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Abstract: Two digraphs of same order are said to be skew-equienergetic if

their skew energies are equal. One of the open problems proposed by Li and

Lian was to construct non-cospectral skew-equienergetic digraphs on n vertices.
Recently this problem was solved by Ramane et al. In this paper, we give some

new methods to construct new skew-equienergetic digraphs.
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1. Introduction

Through out this paper we consider only simple graphs i.e, graphs with no

multiple edges and loops. Let G = (V,E) be a graph with vertex set V (G) =

V = {v1, v2, . . . , vn} and edge set E(G) = E. The graph G together with an

orientation σ which assigns to each edge of G a direction is called a digraph

and is denoted by Gσ. Each directed edge joining the vertices vi and vj in

Gσ with vi and vj being the initial and terminal vertex, respectively is known

as an arc from vi to vj and is denoted by (vi, vj). The adjacency matrix of

G, denoted by A(G), is the n × n matrix [aij ], where aij = 1, if the vertices
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58 More skew-equienergetic digraphs

vi and vj are adjacent in G, otherwise aij = 0. We denote the adjacency

spectrum of G by (λ1(G), λ2(G), . . . , λn(G)), where λi(G) (i = 1, 2, . . . , n)

are the eigenvalues of A(G). The energy of a graph G is denoted by ε(G)

and is defined to be the sum ε(G) =
∑n
i=1 |λi(G)|. The concept of energy

of a graph was introduced by Gutman [10] with an application to chemistry

(Huckel molecular orbital approximation for the total π-electron energy [12]).

The energy of a graph G has been extensively studied by many mathematicians

and their works can be found in [4, 5, 7, 8, 10, 11, 17] and therein references.

Two graphs G1 and G2 of same order are said to be equienergetic graphs if

ε(G1) = ε(G2). More information about equienergetic graphs can be found in

[8, 14, 18, 19, 21, 22] and therein references. Recently, Adiga et al. introduced

skew-adjacency matrix and skew-energy of a digraph. The skew-adjacency

matrix of a digraph Gσ of order n denoted by S(Gσ), is the n× n matrix [sij ],

where

sij =


1 if there is an arc from vi to vj ,

−1 if there is an arc from vj to vi,

0 otherwise.

S(Gσ) is a skew-symmetric matrix and hence all its eigenvalues are

purely imaginary. We denote the skew-adjacency spectrum of Gσ by

(λ1(Gσ), λ2(Gσ), . . . , λn(Gσ)), where λi(G
σ) (i = 1, 2, . . . , n) are the eigen-

values of S(Gσ). The skew-energy of a digraph Gσ, denoted by εs(G) is the

sum εs(G) =
∑n
i=1 |λi(Gσ)|. Works on skew-energy of a digraph can be found

in [1–3, 6, 9, 13, 15, 16] and therein references. Two digraphs Gσ1
1 and Gσ2

2 of

same order are said to be skew-equienergetic if εs(G
σ1
1 ) = εs(G

σ2
2 ).

Let G1 and G2 be two graphs. The join of G1 and G2 is the graph G1 ∨ G2,

obtained by joining each vertex of G1 to every vertex of G2. The join of Gσ1
1

and Gσ2
2 is the digraph Gσ1

1 → Gσ2
2 , obtained by adding arcs from each vertex of

Gσ1
1 to every vertex of Gσ2

2 . Recently in [16] Li and Lian proposed the following

problem.

Problem 1. [16] How to construct families of oriented graphs such that they have
equal skew energy but they do not have the same spectra?

The above problem was addressed by Ramane et al. [20] and gave a method

to construct skew-equienergetic digraphs. In fact they proved the following.

1. Let Gσ1
1 and Gσ2

2 be two digraphs of order n and m, respectively. Suppose

that the in-vertex degree of each vertex v of Gσ1
1 (respectively, Gσ2

2 ) is

same as the out-vertex degree of v, then

Ps(G
σ1
1 → Gσ2

2 , x) =
x2 + nm

x2
Ps(G

σ1
1 , x)Ps(G

σ2
2 , x).
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2. There exists a pair of skew-equienergetic digraphs of order n, for all n ≥ 6.

