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Abstract: The average distance of a vertex v of a connected graph G is

the arithmetic mean of the distances from v to all other vertices of G. The
proximity π(G) and the remoteness ρ(G) of G are defined as the minimum and

maximum, respectively, average distance of the vertices of G. In this paper
we investigate the difference between proximity or remoteness and the classical

distance parameters diameter and radius. Among other results we show that

in a graph of order n and minimum degree δ the difference between diameter
and proximity and the difference between radius and proximity cannot exceed

9n
4(δ+1)

+ c1 and 3n
4(δ+1)

+ c2, respectively, for constants c1 and c2 which depend

on δ but not on n. These bounds improve bounds by Aouchiche and Hansen [3]

in terms of order alone by about a factor of 3
δ+1

. We further give lower bounds

on the remoteness in terms of diameter or radius. Finally we show that the

average distance of a graph, i.e., the average of the distances between all pairs
of vertices, cannot exceed twice the proximity.

Keywords: proximity; remoteness; diameter; radius; average distance; Wiener
index.
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1. Introduction

Let G be a simple onnected finite graph representing a transportation network.

An important indicator for the suitability of a vertex v as a location for a

facility is the expected distance between v and a randomly chosen vertex, i.e.,

the average of the distances between v and all other vertices. We define the
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average distance σ(v) of v as the arithmetic mean of the distances from v to

all other vertices,i.e., if G has n vertices then

σ(v) =
1

n− 1

∑
w∈V (G)−{v}

dG(v, w),

where dG(v, w) is the usual distance between v and w. The proximity π(G)

and remoteness ρ(G) of a connected graph G are defined as the smallest and

the largest, respectively, of the average distances of all vertices, i.e.,

π(G) = min
v∈V (G)

σ(v), ρ(G) = max
v∈V (G)

σ(v).

Informally, the proximity and the remoteness of a graph describe the distance

from a most central and from a least central vertex to a typical vertex.

Zelinka [12], and independently Aouchiche and Hansen [3] showed that in a

connected graph of order n, the proximity and the remoteness are bounded

from above by approximately n
4 and n

2 . Aouchiche and Hansen [3] showed

that the difference between remoteness and proximity cannot exceed a value

of approximately n
4 . The author of the present paper showed in [6] that for

graphs of minimum degree δ, where δ ≥ 2, these three bounds can be improved

approximately by a factor of 3
δ+1 . For more results on proximity and remoteness

in graphs see [1, 2, 4, 8, 10, 11].

In this paper, we investigate how proximity and remoteness relate to the clas-

sical distance parameters diameter, radius, and average distance. More specif-

ically, we give upper and lower bounds on the difference between diameter and

proximity and the difference between radius and proximity in terms of order

and minimum degree, thus improving bounds in terms of order alone due to

Aouchiche and Hansen [3] by about a factor of 3
δ+1 . We also present lower

bounds on the remoteness in terms of diameter and radius, respectively. Re-

lating the proximity to the average distance, we also show that the average

distance of a graph is less than twice its proximity.

The notation in this paper is as follows. By G we always denote a finite, simple,

connected graph on n(G) vertices with vertex set V (G). For a vertex v of G,

NG(v) is the neighbourhood of v, i.e., the set of vertices adjacent to v, andNG[v]

is the closed neighbourhood of v, i.e., the set NG(v) ∪ {v}. For A ⊆ V (G) we

define N [A] =
⋃
v∈AN [v]. The degree degG(v) of v is the number of vertices in

NG(v), and the minimum degree δ(G) of G is the smallest of the degrees of the

vertices of G. The distance between two vertices u and v, i.e., the minimum

length of a (u, v)-path, is denoted by dG(u, v). The eccentricity eccG(v) of

v is the distance from v to a vertex farthest from v. The largest and the

smallest of the eccentricities of the vertices of G is the diameter and the radius,
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respectively, denoted by diam(G) and rad(G). The average distance µ(G) is

defined as
(
n
2

)−1∑
{u,v}⊆V d(u, v). The average distance is closely related to the

Wiener index, which is defined as
∑
{u,v}⊆V d(u, v). If the graph is understood

from the context, then we sometimes omit the argument or subscript G.

For a vertex v and a set A ⊆ V , we define σ(v,A) as the sum of the distances

from v to all vertices of A. Instead of σ(v, V (G)) we usually write σ(v).

