The minus k-domination numbers in graphs

N. Dehgardi
Department of Mathematics and Computer Science, Sirjan University of Technology, Sirjan, I.R. Iran
n.dehgardi@sirjantech.ac.ir

Received: 11 March 2016; Accepted: 21 July 2016;
Available Online: 22 July 2016.

Communicated by Francesco Belardo

Abstract

For any integer $k \geq 1$, a minus k-dominating function is a function $f: V \rightarrow\{-1,0,1\}$ satisfying $\sum_{w \in N[v]} f(w) \geq k$ for every $v \in V(G)$, where $N(v)=\{u \in V(G) \mid u v \in E(G)\}$ and $N[v]=N(v) \cup\{v\}$. The minimum of the values of $\sum_{v \in V(G)} f(v)$, taken over all minus k-dominating functions f, is called the minus k-domination number and is denoted by $\gamma_{k}^{-}(G)$. In this paper, we introduce the study of minus k-domination in graphs and present several sharp lower bounds on the minus k-domination number for general graphs.

Keywords: Minus k-dominating function, Minus k-domination number.
2010 Mathematics Subject Classification:05C12

1. Introduction

In this paper, all graphs are finite, simple, and undirected. Let G be a graph. We let $V(G)$ and $E(G)$ denote the vertex set and the edge set of G, respectively. The integers $n=n(G)=|V(G)|$ and $m=m(G)=|E(G)|$ are the order and the size of the graph G, respectively. For a vertex $v \in V(G)$, the open neighborhood of v, denoted by $N_{G}(v)=N(v)$, is the set $\{u \in V(G): u v \in E(G)\}$ and the closed neighborhood of v, denoted by $N_{G}[v]=N[v]$, is the set $N_{G}(v) \cup\{v\}$. The degree of $v \in V(G)$, denoted by $d_{G}(v)$, is defined by $d_{G}(v)=\left|N_{G}(v)\right|$. The minimum and maximum degrees of G are denoted by $\delta(G)=\delta$ and $\Delta(G)=\Delta$, respectively. For a set S of vertices, we define the open neighborhood $N(S)=$ $\bigcup_{v \in S} N(v)$, and the closed neighborhood $N[S]=N(S) \cup S$. If X and Y are
sets of vertices of a graph G, we denote by $E(X, Y)$ the set of edges with one end in X and the other in Y. The complement of G is denoted by \bar{G}. We let P_{n}, C_{n} and K_{n} denote the path, the cycle and the complete graph of order n, respectively. For a real-valued function $f: V(G) \longrightarrow \mathbb{R}$ the weight of f is $w(f)=\sum_{v \in V} f(v)$, and for $S \subseteq V$, we define $f(S)=\sum_{v \in S} f(v)$, so $w(f)=f(V)$. Consult $[8,13]$ for notation and terminology that are not defined here.
Let $k \geq 1$ be an integer and G be a graph of minimum degree at least $k-1$. A function $f: V(G) \rightarrow\{-1,1\}$ is called a signed k-dominating function of G if $f\left(N_{G}[v]\right) \geq k$ for all $v \in V(G)$. The s igned k-domination number of G, denoted by $\gamma_{k s}(G)$, is the minimum weight of a signed k-dominating function of G. The concept of signed k-domination number has been introduced in [12]. This parameter has been extensively studied in the literature; see e.g. $[1,11,12]$ and the references therein. This parameter has also been studied in [4]. In the special case $k=1$, the signed 1 -domination number is exactly the signed domination number $[2,3,6]$.
A minus k-dominating function (briefly $\mathrm{M} k \mathrm{DF}$) is a function of the form $f: V \rightarrow\{-1,0,1\}$ such that the sum of its function values over any closed neighborhood is at least k. The minus k-domination number of a graph G is defined as

$$
\gamma_{k}^{-}(G)=\min \{\omega(f) \mid f \text { is a minus } k \text {-dominating function on } G\} .
$$

As the assumption $\delta(G) \geq k-1$ is clearly necessary, we always assume that when we discuss $\gamma_{k}^{-}(G)$, all graphs involved satisfy $\delta(G) \geq k-1$ and thus $n(G) \geq k$. A minus k-dominating function $f: V(G) \rightarrow\{-1,0,1\}$ can be represented by the ordered partition $\left(V_{-1}, V_{1}, V_{2}\right)$ of $V(G)$ where $V_{i}=V_{i}^{f}=$ $\{v \in V(G) \mid f(v)=i\}$ for $i=-1,0,1$. In the special case $k=1$, the minus 1 -domination number is the usual minus domination number [5].
Clearly, a signed k-dominating function is a minus k-dominating function. Hence, the signed k-domination and the minus k-domination number of a graph are related as follows.