Motivated by this we construct some new skew-equienergetic digraphs. The

paper is organized as follows: In Section 2, we give a method to construct

skew-equienegetic digraphs via equienergetic graphs, also we give an alternate

proof of the Theorem 2.1 in [20]. Further we extend the class of digraphs

Gσ1
1 → Gσ2

2 whose skew-adjacency spectrum is completely known, which helps

us to construct new skew-equienergetic digraphs. In Section 3, we define some

new join operations on digraphs and construct some new skew-equienergetic

digraphs.

2. Construction of skew-equienergetic digraphs

The characteristic polynomial of a graph G is given by Pa(G, x) := |xI −
A(G)| and the characteristic polynomial of a digraph Gσ is given by

Ps(G
σ, x) := |xI − S(Gσ)|. Let G be a graph with vertex set V (G) =

{v1, v2, . . . , vn}. The Duplication D(G) of a graph G is a graph with ver-

tex set V (D(G)) = {v1, v2, . . . , vn, v′1, v′2, . . . , v′n} and edge set E(D(G)) =

{viv′j : vivj is an edge in G}. The Duplication D(Gσ) of a digraph Gσ is a

digraph with vertex set V (D(Gσ)) = {v1, v2, . . . , vn, v′1, v′2, . . . , v′n} and arc set

E(D(Gσ)) = {(vi, v′j) : (vi, vj) is an arc in Gσ}.
we need the following results to prove our main results.

Theorem 1. [21] Let G1 be an r1-regular graph of order n, and G2 be an r2-
regular graph of order m. Then the characteristic polynomial of their join G1 ∨G2 is
given by

Pa(G1 ∨G2, x) =
(x− r1)(x− r2)− nm

(x− r1)(x− r2)
Pa(G1, x)Pa(G2, x).

Theorem 2. [21] There exists a pair of equienergetic graphs of order n for all
n ≥ 9.

Lemma 1. [13] Let G be a bipartite graph and Gσ be an orientation of G. If every
even cycle is oriented uniformly then Sp(Gσ) = iSp(G).

Lemma 2. [7] If M,N,P , and Q are matrices with M being a non-singular
matrix, then ∣∣∣∣ M N

P Q

∣∣∣∣ = |M ||Q− PM−1N |.
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An even cycle C of length 2k in Gσ is said to be oddly oriented (respectively,

evenly oriented ) if it has odd (respectively, even) number of arcs in the direction

of routing. An even cycle C of length 2k in Gσ is said to be oriented uniformly

if C is evenly oriented, when k is even and oddly oriented, when k is odd.

Theorem 3. Let G1 and G2 be bipartite equienergetic graphs. If every cycle of
Gσ11 and Gσ22 are oriented uniformly, then Gσ11 and Gσ22 are skew-equienergetic.

Proof. Since Gσ1
1 and Gσ2

2 are oriented uniformly by Lemma 1, we have

Sp(Gσ1
1 ) = iSp(G1) and Sp(Gσ2

2 ) = iSp(G2). Hence ε(G1) = εs(G
σ1
1 ) and

ε(G2) = εs(G
σ2
2 ). Now, as G1 and G2 are equienergetic graphs we see that

εs(G
σ1
1 ) = εs(G

σ2
2 ).

Corollary 1. There exists a pair of skew-equienergetic digraphs of order 2n for
all n ≥ 9.

Proof. From Theorem 2, there exists a pair of graphs G1 and G2, both of

order n (n ≥ 9), with ε(G1) = ε(G2). It is easy to see that the duplication

graph D(Gi) (i=1,2) of Gi is bipartite and ε(D(Gi)) = 2ε(Gi). So D(G1) and

D(G2) are equienergetic bipartite graphs. Now let Ui, Vi be the partition sets

of D(Gi). Consider D(Gi)
σi , where σi is an orientation such that all arcs are

from Ui to Vi. Clearly D(G1)σ1 and D(G2)σ2 are uniformly oriented. Hence

by the above theorem D(G1)σ1 and D(G2)σ2 are skew-equienergetic.

Ramane et al. proved the following theorem by using elementary row and

column operations on determinants [20]. Here we use matrix theory and give

an alternative proof (more compact) for the same.

Theorem 4. [20] Let Gσ11 and Gσ22 be two digraphs of order n and m, respectively.
Suppose that the in-vertex degree of each vertex v of Gσ11 (respectively, Gσ22 ) is same
as the out-vertex degree of v, then

Ps(G
σ1
1 → Gσ22 , x) =

x2 + nm

x2
Ps(G

σ1
1 , x)Ps(G

σ2
2 , x).