By Kn we mean the complete graph on n vertices. For disjoint graphs

G1, G2, . . . , Gk the sequential sum G1 + G2 + · · · + Gk is the graph obtained

from the union of G1, G2, . . . , Gk by joining every vertex of Gi to every vertex

of Gi+1 for i = 1, 2, . . . , k − 1. If in a sequential sum a pattern is repeated `

times, then we indicate this with square brackets and the exponent `; for exam-

ple G1+[G2+G3]`+G4 stands for G1+G2+G3+G2+G3+ · · ·+G2+G3+G4,

where the pattern G2 +G3 appears ` times.

2. Results

2.1. Proximity and remoteness vs diameter

Aouchiche and Hansen [3] gave the following bound on the difference between

the proximity and the diameter.

Theorem 1. ([3]) Let G be a connected graph of order n. Then

diam(G)− π(G) ≤
{

3n−5
4
− 1

4n−4
if n is even,

3n−5
4

if n is odd.

Equality holds if and only if G is a path.

The diameter of a graph of order n is at most n − 1, and the proximity is at

most n+1
4 for odd n and n+1

4 + 1
4(n−1) for even n (see [3, 12]). For graphs of

given minimum degree both bounds can be improved by about a factor of 3
δ+1 .

This was observed, for example, by Erdös, Pach, Pollack and Tuza [9] for the

diameter, and by Dankelmann [6] for the proximity.

Theorem 2. ([9]) Let G be a connected graph of order n and minimum degree δ,
where δ ≥ 2. Then

diam(G) ≤ 3n

δ + 1
− 1,

and this bound is sharp, apart from an additive constant.
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Theorem 3. ([6]) Let G be a connected graph of order n and minimum degree δ,
where δ ≥ 2. Then

π(G) ≤ 3n

4(δ + 1)
+ 3,

and this bound is sharp, apart from an additive constant.

It is reasonable to ask if the bound on the difference between diameter and

proximity in Theorem 1 can also be improved by about a factor of 3
δ+1 . The

following theorem shows that this is indeed the case.

Theorem 4. Let G be a connected graph of order n and minimum degree δ, where
n ≥ 20 and δ ≥ 2. Then

diam(G)− π(G) ≤ 9

4(δ + 1)
n+

3

4
δ. (1)

Proof: Let d = diam(G), let v0 and vd be two vertices of G at distance d, and

let P : v0, v1, . . . , vd be a shortest path between them. For i = 0, 1, . . . , d let

Ai = {w1
i , w

2
i , . . . , w

δ
i } be a set of δ neighbours of vi, and for i = 0, 1, . . . , dd2e

let Bi = {vi, vd−i} ∪ Ai ∪ Ad−i. We now fix a vertex v with σ(v) = π(G). By

the triangle-inequality we get d(v, vi) + d(v, vd−i) ≥ d(vi, vd−i) = d − 2i, and

thus d(v, wi) + d(v, wd−i) ≥ d(vi, vd−i)− 2 = d− 2i− 2, for every wi ∈ NG(vi)

and wd−i ∈ NG(vd−i). Hence,

σ(v,Bi) = d(v, vi) + d(v, vd−i) +

δ∑
j=1

(
d(v, wji ) + d(v, wjd−i)

)
≥ (δ + 1)(d− 2i− 2) + 2. (2)

Clearly, the sets Ai and Aj are disjoint whenever |i − j| ≥ 3 since otherwise

there exists a path of length at most two between vi and vj , and replacing the

(vi−vj)-section of P with this path yields a shorter (x, y)-path, a contradiction.

From now on we may assume that d ≥ 8 since for δ ≥ 2 and n ≥ 20 the right

hand side of (1) is at least 7. Let d = 6a+ b, where a, b ∈ N0 with 3 ≤ b ≤ 8.

Then the sets B3i, i = 0, 1, 2, . . . , a are pairwise disjoint. Therefore,

σ(v) ≥
a∑
i=0

σ(v,B3i)

≥
a∑
i=0

(
(δ + 1)(d− 6i− 2) + 2

)
= (a+ 1)(δ + 1)(d− 3a− 2) + 2(a+ 1).
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Now d−8
6 ≤ a ≤

d−3
6 . Straightforward calculus shows that the function f(a) =

(a+1)(δ+1)(d−3a−2)+2(a+1) attains its minimum in the interval [d−86 , d−36 ]

for a = d−8
6 . Substituting this value for a yields

σ(v) ≥ 1

12
(δ + 1)(d− 2)(d+ 4) +

1

3
(d− 2).

Now π(G) = σ(v) = σ(v)
n−1 . Replacing (d− 2)(d+ 4) by (d+ 1)2 − 9 yields

π(G) ≥ δ + 1

12(n− 1)
(d+ 1)2 − 9

12
(δ + 1) +

1

3(n− 1)
(d− 2)

>
δ + 1

12n
(d+ 1)2 − 3

4
(δ + 1) +

d− 2

3n
.