Observation 1. For a graph $G, \gamma_{k}^{-}(G) \leq \gamma_{k s}(G)$.

Our purpose in this paper is to initiate the study of minus k-domination number in graphs. In particular, we present some sharp bounds on the minus k-domination number in graphs and we determine this parameter for some classes of graphs.
We close this section by showing that the minus k-domination number can be arbitrarily small. For this purpose, we need the following observation proved by Henning [9].

Observation 2. If k and n are integers with $k<n$, and n is even, then we can construct a k-regular graph on n vertices.

Figure 1. Graph G with $\gamma_{2}^{-}(G) \leq-2$

Proposition 1. For an integer $k \geq 2$, there is a connected graph G such that $\gamma_{k}^{-}(G) \leq-k$.

Proof. By Observation 2, there exists a (2k+1)-regular graph H on $n=k(k+$ 1) vertices. Let $V(H)=\left\{u_{1}, u_{2}, \ldots, u_{k(k+1)}\right\}$ and G be the graph obtained from H as follows. The vertex set of G is $V(G)=V(H) \cup\left\{v_{1}, v_{2}, \ldots, v_{k(k+2)}\right\}$, and the edge set of G is
$E(G)=E(H) \cup\left\{u_{i+s(k+1)} v_{j+s(k+2)} \mid 1 \leq i \leq k+1,1 \leq j \leq k+2,0 \leq s \leq k-1\right\}$.
Now define $f: V(G) \rightarrow\{-1,0,1\}$ by $f(v)=1$ if $v \in V(H)$, and $f(v)=-1$ otherwise. If $v \in V(H)$, then $f(N[v])=1+2 k+1-k-2=k$ and if $v \in V(G)-V(H)$, then $f(N[v])=-1+k+1=k$. Thus f is a $\mathrm{M} k \mathrm{DF}$ of G with weight

$$
\omega(f)=k(k+1)-k(k+2)=-k .
$$

The proof is complete.

2. Bounds on the Minus k-Domination Number

In this section, we provide some sharp bounds on the minus k-domination number. We start with some preliminary results.

Observation 3. Let G be a graph of order n with $\delta(G) \geq k-1$, and $f=$ $\left(V_{-1}, V_{0}, V_{1}\right)$ be a $\gamma_{k}^{-}(G)$-function. Then

1. $n=\left|V_{-1}\right|+\left|V_{1}\right|+\left|V_{0}\right|$.
2. $\omega(f)=\left|V_{1}\right|-\left|V_{-1}\right|$.

Theorem 1. Let G be a connected graph of order n with maximum degree Δ and minimum degree δ. If f is a MkDF of G, then
(a) $\frac{\Delta-k+1}{k}\left|V_{1}\right| \geq \frac{\delta+k+1}{k}\left|V_{-1}\right|+\left|V_{0}\right|$.
(b) $(\Delta+\delta+2)\left|V_{1}\right|+(\delta+1)\left|V_{0}\right| \geq(\delta+k+1) n$.
(c) $(\delta+1) \omega(f) \geq(\delta-\Delta)\left|V_{1}\right|+k n$.
(d) $\omega(f) \geq \frac{k-\Delta-1}{\Delta+\delta+2} n+\left|V_{1}\right|$.

Proof. (a) It follows from Observation 3-1 that

$$
\begin{aligned}
k\left(\left|V_{1}\right|+\left|V_{-1}\right|+\left|V_{0}\right|\right) & =n k \\
& \leq \sum_{v \in V} \sum_{x \in N[v]} f(x)=\sum_{v \in V}\left(d_{G}(v)+1\right) f(v) \\
& =\sum_{v \in V_{1}}\left(d_{G}(v)+1\right)-\sum_{v \in V_{-1}}\left(d_{G}(v)+1\right) \\
& \leq(\Delta+1)\left|V_{1}\right|-(\delta+1)\left|V_{-1}\right| .
\end{aligned}
$$

This inequality chain yields to the desired bound in (a).
(b) Using Observation 3-1, and Part (a), we arrive at (b).
(c) Applying Observation 3 and Part (b), we obtain Part (c) as follows

$$
\omega(f)=2\left|V_{1}\right|-n+\left|V_{0}\right|,
$$

and

$$
\begin{aligned}
(\delta+1) \omega(f) & =(\delta+1)\left(2\left|V_{1}\right|-n+\left|V_{0}\right|\right) \\
& =(\Delta+\delta+2)\left|V_{1}\right|+(\delta-\Delta)\left|V_{1}\right|-(\delta+1) n+(\delta+1)\left|V_{0}\right| \\
& \geq(\delta-\Delta)\left|V_{1}\right|-(\delta+1) n+(\delta+k+1) n \\
& =(\delta-\Delta)\left|V_{1}\right|+k n .
\end{aligned}
$$