Proof. We have

S(Gσ1
1 → Gσ2

2 ) =

[
S(Gσ1

1 ) J

−JT S(Gσ2
2 )

]
,

where J is the n×m matrix with all its entries are 1.

Since S(Gσ1
1 ) and S(Gσ1

1 ) are normal matrices, they are unitarily diago-

nalizable. Now, as S(Gσ1
1 )1 = 0 and S(Gσ2

2 )1 = 0, we have S(Gσ1
1 ) =
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U1D1U
∗
1 and S(Gσ2

2 ) = U2D2U
∗
2 , where U1 and U2 are unitary matrix

having its first column vector as
1√
n

(1, 1, . . . 1) and
1√
m

(1, 1, . . . 1), re-

spectively. Also D1 = diag(λ1(Gσ1
1 ), λ2(Gσ1

1 ), . . . , λn(Gσ1
1 )) and D2 =

diag(λ1(Gσ2
2 ), λ2(Gσ2

2 ), . . . , λm(Gσ2
2 )). Hence the above equation can be rewrit-

ten as follows.

S(Gσ1
1 → Gσ2

2 ) =

[
U1D1U

∗
1 J

−JT U2D2U
∗
2

]
=

[
U1 0

0 U2

] [
D1 U∗1 JU2

−U∗2 JTU1 D2

] [
U∗1 0

0 U∗2

]
=

[
U1 0

0 U2

][
D1

√
nmJ ′

−
√
nmJ ′

T

D2

] [
U∗1 0

0 U∗2

]
,

where J ′ is the matrix obtained from J by replacing every entry by 0, except

the first diagonal entry. So, by above equation we see that

|xI − S(Gσ1
1 → Gσ2

2 )| =

∣∣∣∣∣ xIn −D1 −
√
nmJ ′√

nmJ ′
T

xIm −D2

∣∣∣∣∣ .
Now by applying Lemma 2 to the above equation, we obtain the following.

|xI − S(Gσ1
1 → Gσ2

2 )| = |xIn −D1||xIm −D2 + nmJ ′J ′
T

(xIn −D1)−1|

=
(x2 + nm)

x2
|xIn −D1||xIm −D2|.

Thus

Ps(G
σ1
1 → Gσ2

2 , x) =
x2 + nm

x2
Ps(G

σ1
1 , x)Ps(G

σ2
2 , x).

As an immediate consequence of the above theorem, we have the following

corollary.

Corollary 2. [20] Let Gσ11 and Gσ22 be two digraphs of order n and m, respectively.
Suppose that the in-vertex degree of each vertex v of Gσ11 (respectively, Gσ22 ) is same
as the out-vertex degree of v, then

εs(G
σ1
1 → Gσ22 , x) = εs(G

σ1
1 , x) + εs(G

σ2
2 , x) + 2

√
nm.
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In the following remark we give a method to construct a digraph Gγ such that

in−degG1
γ (v) = out−degG1

γ (v), for all vertex v in G1
γ , starting with a digraph

Gσ.

Remark 1. Let Gσ be a digraph with vertex set V (Gσ) = {v1, v2, . . . , vn}. Let
D∗(Gσ) be the digraph with vertex set V (D∗(Gσ)) = {v1, v2, . . . , vn, v′1, v′2, . . . , v′n}
and arc set defined as follows.

a. (vi, vj) is an arc in D∗(Gσ) if (vi, vj) is an arc in Gσ.

b. (vi, v
′
j) is an arc in D∗(Gσ) if (vj , vi) is an arc in Gσ.

c. (v′i, v
′
j) is an arc in D∗(Gσ) if (vi, vj) is an arc in Gσ.

Then in−degD∗(Gσ)(v) = out−degD∗(Gσ)(v), for all vertex v in D∗(Gσ).

As an application of Theorem 4, we construct a digraph Gσ of order n (n ≥ 4)

such that ε(G) < εs(G
σ).

Corollary 3. Let Gi (i = 1, 2) be ri-regular graphs of order ni together with
an orientation σi such that ε(Gi) = εs(G

σi
i ), r1 + r2 6= 0 and in−degGσii (v) =

out−degGσii (v) for all vertices v in Gσii . Then

ε(G1 ∨G2) < εs(G
σ1
1 → Gσ22 ).