The difference between the diameter and the proximity is therefore bounded

as follows.

d− π(G) < d− δ + 1

12n
(d+ 1)2 +

3

4
(δ + 1)− d− 2

3n
. (3)

Denote the right hand side of (3) by f(d). Making use of the fact that Theorem

2 implies that (d+ 1)(δ + 1) ≤ 3n, we obtain

f ′(d) = 1− (δ + 1)(d+ 1)

6n
− 1

3n
≥ 1− 3n

6n
− 1

3n
=

3n− 2

6n
> 0.

Hence the right hand side of (3) is increasing in d. By Theorem 2, d is at most
3n
δ+1 − 1. Substituting this value for d, we obtain, after simplification,

d− π(G) ≤ 9

4(δ + 1)
n+

3

4
(δ + 1)− 1− 1

δ + 1
+

1

n
≤ 9

4(δ + 1)
n+

3

4
δ,

as desired. 2

In the following example we construct an infinite family of graphs which shows

that Theorem 1 and some of the bounds presented later in this paper are sharp,

apart from an additive constant.

Example 1. For given k, δ ∈ N with k, δ ≥ 3 let

Gk,δ = K1 +Kδ +K1 + [K1 +Kδ−1 +K1]k−2 +K1 +Kδ +K1.



34 New bounds on proximity and remoteness in graphs

It is easy to verify that n(Gk,δ) = k(δ + 1) + 2, diam(Gk,δ) = 3k − 1 = 3
δ+1

n− δ+7
δ+1

,

and rad(Gk,δ) = 3b k
2
c+ 1 ≥ 3

2(δ+1)
n+ δ−2

δ+1
. Moreover, for large n and constant δ

π(Gk,δ) =
3

4(δ + 1)
n+

3

4(δ + 1)
+ o(1).

and

ρ(Gk,δ) =
3

2(δ + 1)
n− δ + 4

2(δ + 1)
+ o(1),

where o(1) stands for a term that approaches 0 as n tends to infinity.

For every fixed δ, the graphs Gk,δ for k, δ ≥ 3 form an infinite family of graphs

for which diam(Gk,δ)− π(Gk,δ) is within an additive constant of the bound in

Theorem 1. Indeed,

diam(Gk,δ)− π(Gk,δ) =
3

δ + 1
n− δ + 7

δ + 1
− 3

4(δ + 1)
n− 3

4(δ + 1)
+ o(1)

=
9n

4(δ + 1)
− 4δ + 31

4δ + 4
+ o(1),

as desired.

We now determine a sharp lower bound on the remoteness in terms of the

diameter. We use this bound to derive a generalisation of a bound on the

difference between diameter and remoteness in [3].

Proposition 1. Let G be a connected graph of order n and diameter d. Then

ρ(G) ≥ n

n− 1

d

2
,

and this bound is sharp for all n and d with n ≥ d+ 1 ≥ 3 for which nd is even.

Proof: Let u,w ∈ V be two vertices at distance d. Then d(u,w) ≤ d(u, v) +

d(v, w) for every vertex v of G. Hence

σ(u) + σ(w) =
∑
v∈V

(
d(u, v) + d(w, v)

)
≥ nd(u,w) = nd.

Hence

ρ(G) ≥ max{σ(u), σ(w)} ≥ 1

2(n− 1)

(
σ(u) + σ(w)

)
≥ n

n− 1

d

2
.
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and the desired bound follows.

The following graphs show that this bound is sharp. If d is even and n ≥ d+ 1,

then let

Hn,d = [K1]d/2 +Kn−d + [K1]d/2,

and if d is odd and n ≥ d+ 1 and n even, then let

Hn,d = [K1](d−1)/2 +K(n−d+1)/2 +K(n−d+1)/2 + [K1](d−1)/2.

It is easy to verify that

ρ(Hn,d) =
n

n− 1

d

2
,

and so the bound is sharp. 2

Corollary 1. Let G be a connected graph of diameter d. Then

ρ(G) >
1

2
d,

and the coefficient 1
2

of d is best possible.

Since for a connected graph of order n the diameter is at most n− 1, Corollary

1 implies that the difference diam(G) − ρ(G) cannot exceed n−2
2 , which was

observed first by Aouchiche and Hansen [3].

We note that the bound in Corollary 1 cannot be improved significantly for

graphs of given minimum degree δ. For example it is easy to verify that the

graphs Gk,δ attain equality in the bound of Proposition 1 for any k and δ with

k, δ ≥ 3.

