced by the set

{F1, F2, F3, F4, F5, F1 × F2, F3 × F4, F3 × F4 × F5, F3 × F5, F4 × F5} contains

K3,7 with partite sets X = {F1, F2, F1×F2} and Y = {F3, F4, F5, F3×F4, F3×
F4 × F5, F3 × F5, F4 × F5}. By Theorem F, we have λ(AER) ≥ λ(K3,7) = 2, a

contradiction. Thus n = 4 and the proof is complete.

Theorem 6. Let R be an Artinian ring. Then λ(AER) = 1 if and only if one of
the following holds:

(a) R = F1 × F2 × F3 × F4 where F1, F2, F3 and F4 are fields.

(b) R = F1 × F2 × R3 where F1 and F2 are fields and R3 has exactly one non-zero
proper ideal.

(c) R = R1 ×R2 where each of R1 and R2 has exactly one non-zero proper ideal.

(d) R = F × R2 where F is a field and R2 is a local ring with exactly two non-zero
proper ideals.

(e) R = F ×R2 where F is a field and R2 is a local ring with exactly three non-zero
proper ideals.

(f) R is a local ring with r non-zero proper ideals where 5 ≤ r ≤ 7.

Proof. If R = F1 × F2 × F3 × F4, then the result follows by Lemma 3. If

R = F1 ×F2 ×R3 where F1 and F2 are fields and R3 has exactly one non-zero

proper ideal, then AER is the graph illustrated in Figure 3 and so λ(AER) = 1.

If R = R1×R2 where Ri has exactly one non-zero proper ideal mi for i = 1, 2,

then |V (AER)| = 7 and it is easy to verify that the subgraph induced by the

set {R1 × (0),m1 × (0), R1 × m2, (0) × R2, (0) × m2,m1 × R2} contains K3,3

which implies that K3,3 ≤ AER ≤ K7. It follows from Theorems E and F that

1 = λ(AER).
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If R = F ×R2 and R2 is a local ring with exactly two non-zero proper ideals I

and m where m is a maximal ideal of R2, then |V (AER)| = 6 and AER contains

K3,3 with partite sets {F × (0), F × I, F ×m} and {(0)×R2, (0)× I, (0)×m}
implying that λ(AER) = 1. If R = F × R2 and R2 has exactly three non-zero

proper ideals I, J and m2 where m2 is a maximal ideal of R2, then clearly

AER ' K4 ∨K4 and V (AER) = {F × (0), F × I, F × J, F ×m2, (0)×R2, (0)×
I, (0)× J, (0)×m2}. As illustrated in Figure 4, we have λ(AER) = 1.

Finally, If R satisfies (f), then K5 ≤ AER ≤ K7 and so λ(AER) = 1 by Theorem

E.

1 1

22
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5
(0) × R2
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(0) × R2(0) × R2

F × I

(0) × m2

F × J

(0) × I

F × m2

F × (0)

(0) × J

t t

tt
t

tt t t
t

t

Figure 4. toroidal embedding of K4 ∨K4

Conversely, let λ(AER) = 1. Since R is Artinian, we have R = R1 × · · · × Rn

where Ri is an Artinian local ring for each i. If n ≥ 5, then using an argument

similar to that described in the proof of Theorem 3, we deduce that AER
contains K3,7 which leads to a contradiction by Theorem F. Therefore n ≤ 4. If

R1, R2, R3, R4 are fields, then R satisfies (a). Assume without loss of generality

that R4 is not a field. Let m4 be the maximal ideal of R4. Then the subgraph

induced by the set

{R1 × (0)× (0)× (0),

R1 × (0)× (0)×m4, (0)×R2 × (0)× (0), (0)×R2 × (0)×m4,

R1 ×R2 × (0)×m4,

(0)× (0)×R3 × (0), (0)× (0)×R3 ×m4, (0)× (0)× (0)×R4,

(0)× (0)× (0)×m4}

contains K4,5 with partite sets X = {R1 × (0) × (0) × (0), R1 × (0) × (0) ×
m4, (0) × R2 × (0) × (0), (0) × R2 × (0) × m4, R1 × R2 × (0) × m4} and Y =
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{(0)×(0)×R3×(0), (0)×(0)×R3×m4, (0)×(0)×(0)×R4, (0)×(0)×(0)×m4}
contradicting λ(AER) = 1 by Theorem F. Therefore n ≤ 3. We consider the

following cases.