Proof. By our hypothesis and Theorems 1 and 4, we obtain

εs(G
σ1
1 → Gσ2

2 )− ε(G1 ∨G2) = 2
√
n1n2 + r1 + r2 −

√
(r1 − r2)2 + 4n1n2 > 0.

This completes the proof.

Example 1. Let Gσ be a digraph as shown in Figure 1. Then

ε(G ∨Km) < εs(G
σ → Km),

for all m ≥ 1.

-

?
6

�

u u
uu

Fig. 1. 4-cycle together with an orientation σ.

Gσ :
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The following theorems extends the class of digraphs Gσ1
1 → Gσ2

2 , whose spec-

trum is completely known.

Let Bσii := Bσii (Ui,Wi) (i = 1, 2) be bipartite digraphs such that |Ui| = |Wi| =

ni and S(Bσii (Ui,Wi)) =

[
0 Xi

−Xi 0

]
, where Xi is a (0,1)-ni × ni matrix and

Xi1 = ri1.

Theorem 5. The characteristic polynomial of Bσ11 → Bσ22 is

Ps(B
σ1
1 → Bσ22 , x) =

x4 + (r21 + r22 + 4n1n2)x2 + r21r
2
2

(x2 + r21)(x2 + r22)
Ps(B

σ1
1 , x)Ps(B

σ2
2 , x).

Proof. We have

S(Bσ1
1 → Bσ2

2 ) =



0 X1

−X1 0

J

−JT
0 X2

−X2 0


,

where J is the 2n1×2n2 matrix whose entries are all 1. Denote the eigenvalues

of Xi by λij , 1 ≤ j ≤ ni. Using the fact that Xi (i = 1, 2) are orthogonally

diagonalizable and Xi1 = ri1, one can easily see that the above matrix is

similar to 

0 D1

−D1 0

[
1 1

1 1

]
⊗√n1n2J ′

[
1 1

1 1

]
⊗−√n1n2J ′

T

0 D2

−D2 0


,

where J ′ is the n1×n2 matrix having its first diagonal entry as 1 and remaining

entries as 0 and D1 = diag(r1, λ12, . . . , λ1n1) and D2 = diag(r2, λ22, . . . , λ2n2).
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So,

|xI − S(Bσ1
1 → Bσ2

2 )| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xIn1
−D1

D1 xIn1

[
1 1

1 1

]
⊗−√n1n2J ′

[
1 1

1 1

]
⊗√n1n2J ′

T

xIn2 −D2

D2 xIn2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Applying Lemma 2 to the above determinant we obtain

|xI − S(Bσ1
1 → Bσ2

2 )| =
∣∣∣∣ xIn2 −D2

D2 xIn2

∣∣∣∣×∣∣∣∣∣∣∣
 xIn1

−D1

D1 xIn1

+ n1n2

[
1 1

1 1

]
⊗ J ′

 xIn2
−D2

D2 xIn2

−1 [ 1 1

1 1

]
⊗ J ′

T

∣∣∣∣∣∣∣. (1)

Now, since

[
x2In2

+D2
2 0

0 x2In2
+D2

2

] [
1 1

1 1

]
⊗ J ′

T

=

[
x2 + r22 x2 + r22
x2 + r22 x2 + r22

]
⊗ J ′

T

,

we have[
1 1

1 1

]
⊗ J ′

 xIn2
−D2

D2 xIn2

−1 [ 1 1

1 1

]
⊗ J ′T =

2x

(x2 + r22)

[
1 1

1 1

]
⊗ J ′J ′T .

Hence the equation (1) can be rewritten as

|xI − S(Bσ1
1 → Bσ2

2 )| =

∣∣∣∣∣∣
xIn2

−D2

D2 xIn2

∣∣∣∣∣∣
×

∣∣∣∣∣∣
 xIn1

−D1

D1 xIn1

+
2n1n2x

(x2 + r22)

[
1 1

1 1

]
⊗ J ′J ′

T

∣∣∣∣∣∣
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=

∣∣∣∣∣∣
xIn2

−D2

D2 xIn2

∣∣∣∣∣∣×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x+
2n1n2x

(x2 + r22)
0 −r1 +

2n1n2x

(x2 + r22)
0

0 xIn1−1 0 −D′1

r1 +
2n1n2x

(x2 + r22)
0 x+

2n1n2x

(x2 + r22)
0

0 D′1 0 xIn1−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where D′1 = diag(λ12, λ13, . . . , λ1n1). Again applying Lemma 2 to the above

equation, we see that

|xI−S(Bσ1
1 → Bσ2

2 )| = x4 + (r21 + r22 + 4n1n2)x2 + r21r
2
2

(x2 + r21)(x2 + r22)
Ps(B

σ1
1 , x)Ps(B

σ2
2 , x).