2.2. Proximity and remoteness vs radius

Aouchiche and Hansen [3] gave the following bound on the difference between

the proximity and the radius.

Theorem 5. Let G be a connected graph of order n. Then

rad(G)− π(G) ≤
{ n−1

4
− 1

4(n−1)
if n is even,

n−1
4
− 1

n−1
if n is odd.

and this bound is sharp for all n.
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The radius of a connected graph of order n is bounded by bn2 c, and for graphs

of minimum degree δ this bound can be improved by about a factor of 3
δ+1 .

This was first observed by Erdös, Pach, Pollack and Tuza [9], who showed that

rad(G) ≤ 3n−9
2(δ+1) + 5. Their bound was improved slightly by Dlamini [7], see

also [5].

Theorem 6. ([7]) Let G be a connected graph of order n and minimum degree δ.
Then

rad(G) ≤ 3n

2(δ + 1)
+ 1,

and this bound is sharp apart from an additive constant.

This suggests that, like the bound on diam(G)−π(G), possibly also the bound

on rad(G)−π(G) in Theorem 5 can be improved by about a factor of 3
δ+1 . The

following theorem shows that this is indeed the case.

Theorem 7. Let G be a connected graph of order n and minimum degree δ, where
δ < n

4
− 1. Then

rad(G)− π(G) ≤ 3

4(δ + 1)
n+

8δ + 5

4(δ + 1)
,

and this bound is best possible, apart from an additive constant.

Proof: Let r = rad(G). If r ≤ 4 then the left hand side of the inequality in

the theorem is at most 3, while by δ < n
4 − 1 its right hand side is at least 3,

and the theorem holds in this case. Hence we may assume that r ≥ 5.

Fix a median vertex v0 of G. We show that

σ(v0) ≥ δ + 1

3

(
(r − 2)2 + 1

)
. (4)

Let R = ecc(v0). For i = 0, 1, . . . , R, let Ni be the set of vertices at distance

i from v0. For each i ∈ {1, 2, . . . , R} we choose a set Ai ⊆ Ni of maximum

cardinality with the property that any two vertices of Ai are at distance at

least three in G. For every vertex x ∈ N [Ai] we have d(v0, x) ≥ i − 1. Since

|N [Ai]| ≥ (δ + 1)|Ai|, we have
∑
x∈N [Ai]

d(v0, x) ≥ (δ + 1)(i − 1). Since every

vertex of G is in at most three of the sets N [Ai], i = 1, 2, . . . , R, we have

3σ(v0) ≥
R∑
i=1

(δ + 1)|Ai|.
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Case 1: R ≥ 1
2 (3r − 5).

Since |Ai| ≥ 1 for i = 1, 2, . . . , R, we have

3σ(v) ≥
R∑
i=1

(δ + 1)(i− 1) =
δ + 1

2
(R2 −R)

≥ (δ + 1)(
9

8
r2 − 9

2
r +

35

8
) > (δ + 1)

(
(r − 2)2 + 1

)
,

and (4) follows in Case 1.

Case 2: R ≤ 1
2 (3r − 6).

We first show that |Ai| ≥ 2, provided that i is not too close to 1 or R.

|Aj | ≥ 2 for all j with R− r + 3 ≤ j ≤ 2r −R− 3. (5)

Suppose, to the contrary, that there exists a j with R− r+ 3 ≤ j ≤ 2r−R− 3

such that |Aj | = 1. Fix a vertex vR ∈ NR, and let P : v0, v1, . . . , vR be a

shortest (v0, vR)-path in G. Consider vR−r+3. In order to prove (5) it suffices

to obtain the contradiction ecc(vR−r+3) ≤ r − 1 < rad(G). Indeed, let x be

a vertex of G with d(vR−r+3, x) = ecc(x). If d(v0, x) ≥ j, then let Q be a

shortest (v0, x)-path, and let wj be the unique vertex of Q in Nj . Then

d(vR−r+3, x) ≤ d(vR−r+3, vj) + d(vj , wj) + d(wj , x)

≤ (j −R+ r − 3) + 2 + (R− j)
= r − 1,

which is a contradiction. If d(v0, x) ≤ j − 1, then

d(vR−r+3, x) ≤ d(vR−r+3, v0) + d(v0, x)

≤ (R− r + 3) + j − 1

≤ R− r + 3 + 2r −R− 4

= r − 1,

again a contradiction. Hence (5) holds.