(d) The inequality chain in the proof of Part (a), and Observation 3-1 show that

$$
\begin{aligned}
n k & \leq(\Delta+1)\left|V_{1} \cup V_{0}\right|-(\delta+1)\left(n-\left|V_{1} \cup V_{0}\right|\right) \\
& =(\Delta+\delta+2)\left|V_{1} \cup V_{0}\right|-(\delta+1) n,
\end{aligned}
$$

and thus

$$
\left|V_{1} \cup V_{0}\right| \geq \frac{\delta+k+1}{\Delta+\delta+2} n
$$

Using this inequality and Observation 3, we obtain

$$
\begin{aligned}
\omega(f) & =\left|V_{1}\right|-n+\left|V_{1} \cup V_{0}\right| \geq \frac{\delta+k+1}{\Delta+\delta+2} n-n+\left|V_{1}\right| \\
& =\frac{k-\Delta-1}{\Delta+\delta+2} n+\left|V_{1}\right| .
\end{aligned}
$$

This is the bound in Part (d), and the proof is complete.

Corollary 1. If G is a connected graph of order n, then

$$
\gamma_{k}^{-}(G) \geq \frac{2 k-\Delta+\delta}{\Delta+\delta+2} n
$$

Proof. If G is an r-regular graph, then result is an immediate consequence of Theorem 1-(c). Hence let G be a non-regular graph. Multiplying both sides of the inequality in Theorem 1-(d) by $(\Delta-\delta)$ and adding it to the inequality in Theorem 1-(c), we obtain the desired lower bound.

Theorem 2. Let G be a graph of order n and t a non-negative integer. If $\delta(G) \geq k+t-1$, then $\gamma_{k}^{-}(G) \leq n-t$.

Proof. If $t=0$, then the result is trivial. Let $t \geq 1$ and $A=\left\{u_{1}, u_{2}, \ldots, u_{t}\right\}$ be a set of vertices of G. Define the function $g: V(G) \rightarrow\{-1,0,1\}$ by $g\left(u_{i}\right)=0$ for $1 \leq i \leq t$, and $g(x)=1$ otherwise. Obviously, g is a $\mathrm{M} k \mathrm{DF}$ on G of weight $n-t$ and $\gamma_{k}^{-}(G) \leq n-t$.

Next result is an immediate consequence of Corollary 1 and Theorem 2.

Corollary 2. For two positive integers $n \geq k, \gamma_{k}^{-}\left(K_{n}\right)=k$.

Corollary 2 shows that the bound in Theorem 2 is sharp.

Theorem 3. Let G be a graph of order n and size m. Then

$$
\gamma_{k}^{-}(G) \geq \frac{2 k}{k+1} n-\frac{2}{k+1} m .
$$

Proof. Let $f=\left(V_{-1}, V_{0}, V_{1}\right)$ be a $\gamma_{k}^{-}(G)$-function. Since for each $v \in V$, $f(N[v]) \geq k$, we have $\left|N(v) \cap V_{1}\right| \geq k+1$ for every $v \in V_{-1},\left|N(v) \cap V_{1}\right| \geq k$ for $v \in V_{0}$, and $\left|N(v) \cap V_{-1}\right| \leq\left|N(v) \cap V_{1}\right|-(k-1)$ for each $v \in V_{1}$. It follows that $\left|E\left(V_{1}, V_{-1}\right)\right| \geq(k+1)\left|V_{-1}\right|,\left|E\left(V_{1}, V_{0}\right)\right| \geq k\left|V_{0}\right|$ and

$$
\left|E\left(V_{1}, V_{-1}\right)\right| \leq 2\left|E\left(V_{1}, V_{1}\right)\right|-(k-1)\left|V_{1}\right| .
$$

Therefore

$$
\begin{aligned}
m & \geq\left|E\left(V_{1}, V_{1}\right)\right|+\left|E\left(V_{1}, V_{-1}\right)\right|+\left|E\left(V_{1}, V_{0}\right)\right| \\
& \geq \frac{k-1}{2}\left|V_{1}\right|+\frac{k+1}{2}\left|V_{-1}\right|+(k+1)\left|V_{-1}\right|+k\left|V_{0}\right| \\
& \geq \frac{k-1}{2} n+\frac{k+1}{2}\left(2\left|V_{-1}\right|+\left|V_{0}\right|\right) .
\end{aligned}
$$

Hence, we have

$$
\gamma_{k}^{-}(G)=\left|V_{1}\right|-\left|V_{-1}\right|=n-\left(2\left|V_{-1}\right|+\left|V_{0}\right|\right) \geq n+\frac{k-1}{k+1} n-\frac{2}{k+1} m .
$$

Proposition 2. Let G be a graph of order n. Then $\gamma_{k}^{-}(G)=n$ if and only if for each vertex $v \in V(G)$ there is a vertex $u \in N[v]$ such that $d_{G}(u) \leq k-1$.