The following theorem follows immediately from the above theorem.

Theorem 6. The skew-energy of the digraph Bσ11 → Bσ22 is given by

√
2
(√

r12 + r22 + 4n1n2 −A+
√
r12 + r22 + 4n1n2 +A

)
+εs(B

σ1
1 ) + εs(B

σ2
2 )− 2(r1 + r2),

where A =
√
r14 − 2 r12r22 + 8 r12n1n2 + r24 + 8 r22n1n2 + 16n2

2n1
2.

As a consequence of the above theorem we have the following corollary, which

gives us a method to construct skew-equienergetic digraphs.

Corollary 4. Let Bσii := Bσii (Ui,Wi) (i = 1, 2) be skew-equienergetic bipartite

digraphs such that |Ui| = |Wi| = n and S(Bσi1 (Ui,Wi)) =

[
0 Xi
−Xi 0

]
, where Xi

is a (0,1)-matrix of order n and Xi1 = r11. Let Bσii := Bσi1 (Ui,Wi) (i = 3, 4) be
skew-equienergetic bipartite digraphs such that |Ui| = |Wi| = m and S(Bσi1 (Ui,Wi)) =[

0 Xi
−Xi 0

]
, where Xi is a (0,1)-matrix of order m and Xi1 = r21. Then

εs(B
σ1
1 → Bσ33 ) = εs((B

σ2
2 → Bσ44 ).
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Remark 2. The above corollary enables us to construct skew-equienergetic di-
graphs via equienergetic graphs. In particular, if G1 and G2 are equienergetic regular
graphs of same degree, also if G3 and G4 are equienergetic regular graphs of same
degree, then

εs((D
σ1(G1)→ Dσ3(G3)) = εs((D

σ2(G2)→ Dσ4(G4)),

where Dσi(Gi), (i = 1, 2, 3, 4) is the duplication graph together with partition sets
Ui, Wi and an orientation σi such that all arcs are from Ui to Wi.

As the proof of the following theorem is analogous to that of Theorem 5 we

omit the details.

Theorem 7. Let Gσ be a digraph of order m such that in−degGσ (v) =
out−degGσ (v), for all vertices v in Gσ. Then

Ps(B
σ1
1 → Gσ, x) =

x2 + r21 + 2mn1

(x2 + r21)
Ps(B

σ1
1 , x)Ps(G

σ, x),

and

εs(B
σ1
1 → Gσ) = 2

√
r21 + 2n1m+ εs(B

σ1
1 ) + εs(G

σ)− 2r1.

The following result follows immediately from the above theorem.

Corollary 5. Let Bσii := Bσii (Ui,Wi), (i = 1, 2) be skew-equienergetic bipartite

digraphs such that |Ui| = |Wi| = n and S(Bσi1 (Ui,Wi)) =

[
0 Xi
−Xi 0

]
, where Xi is a

(0,1)-matrix of order n and Xi1 = r11. Also let Gγ11 and Gγ22 be skew -equienergetic
digraphs such that in-vertex degree of each vertex in Gγ11 (respectively, Gγ22 ) is same
as the out-vertex degree. Then

εs(B
σ1
1 → Gγ11 ) = εs(B

σ2
2 → Gγ22 ).

Corollary 6. There exists a pair of skew-equienergetic digraphs of order 2m, for
all m ≥ 3.

Proof. Let Cσ be a 3-cycle as depicted in Figure 2.

	
I

6

-

x
x x

Fig. 2. 3-cycle together with an orientation σ.
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Consider the digraphs D(Cσ) and D∗(Cσ). Clearly S(D(Cσ)) =

[
0 S(Cσ)

S(Cσ) 0

]
and S(D∗(Cσ)) =

[
S(Cσ) −S(Cσ)
−S(Cσ) S(Cσ)

]
. Hence the skew-adjacency spectrum of

D(Cσ) and D∗(Cσ) are (±
√

3i,±
√

3i, 0, 0) and (±2
√

3i, 0, 0, 0, 0), respectively. And
so

εs(D(Cσ)) = εs(D
∗(Cσ)) = 2εs(C

σ) = 4
√

3.