We now proceed to show that (4) holds in Case 2. Clearly, |Ai| ≥ 1 for i =

1, 2, . . . , R. By (5) we have |Ai| ≥ 2 for all i ∈ N with R−r+3 ≤ i ≤ 2r−R−3.
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Hence

3σ(v0) ≥
R∑
i=1

(δ + 1)(i− 1) +

2r−R−3∑
R−r+3

(δ + 1)(i− 1)

=
δ + 1

2

[
2r2 + (R− r)2 + 3R− 11r + 10

]
≥ (δ + 1)

[
(r − 2)2 + 1

]
,

and (4) follows also in Case 2.

We are now ready to complete the proof of the bound in Theorem 7. From (4)

we obtain the following lower bound on the proximity.

π(G) =
1

n− 1
σ(v0) ≥ δ + 1

3(n− 1)
[(r − 2)2 + 1].

Therefore,

rad(G)− π(G) ≤ r − δ + 1

3(n− 1)
[(r − 2)2 + 1].

Denote the right hand side of the last equation by f . Making use of Theorem

6 we obtain

∂f

∂r
= 1− 2(δ + 1)

3(n− 1)
(r − 2) ≥ 1− 2(δ + 1)

3(n− 1)

( 3n

2(δ + 1)
− 1
)

=
2δ − 1

3(n− 1)
> 0.

Hence f is increasing in r. Substituting r = 3n
2(δ+1) + 1 into f we obtain after

straightforward calculations,

rad(G)− π(G) ≤ 3

4(δ + 1)
n+

8δ + 5

4(δ + 1)
− (δ + 1)(8δ + 20) + 9

23(δ + 1)(n− 1)
,

and thus

rad(G)− π(G) ≤ 3

4(δ + 1)
n+

8δ + 5

4(δ + 1)
,

which is the desired bound.

To see that the bound in Theorem 7 is sharp apart from an additive constant

consider the graph Gk,δ in Example 1 for even k. For these graphs we have for

constant δ and large n,

rad(Gk,δ)− π(Gk,δ) =
3

2(δ + 1)
n+

δ − 2

δ + 1
− 3

4(δ + 1)
n− 3

4(δ + 1)
+ o(1)

=
3

4(δ + 1)
n+

4δ − 11

4(δ + 1)
+ o(1),
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as desired. 2

From Corollary 1 and the inequality rad(G) ≤ diam(G) we get the following

lower bound on the remoteness in terms of radius.

Corollary 2. Let G be a connected graph. Then

ρ(G) >
1

2
rad(G).

The coefficient 1
2 cannot be improved, even for graphs of arbitrarily large min-

imum degree. To see this consider for given r, b ∈ N the strong product of a

cycle of length 2r + 1 and a complete graph on b vertices. It is easy to verify

that this graph has radius r and remoteness r2+r+1
2r+1 + r(r−1)

(2r+1)(n−1) , where n is

the order of the graph, i.e., n = (2r + 1)b. If r and b tend to infinity, then

ρ(G)− 1
2 rad(G) tends to − 3

4 .

2.3. Proximity vs average distance

We present an upper bound on the average distance in terms of remoteness

which is reminiscent of the well-known inequality diam(G) ≤ 2rad(G). Al-

though it is likely that this inequality is known, we were unable to find a

reference for it.

Proposition 2. (i) Let G be a connected graph. Then

µ(G) ≤ 2π(G).

(ii) There exists no ε ∈ R with ε > 0 such that µ(G) ≤ 2π(G) − ε for all connected
graphs G.

Proof: (i) Let v be a median vertex of G, i.e., a vertex with σ(v) = π(G).

Then

σ(G) =
∑
x∈V

∑
y∈V

d(x, y)

≤
∑
x∈V

∑
y∈V

(
d(x, v) + d(v, y)

)
= n

∑
x∈V

d(x, v) + n
∑
y∈V

d(y, v)

= 2nσ(v).
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Dividing by n(n− 1) yields

µ(G) ≤ 2

n− 1
σ(v) = 2π(G),

and (i) follows.

(ii) Consider the trees Tk, k ∈ N, k ≥ 2, defined as follows. Let Tk be obtained

by attaching k vertices v1, v2, . . . , vk to a vertex v, and then attaching k − 1

vertices to each vi for i = 1, 2, . . . , k. Then Tk has k2 + 1 vertices, diameter

four, and all its vertices have either degree k or degree 1. It is easy to verify

that π(Tk) = 2+ 2−3
√
n−1

n−1 and µ(Tk) = 4− 4
√
n−1+2
n , where n = k2 +1. Hence,

for large k,

2π(Tk)− µ(Tk) = O(n−
1
2 ),

which implies that for every ε > 0 there exists a k0 such that 2π(Tk)−µ(Tk) > ε

for all k with k > k0. 2
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