Proof. One side is clear. Let $\gamma_{k}^{-}(G)=n$. If there is a vertex v such that $d_{G}(u) \geq k$ for each $u \in N[v]$, then the function $g: V(G) \rightarrow\{-1,0,1\}$ defined by $g(v)=0$ and $g(x)=1$ otherwise, is a $\mathrm{M} k \mathrm{DF}$ on G of weight $n-1$, a contradiction. Thus for each vertex $v \in G$, there is a vertex $u \in N[v]$ such that $d_{G}(u) \leq k-1$, and the proof is complete.

Dunbar et al. [5] showed that the minus domination number of a graph with maximum degree at most five is non-negative. Next proposition generalizes their result.

Proposition 3. Let k be a positive integer and G be a graph with $\Delta \leq 3 k+2$. Then $\gamma_{k}^{-}(G) \geq 0$.

Proof. Let $f=\left(V_{-1}, V_{0}, V_{1}\right)$ be a $\gamma_{k}^{-}(G)$-function. If $V_{-1}=\varnothing$, then we are done. Assume $V_{-1} \neq \varnothing$. For each $v \in V_{-1}$, it follows from $f(N[v]) \geq k$ that $\left|N(v) \cap V_{1}\right| \geq k+1$. This implies that

$$
\begin{equation*}
\left|E\left(V_{-1}, V_{1}\right)\right| \geq(k+1)\left|V_{-1}\right| . \tag{1}
\end{equation*}
$$

Similarly, for each $v \in V_{1}$, we have $\left|N(v) \cap V_{1}\right| \geq\left|N(v) \cap V_{-1}\right|+k-1$, and

$$
3 k+2 \geq d_{G}(v) \geq\left|N(v) \cap V_{1}\right|+\left|N(v) \cap V_{-1}\right| \geq 2\left|N(v) \cap V_{-1}\right|+k-1 .
$$

Thus, $k+1 \geq\left|N(v) \cap V_{-1}\right|$ for each $v \in V_{1}$, and

$$
\begin{equation*}
\left|E\left(V_{-1}, V_{1}\right)\right| \leq(k+1)\left|V_{1}\right| . \tag{2}
\end{equation*}
$$

Combining (1) and (2), we obtain $\gamma_{k}^{-}(G)=\left|V_{1}\right|-\left|V_{-1}\right| \geq 0$.

Theorem 4. Let G be a connected graph of order n and minimum degree of $\delta \geq k-1$. Then

$$
\gamma_{k}^{-}(G) \geq-1+\sqrt{1+4(k+1) n}-n
$$

Proof. If $\gamma_{k}^{-}(G)=n$, the result is trivial. So we may assume that $\gamma_{k}^{-}(G)<n$. Let $f=\left(V_{-1}, V_{0}, V_{1}\right)$ be a $\gamma_{k}^{-}(G)$-function. Since $f(N[v]) \geq k$ for each $v \in V$, each vertex in V_{-1} has at least $k+1$ neighbors in V_{1}. We conclude from the Pigeonhole Principle that at least one vertex $v \in V_{1}$ has at least $\left\lceil\frac{(k+1)\left|V_{-1}\right|}{\left|V_{1}\right|}\right\rceil$ neighbors in V_{-1}. It implies that

$$
k \leq f(N[v])=\left|N(v) \cap V_{1}\right|-\left|N(v) \cap V_{-1}\right|+1 \leq\left(\left|V_{1}\right|-1\right)-\left\lceil\frac{\left|V_{-1}\right|(k+1)}{\left|V_{1}\right|}\right\rceil+1,
$$

and $\left|V_{1}\right|^{2}-k\left|V_{1}\right|-\left|V_{-1}\right|(k+1) \geq 0$. Hence, we have $\left|V_{1}\right|^{2}+\left|V_{1}\right|+(k+1)\left(\left|V_{0}\right|-\right.$ $n) \geq 0$. Thus

$$
\left|V_{1}\right| \geq \frac{-1+\sqrt{1+4(k+1)\left(n-\left|V_{0}\right|\right)}}{2}
$$

and

$$
\gamma_{k}^{-}(G)=2\left|V_{1}\right|+\left|V_{0}\right|-n \geq-1+\sqrt{1+4(k+1)\left(n-\left|V_{0}\right|\right)}+\left|V_{0}\right|-n .
$$