Thus the digraphs D(Cσ) and D∗(Cσ) are skew-equienergetic of order 6. Moreover
in-vertex degree of each vertex in D(Cσ) (respectively, D∗(Cσ)) is same as the out-
vertex degree. Therefore by above corollary we see that the digraphs mKγ

2 → D(Cσ)
and mKγ

2 → D∗(Cσ) are skew-equienergetic for all m ≥ 1. This completes the
proof.

3. Some new joins of digraphs

Let Gσ1
1 and Gσ2

2 be two bipartite digraphs with partition sets U1, V1 and U2,

V2, respectively. We now define new join operations as follows

Definition 1. The join-1 of digraphs Gσ11 and Gσ22 , denoted by Gσ11 j1G
σ2
2 is a

digraph obtained from Gσ11 and Gσ22 , by adding arcs from each vertex in U1 to every
vertex in U2 and V2.

Definition 2. The join-2 of digraphs Gσ11 and Gσ22 , denoted by Gσ11 j2G
σ2
2 is a

digraph obtained from Gσ11 and Gσ22 , by adding arcs from each vertex in U1 (respec-
tively, V1) to every vertex in U2, (respectively, V2).

Definition 3. The join-3 of digraphs Gσ11 and Gσ22 , denoted by Gσ11 j3G
σ2
2 is a

digraph obtained from Gσ11 and Gσ22 , by adding arcs from each vertex in U1 to every
vertex in U2.

Definition 4. The join-4 of digraphs Gσ11 and Gσ22 , denoted by Gσ11 j4G
σ2
2 is a

digraph obtained from Gσ11 and Gσ22 , by adding arcs from each vertex in U1 to every
vertex in U2 and V2, also adding arcs from each vertex in V1 to every vertex in V2.

Definition 5. Let Hσ be a digraph. The join-5 of digraphs Gσ11 and Hσ, denoted
by Gσ11 j5G

σ2
2 is a digraph obtained by Gσ11 and Hσ, by adding arcs from each vertex

in U1 to every vertex in Hσ.

As the proof of the following theorem is similar to that of Theorem 5, we omit

the details.
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Theorem 8. Let Bσii := Bσii (Ui,Wi) (i = 1, 2) be bipartite digraphs such that

|Ui| = |Wi| = ni and S(Bσii (Ui,Wi)) =

[
0 Xi
−XT

i 0

]
, where Xi is either a (0,1)-

symmetric matrix of order ni or a (0,1,-1)-skew-symmetric matrix of order ni and
Xi1 = ri1. Let Hσ be a digraph of order m such that the in-vertex degree of each
vertex in Hσ is same as the out-vertex degree. Then

1. Ps(B
σ1
1 j1B

σ2
2 , x) =

x4 + (r21 + r22 + 2n1n2)x2 + r21r
2
2

(x2 + r21)(x2 + r22)
Ps(B

σ1
1 , x)Ps(B

σ2
2 , x).

2. Ps(B
σ1
1 j2B

σ2
2 , x) =

x4 + (r21 + r22 + 2n1n2)x2 + r21r
2
2 − 2r1r2n1n2 + n2

1n
2
2

(x2 + r21)(x2 + r22)

× Ps(Bσ11 , x)Ps(B
σ2
2 , x).

3. Ps(B
σ1
1 j3B

σ2
2 , x) =

x4 + (r21 + r22 + n1n2)x2 + r21r
2
2

(x2 + r21)(x2 + r22)
Ps(B

σ1
1 , x)Ps(B

σ2
2 , x).

4. Ps(B
σ1
1 j4B

σ2
2 , x) =

x4 + (r21 + r22 + 3n1n2)x2 + r21r
2
2 − 2r1r2n1n2 + n2

1n
2
2

(x2 + r21)(x2 + r22)
× Ps(Bσ11 , x)Ps(B

σ2
2 , x).

5. Ps(B
σ1
1 j5H

σ, x) =
x2 + r21 + n1m

(x2 + r21)
Ps(B

σ1
1 , x)Ps(H

σ, x).

As a consequence of the above theorem, we obtain the following result.