Case 1. n = 3, R = F1 × F2 ×R3 where F1 and F2 are fields.

If R3 has a non-zero proper ideal I different from m3, then the subgraph induced

by the set

{F1 × (0)× (0), F1 × (0)× I, F1 × (0)×m3, (0)× F2 × (0), (0)× F2 × I,

(0)× F2 ×m3, F1 × F2 × I, (0)× (0)×R3, (0)× (0)× I, (0)× (0)×m3}

contains K3,7 with partite sets X = {F1 × (0) × (0), F1 × (0) × I, F1 × (0) ×
m3, (0) × F2 × (0), (0) × F2 × I, (0) × F2 × m3, F1 × F2 × I} and Y = {(0) ×
(0)×R3, (0)× (0)× I, (0)× (0)×m3} contradicting λ(AER) = 1 by Theorem

F. Thus R3 has exactly one non-zero proper ideal and so R satisfies (b).

Case 2. n = 3 and R = F ×R2 ×R3, where F is a field and R2, R3 are not

fields.

Let m2 and m3 be the maximal ideals of R2 and R3, respectively. Then the

subgraph induced by the set

{F × (0)× (0), F ×m2 ×m3, (0)×R2 × (0), (0)×R2 ×m3, F × (0)×m3,

(0)× (0)×R3, (0)× (0)×m3), (0)×m2 × (0), (0)×m2 ×m3}

contains the graph K4,5 with partitions X = {F × (0)× (0), F ×m2×m3, (0)×
R2 × (0), (0) × R2 × m3, F × (0) × m3} and Y = {(0) × (0) × R3, (0) × (0) ×
m3), (0)×m2 × (0), (0)×m2 ×m3} a contradiction with λ(AER) = 1.

Case 3. n = 2 and R = R1 ×R2, where R1, R2 are not fields.

We claim that each of R1 and R2 has exactly one non- zero proper ideal. Let

m1 be the maximal ideal of R1 and I be a non-zero proper ideal of R1 different

from m1. Then the subgraph induced by the set

{R1×(0),m1×(0), R1×m2, I×(0), I×m2, (0)×R2, (0)×m2,m1×R2,m1×m2}

contains the graph K4,5 with partitions X = {R1 × (0),m1 × (0), R1 ×m2, I ×
(0), I × m2} and Y = {(0) × R2, (0) × m2,m1 × R2,m1 × m2} a contradiction

with λ(AER) = 1. Thus R1 has exactly one non-zero proper ideal. Similarly,

R2 has exactly one non-zero proper ideal and so R satisfies (c).

Case 4. n = 2 and R = F × R2, where F is a field and R2 is a local ring

which is not a field.
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If R2 has exactly one non-zero proper ideal, then |V (AER)| = 4 which leads to

a contradiction. If R2 has four non-zero proper ideals I, J , K and m2, then

the subgraph induced by the set

{F × (0), F × I, F × J, F ×K,F ×m2, (0)×R2, (0)× I, (0)× J, (0)×K}

contains K4,5 with partitions

{F × (0), F × I, F × J, F ×K,F ×m2} ∪ {(0)×R2, (0)× I, (0)× J, (0)×K}

contradicting with λ(AER) = 1. Thus R2 has exactly two or three non- zero

proper ideals and so R satisfies either (d) or (e).

Case 5. n = 1.

Then R is an Artinian local ring. By Theorem 2, AER is a complete graph.

Since λ(AER) = 1, we deduce that R has r non-zero proper ideals where

5 ≤ r ≤ 7.
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