Let $g(x)=-1+\sqrt{1+4(k+1) x}-x$. Then $g^{\prime}(x)=\frac{2(k+1)}{\sqrt{1+4(k+1) x}}-1$, thus $g^{\prime}(x)<0$ for $x \geq k+1$. Hence $g(x)$ is a decreasing function when $x \geq k+1$. Furthermore, since $\left|V_{1}\right| \geq k+1$, we have $n-\left|V_{0}\right|=\left|V_{1}\right|+\left|V_{-1}\right| \geq k+1$. Therefore, $g\left(n-\left|V_{0}\right|\right) \geq g(n)$. Consequently,

$$
\gamma_{k}^{-}(G) \geq-1+\sqrt{1+4(k+1)\left(n-\left|V_{0}\right|\right)}+\left|V_{0}\right|-n \geq-1+\sqrt{1+4(k+1) n}-n
$$

A set $S \subseteq V(G)$ is a 2-packing of G if $N[u] \cap N[v]=\varnothing$ for any two distinct vertices $u, v \in S$. The 2-packing number $\rho(G)$ of G is defined as

$$
\rho(G)=\max \{|S| \mid S \text { is a 2-packing of } G\} .
$$

In the sequel, we present some bounds on the minus k-domination number in terms of the order and the 2-packing number.

Theorem 5. Let k be an integer, and G be a connected graph of order n with $\delta(G) \geq k+1$. Then the following hold.
(a) $\gamma_{k}^{-}(G) \leq n-2 \rho(G)$.
(b) $\gamma_{k+1}^{-}(G) \leq n-\rho(G)$.
(c) If $V(G)=\cup_{s \in S} N[s]$, then $k \rho(G) \leq \gamma_{k}^{-}(G)$.

Proof. Let S be a 2 -packing of G. To prove (a), define the function f : $V(G) \rightarrow\{-1,0,1\}$ by $f(x)=-1$ for $x \in S$ and $f(x)=1$ otherwise. Clearly f is a minus k-dominating function of G of weight $n-2 \rho(G)$, which implies $\gamma_{k}^{-}(G) \leq n-2 \rho(G)$. To prove (b), define the function $f: V(G) \rightarrow\{-1,0,1\}$ by $f(x)=0$ for $x \in S$, and $f(x)=1$ otherwise. Obviously f is a minus $(k+1)$ dominating function of G of weight $n-\rho(G)$, which implies $\gamma_{k+1}^{-}(G) \leq n-\rho(G)$. Now we prove (c). Let f be a $\gamma_{k}^{-}(G)$-function. By definition, we have

$$
\gamma_{k}^{-}(G)=\sum_{s \in S} f(N[s]) \geq k \rho(G)
$$

Corollary 3. For $n \geq 3, \gamma_{2}^{-}\left(C_{n}\right)=\left\lceil\frac{2 n}{3}\right\rceil$.

Proof. Since $\gamma_{2}^{-}\left(C_{n}\right)$ is an integer, it follows from Corollary 1 that $\gamma_{2}^{-}\left(C_{n}\right) \geq$ $\left\lceil\frac{2 n}{3}\right\rceil$. On the other hand, since $\rho\left(C_{n}\right)=\left\lfloor\frac{n}{3}\right\rfloor$, we conclude from Theorem 5 that $\gamma_{2}^{-}\left(C_{n}\right) \leq n-\rho\left(C_{n}\right)=\left\lceil\frac{2 n}{3}\right\rceil$, and $\gamma_{2}^{-}\left(C_{n}\right)=\left\lceil\frac{2 n}{3}\right\rceil$.

Applying Theorem 5 and the following result due to Favaron [7], we obtain bounds on the cubic graphs.

Proposition 4. [7] If G is a connected cubic graph G of order n, then $\rho(G) \geq n / 8$, unless G is the Petersen graph which in this case $\rho(G)=(n-2) / 8=1$.

Corollary 4. If G is a connected cubic graph of order n different from the Petersen graph, then
(i) $\frac{n}{2} \leq \gamma_{2}^{-}(G) \leq \frac{3 n}{4}$.
(ii) $\frac{3 n}{4} \leq \gamma_{3}^{-}(G) \leq \frac{7 n}{8}$, the upper bound satisfies if G is not the Petersen graph which in this case $\gamma_{3}^{-}(G)=9$.

Now we present a so called Nordhaus-Gaddum type inequality for the minus k-domination number of regular graphs.