Theorem 9. Let Bσii := Bσii (Ui,Wi) (i = 1, 2) be bipartite digraphs such

that |Ui| = |Wi| = ni and S(Bσii (Ui,Wi)) =

[
0 Xi
−Xi 0

]
, where Xi is either a

(0,1)-symmetric matrix of order ni or a (0,1,-1)-skew-symmetric matrix of order ni
and Xi1 = ri1. Let Hσ be a digraph of order m such that the in-vertex degree of each
vertex in Hσ is same as the out-vertex degree. Then εs(B

σ1
1 j1B

σ2
2 ), εs(B

σ1
1 j2B

σ2
2 ),

εs(B
σ1
1 j3B

σ2
2 ), εs(B

σ1
1 j4B

σ2
2 ) and εs(B

σ1
1 j5H

σ) are respectively

1.
√

2
(√
r12 + r22 + 2n1n2 −A1 +

√
r12 + r22 + 2n1n2 +A1

)
+ εs(B

σ1
1 ) + εs(B

σ2
2 )− 2(r1 + r2),

where

A1 =
√
r14 − 2 r12r22 + 4 r12n1n2 + r24 + 4 r22n1n2 + 4n2

2n1
2.

2.
√

2
(√
r12 + r22 + 2n1n2 −A2 +

√
r12 + r22 + 2n1n2 +A2

)
+ εs(B

σ1
1 )

+ εs(B
σ2
2 )− 2(r1 + r2),

where

A2 =
√
r14 − 2 r12r22 + 4 r12n1n2 + r24 + 4 r22n1n2 + 8 r1r2n1n2.
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3.
√

2
(√
r12 + r22 + n1n2 −A3 +

√
r12 + r22 + n1n2 +A3

)
+ εs(B

σ1
1 ) + εs(B

σ2
2 )− 2(r1 + r2),

where

A3 =
√
r14 − 2 r12r22 + 2 r12n1n2 + r24 + 2 r22n1n2 + n2

2n1
2.

4.
√

2
(√
r12 + r22 + 3n1n2 −A4 +

√
r12 + r22 + 3n1n2 +A4

)
+ εs(B

σ1
1 ) + εs(B

σ2
2 )− 2(r1 + r2),

where

A4 =
√
r14 − 2 r12r22 + 6 r12n1n2 + r24 + 6 r22n1n2 + 8 r1r2n1n2 + 5n2

1n
2
2.

5. 2
√
r21 + n1m+ εs(B

σ1
1 ) + εs(H

σ)− 2r1.

The following corollary follows immediately by the above theorem.

Corollary 7. Let Bσii := Bσii (Ui,Wi) (i = 1, 2) be skew-equienergetic bipartite

digraphs such that |Ui| = |Wi| = n and S(Bσi1 (Ui,Wi)) =

[
0 Xi
−Xi 0

]
, where Xi

is either a (0,1)-symmetric matrix of order ni or a (0,1,-1)-skew-symmetric matrix
of order n and Xi1 = r11. Let Bσii := Bσi1 (Ui,Wi) (i = 3, 4) be skew-equienergetic

bipartite digraphs such that |Ui| = |Wi| = m, S(Bσi1 (Ui,Wi)) =

[
0 Xi
−Xi 0

]
, where

Xi is either a (0,1)-symmetric matrix of order ni or a (0,1,-1)-skew-symmetric matrix
of order m and Xi1 = r21. Also let Hγ1

1 and Hγ2
2 be skew-equienergetic digraphs

such that in-vertex degree of each vertex in Hγ1
1 (respectively, Hγ2

2 ) is same as the
out-vertex degree. Then

1. εs(B
σ1
1 j1B

σ3
3 ) = εs(B

σ2
2 j1B

σ4
4 ).

2. εs(B
σ1
1 j2B

σ3
3 ) = εs(B

σ2
2 j2B

σ4
4 ).

3. εs(B
σ1
1 j3B

σ3
3 ) = εs(B

σ2
2 j3B

σ4
4 ).

4. εs(B
σ1
1 j4B

σ3
3 ) = εs(B

σ2
2 j4B

σ4
4 ).

5. εs(B
σ1
1 j5H

γ1
1 ) = εs(B

σ2
2 j5H

γ2
2 ).

Corollary 8. There exists a pair of skew-equienergetic digraphs of order 2m, for
all m ≥ 3.

Proof. The digraphs D(Cσ) and D∗(Cσ) are skew-equienergetic of order 6. Also,
the in-vertex degree of each vertex inD(Cσ) (respectively, D∗(Cσ)) is same as the out-
vertex degree. Therefore by above corollary we see that the digraphs mKγ

2 j5D(Cσ)
and mKγ

2 j5D
∗(Cσ) are skew-equienergetic for all m ≥ 1. This completes the proof.
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Let Gσ be digraph with vertex set V := V (Gσ) and arc set E := E(Gσ). We

now define Mycielskian digraph of a digraph as follows.

Definition 6. The Mycielskian digraph µ(Gσ) is the digraph with the vertex set
V (µ(G)) = V ∪ V ′ ∪ {u}, where V ′ = {x′ : x ∈ V } and the arc set E(µ(G)) =
E ∪ {(x, y′) : (x, y) ∈ E} ∪ {(x′, u) : x′ ∈ V ′}.

Theorem 10. Let Gσ be a digraph on n vertices such that the in- vertex degree
of each vertex is same as the out-vertex degree. Then the energy of µ(Gσ) is given by

εs(µ(Gσ)) = 2
√
n+
√

5εs(G
σ).

Proof. With suitable labelling of the graph µ(Gσ), the skew adjacency matrix

of µ(Gσ) can be formulated as follows.

S(µ(Gσ)) =

 0 S(Gσ) e

S(Gσ) S(Gσ) 0

−eT 0 0

 ,
where e is the column vector of size n with all its entries are 1. So,

|xI − S(µ(Gσ))| =

∣∣∣∣∣∣
xIn −S(Gσ) −e
−S(Gσ) xIn − S(Gσ) 0

eT 0 x

∣∣∣∣∣∣ .
Now using Lemma 2, we see that

|xI − S(µ(Gσ))| = x

∣∣∣∣ xIn + (J/x) −S(Gσ)

−S(Gσ) xIn − S(Gσ)

∣∣∣∣ ,
where J is the square matrix of order n with all its entries are 1. Using the

fact that S(Gσ) is unitarily diagonalizable, one can rewrite the above equation

as follows.

|xI − S(µ(Gσ))| = x

∣∣∣∣ xIn + (nJ ′/x) −D(Gσ)

−D(Gσ) xIn −D(Gσ)

∣∣∣∣ ,
where D = (λ1(Gσ) = 0, λ2(Gσ), . . . , λn(Gσ)) and J ′ is the n × n matrix

obtained by replacing all the entries of J by 0, expect the first diagonal entry.

Again applying Lemma 2 to the above equation, we have

|xI − S(µ(Gσ))| = x|xIn −D(Gσ)||xIn + (nJ ′/x) + (xIn −D(Gσ))−1D2(Gσ)|

= x(x2 + n)

n∏
i=2

(x2 − λi(Gσ)x− λ2i (Gσ)).
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Thus the spectrum of µ(Gσ) is

{
0,±i

√
n, λ2(Gσ)

(
1±
√

5

2

)
, . . . , λn(Gσ)

(
1±
√

5

2

)}
.

Hence

εs(µ(Gσ)) = 2
√
n+

(∣∣∣∣∣1 +
√

5

2

∣∣∣∣∣+

∣∣∣∣∣1−
√

5

2

∣∣∣∣∣
)

(|λ2(Gσ)|+ . . .+ |λn(Gσ)|)

= 2
√
n+
√

5εs(G
σ).

Corollary 9. Let Gσ and Hγ be skew-equienergetic digraphs on n vertices such
that the in-vertex degree of each vertex in Gσ (respectively Hγ) is same as the out-
vertex degree. Then

εs(µ(Gσ)) = εs(µ(Hγ)).

Theorem 11. Let Bσ11 := Bσ11 (U1,W1) be a bipartite digraph such that |U1| =

|W1| = n and S(Bσ11 (U1,W1)) =

[
0 X1

−X1 0

]
, where X1 is a (0,1) matrix of order

n and X11 = r11. Then

εs(µ(Bσ11 )) =
√

2

[√
3r21 + 2n+A+

√
3r21 + 2n−A

]
+
√

5εs(B
σ1
1 ),

where A =
√

5r41 − 4r21n+ 4n2.

Corollary 10. Let Bσii := Bσii (Ui,Wi) (i = 1, 2) be skew-equienergetic bipartite

digraph such that |Ui| = |Wi| = n and S(Bσii (Ui,Wi)) =

[
0 Xi
−Xi 0

]
, where Xi is a

(0,1) matrix of order n and Xi1 = r11. Then

εs(µ(Bσ11 )) = εs(µ(Bσ22 )).
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