Theorem 6. Let G be an r-regular graph of order n where $r \geq k-1$ and $n-r \geq k$. Then

$$
\gamma_{k}^{-}(G)+\gamma_{k}^{-}(\bar{G}) \geq\left\{\begin{array}{cl}
\frac{4 k n}{n+1} & \text { if } n \text { is odd } \\
\frac{4 k(n+1)}{n+2} & \text { if } n \text { is even. }
\end{array}\right.
$$

Proof. Since G is r-regular, the complement \bar{G} is $(n-r-1)$-regular. It follows from Corollary 1 that

$$
\gamma_{k}^{-}(G)+\gamma_{k}^{-}(\bar{G}) \geq k n\left(\frac{1}{r+1}+\frac{1}{n-r}\right) .
$$

The conditions $r \geq k-1$ and $n-r \geq k$ imply that $k-1 \leq r \leq n-k$. Consider the function $f(x)=\frac{1}{x+1}+\frac{1}{n-x}$ on the interval $[k-1, n-k] \cap \mathbb{Z}$. If n is odd, then the function f gets its minimum at $x=\frac{n-1}{2}$, and we have

$$
\gamma_{k}^{-}(G)+\gamma_{k}^{-}(\bar{G}) \geq k n\left(\frac{1}{r+1}+\frac{1}{n-r}\right) \geq k n\left(\frac{2}{n+1}+\frac{2}{n+1}\right)=\frac{4 k n}{n+1} .
$$

If n is even, then the function f gets its minimum at $r=x=\frac{n-2}{2}$ or $r=x=\frac{n}{2}$, since r is an integer. This implies that

$$
\gamma_{k}^{-}(G)+\gamma_{k}^{-}(\bar{G}) \geq k n\left(\frac{1}{r+1}+\frac{1}{n-r}\right) \geq k n\left(\frac{2}{n}+\frac{2}{n+2}\right)=\frac{4 k(n+1)}{n+2}
$$

and the proof is complete.

3. t-Partite Graphs

In this section, we present a lower bound on the minus k-domination number of t-partite graphs. The proof of the following result can be found in [10].

Proposition 5. For non-negative integers $p_{1}, p_{2}, \ldots, p_{t}(t \geq 2)$,

$$
\sqrt{\left(2+\frac{2}{t-1}\right) \sum_{i=1}^{t-1} \sum_{j=i+1}^{t} p_{i} p_{j}} \leq \sum_{i=1}^{t} p_{i}
$$

The proof of the next result is essentially similar to the proof of Theorem 2 in [10].

Theorem 7. Let $k \geq 1, t \geq 2$ and $G=(V, E)$ be a t-partite graph of order $n \geq \frac{t(k+1)}{t-1}$ with partite sets $X_{1}, X_{2}, \ldots, X_{t}$. Then

$$
\gamma_{k}^{-}(G) \geq \frac{(k+1) t}{(t-1)}\left(-1+\sqrt{\frac{4}{(k+1)^{2}}+\frac{4(t-1)}{t(k+1)} n}\right)-n+\frac{(k-1) t}{t-1}\left(1-\frac{k-1}{2(k+1)}\right)
$$

Proof. Let f be a $\gamma_{k}^{-}(G)$-function and
$P_{i}=X_{i} \cap V_{1}, M_{i}=X_{i} \cap V_{-1}, Q_{i}=X_{i} \cap V_{0}, p_{i}=\left|P_{i}\right|, m_{i}=\left|M_{i}\right|, q_{i}=\left|Q_{i}\right|, i=1, \ldots, t$.
Thus

$$
\begin{equation*}
n=\sum_{i=1}^{t} p_{i}+\sum_{i=1}^{t} m_{i}+\sum_{i=1}^{t} q_{i} \tag{3}
\end{equation*}
$$

Since for each $v \in V, f(N[v]) \geq k$, we have $\left|N(v) \cap V_{1}\right| \geq k+1$ for every $v \in M_{i}, i=1, \ldots, t$. So

$$
\begin{equation*}
\left|E\left(V_{1}, V_{-1}\right)\right| \geq(k+1) \sum_{i=1}^{t} m_{i} \tag{4}
\end{equation*}
$$

For each $v \in P_{i}$, we have $\left|N(v) \cap V_{-1}\right| \leq\left|N(v) \cap V_{1}\right|-(k-1)$. Thus

$$
\begin{align*}
\left|E\left(V_{1}, V_{-1}\right)\right| & =\sum_{i=1}^{t} \sum_{v \in P_{i}}\left|N(v) \cap V_{-1}\right| \\
& \leq \sum_{i=1}^{t} \sum_{v \in P_{i}}\left(\left|N(v) \cap V_{1}\right|-(k-1)\right) \\
& \leq \sum_{i=1}^{t} p_{i}\left(\sum_{j=1, j \neq i}^{t} p_{j}\right)-(k-1) \sum_{i=1}^{t} p_{i} \\
& =2 \sum_{i=1}^{t-1} \sum_{j=i+1}^{t} p_{i} p_{j}-(k-1) \sum_{i=1}^{t} p_{i} \\
& \leq 2 \sum_{i=1}^{t-1} \sum_{j=i+1}^{t} p_{i} p_{j}-(k-1) \sqrt{\left(2+\frac{2}{t-1}\right) \sum_{i=1}^{t-1} \sum_{j=i+1}^{t} p_{i} p_{j}} \tag{5}
\end{align*}
$$

Combining (4) and (5), we have

$$
\begin{equation*}
(k+1) \sum_{i=1}^{t} m_{i} \leq 2 \sum_{i=1}^{t-1} \sum_{j=i+1}^{t} p_{i} p_{j}-(k-1) \sqrt{\left(2+\frac{2}{t-1}\right) \sum_{i=1}^{t-1} \sum_{j=i+1}^{t} p_{i} p_{j}} . \tag{6}
\end{equation*}
$$

Define the function

$$
f(x)=2 x^{2}-(k-1) \sqrt{\left(2+\frac{2}{t-1}\right)} x-(k+1) \sum_{i=1}^{t} m_{i}
$$

where $f(x) \geq 0$ and $x=\sqrt{\sum_{i=1}^{t-1} \sum_{j=i+1}^{t} p_{i} p_{j}}$. We have

$$
x \geq \frac{(k-1) \sqrt{\left(2+\frac{2}{t-1}\right)}+\sqrt{(k-1)^{2}\left(2+\frac{2}{t-1}\right)+8(k+1) \sum_{i=1}^{t} m_{i}}}{4}
$$

and

$$
\begin{align*}
& \sqrt{\left(2+\frac{2}{t-1}\right) \sum_{i=1}^{t-1} \sum_{j=i+1}^{t} p_{i} p_{j}} \geq \frac{t(k-1)}{2(t-1)} \\
& \quad+\sqrt{(k-1)^{2}\left(\frac{t}{2(t-1)}\right)^{2}+(k+1) \frac{t}{t-1} \sum_{i=1}^{t} m_{i}} \\
& \quad=\frac{t}{2(t-1)}\left(k-1+\sqrt{(k-1)^{2}+(k+1) \frac{4(t-1)}{t} \sum_{i=1}^{t} m_{i}}\right) \tag{7}
\end{align*}
$$

By (3) and Proposition 5, we obtain

$$
\begin{equation*}
\sqrt{\left(2+\frac{2}{t-1}\right) \sum_{i=1}^{t-1} \sum_{j=i+1}^{t} p_{i} p_{j}}+\sum_{i=1}^{t} m_{i}+\sum_{i=1}^{t} q_{i} \leq n \tag{8}
\end{equation*}
$$

Using (7) and (8), we have

$$
\begin{equation*}
\frac{t}{2(t-1)}\left(k-1+\sqrt{(k-1)^{2}+(k+1) \frac{4(t-1)}{t} \sum_{i=1}^{t} m_{i}}\right)+\sum_{i=1}^{t} m_{i}+\sum_{i=1}^{t} q_{i} \leq n, \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{t}{2(t-1)}\left(k-1+\sqrt{(k-1)^{2}+(k+1) \frac{4(t-1)}{t} \sum_{i=1}^{t} m_{i}}\right)+\sum_{i=1}^{t} m_{i} \leq n \tag{10}
\end{equation*}
$$

Since $\gamma_{k}^{-}(G)=n-2 \sum_{i=1}^{t} m_{i}-\sum_{i=1}^{t} q_{i}$, using (9) we have

$$
\begin{align*}
& \gamma_{k}^{-}(G) \geq \frac{t}{2(t-1)}\left(k-1+\sqrt{(k-1)^{2}+(k+1) \frac{4(t-1)}{t} \sum_{i=1}^{t} m_{i}}\right) \\
& -\sum_{i=1}^{t} m_{i} \tag{11}
\end{align*}
$$

For notational convenience, we write

$$
a=\frac{t(k+1)}{2(t-1)} \sqrt{\left(\frac{k-1}{k+1}\right)^{2}+\frac{4(t-1)}{t(k+1)} \sum_{i=1}^{t} m_{i}}
$$

and define two functions

$$
h(y)=\frac{t-1}{(k+1) t} y^{2}+y+\frac{(k-1) t}{2(t-1)}-\frac{(k-1)^{2} t}{4(t-1)(k+1)}, y \geq \frac{t(k-1)}{2(t-1)}
$$

and

$$
g(y)= \begin{cases}-\frac{t-1}{(k+1) t} y^{2}+y+\frac{(k-1) t}{2(t-1)}-\frac{(k-1)^{2} t}{4(t-1)(k+1)} & y \geq \frac{t(k+1)}{2(t-1)} \\ k & \frac{t(k+1)}{2(t-1)}>y \geq \frac{t(k-1)}{2(t-1)} .\end{cases}
$$

Since $\frac{\mathrm{d} g}{\mathrm{~d} y} \leq 0$ and $\frac{\mathrm{d} h}{\mathrm{~d} y}>0, g(y)$ is monotonously decreasing for $y \geq \frac{t(k+1)}{2(t-1)}$ and $h(y)$ is a monotonous increasing function if $y \geq \frac{t(k-1)}{2(t-1)}$. By (10), we obtain

$$
h(a)=\frac{t-1}{(k+1) t} a^{2}+a+\frac{(k-1) t}{2(t-1)}-\frac{(k-1)^{2} t}{4(t-1)(k+1)} \leq n .
$$

Furthermore, we note that when

$$
y_{0}=\frac{(k+1) t}{2(t-1)}\left(-1+\sqrt{\frac{4}{(k+1)^{2}}+\frac{4(t-1)}{t(k+1)} n}\right)
$$

it follows that $h\left(y_{0}\right)=n \geq \max \left\{h\left(\frac{t(k+1)}{2(t-1)}\right), h(a)\right\}$. Thus

$$
\max \left\{\frac{t(k+1)}{2(t-1)}, a\right\} \leq \frac{(k+1) t}{2(t-1)}\left(-1+\sqrt{\frac{4}{(k+1)^{2}}+\frac{4(t-1)}{t(k+1)} n}\right) .
$$

If $\left|V_{-1}\right|=0$, then $a=\frac{t(k-1)}{2(t-1)}$. We show that $\gamma_{k}^{-}(G) \geq g\left(\frac{t(k+1)}{2(t-1)}\right)$. Let $\gamma_{k}^{-}(G)=$ k. If $t=k$, then $n>k+1$ and this is a contradiction. Hence $t \geq k+1$ and $\gamma_{k}^{-}(G)=k \geq g\left(\frac{t(k+1)}{2(t-1)}\right)$. If $\gamma_{k}^{-}(G) \geq k+1$, then $\gamma_{k}^{-}(G) \geq k+1 \geq g\left(\frac{t(k+1)}{2(t-1)}\right)$. Now let $\left|V_{-1}\right| \geq 1$. By the monotonicity of $g(y)$ and (11),

$$
\begin{aligned}
\gamma_{k}^{-}(G) \geq g(a) \geq g\left(y_{0}\right)= & \frac{(k+1) t}{(t-1)}\left(-1+\sqrt{\frac{4}{(k+1)^{2}}+\frac{4(t-1)}{t(k+1)} n}\right)-n \\
& +\frac{(k-1) t}{t-1}\left(1-\frac{k-1}{2(k+1)}\right)
\end{aligned}
$$

The proof is complete.
Corollary 5. If G is a bipartite graph of order $n \geq 2(k+1)$, then

$$
\gamma_{k}^{-}(G) \geq-k-3+4 \sqrt{1+\frac{k+1}{2} n}-n-\frac{(k-1)^{2}}{k+1}
$$

References

[1] M. Atapour, R. Hajypory, S.M. Sheikholeslami and L. Volkmann, The signed k-domination number of directed graphs, Cent. Eur. J. Math. 8 (2010), 1048-1057.
[2] W. Chen and E. Song, Lower bounds on several versions of signed domination number, Discrete Math. 308 (2008), 1837-1846.
[3] E.J. Cockayne and C.M. Mynhardt, On a generalization of signed dominating function of graphs, Ars Combin. 43 (1996), 235-245.
[4] D. Delić and C. Wang, Upper signed k-domination in a general graph, Inform. Process. Lett. 110 (2010), 662-665.
[5] J.E. Dunbar, S.T. Hedetniemi, M.A. Henning and A. McRae, Minus domination in graphs, Discrete Math. 199 (1999), 35-47.
[6] J.E. Dunbar, S.T. Hedetniemi, M.A. Henning and P.J. Slater, Signed domination in graphs, Graph Theory, Combinatorics, and Applications, 1 (1995), 311-322.
[7] O. Favaron, Signed domination in regular graphs, Discrete Math. 158 (1996), 287-293.
[8] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in graphs, Marcel Dekker, Inc., New York, 1998.
[9] M.A. Henning, Signed total domination in graphs, Discrete Math. 278 (2004) 109-125.
[10] L. Kanga, H.K. Kimb and M.Y. Sohnc, Minus domination number in k-partite graphs, Discrete Math. 277 (2004), 295-300.
[11] H. Karami, A. Khodkar and S.M. Sheikholeslami, Lower bounds on signed domination number of a digraph, Discrete Math. 309 (2009), 2567-2570.
[12] C. Wang, The signed k-domination numbers in graphs, Ars Combin. 106 (2012), 205-211.
[13] D.B. West, Introduction to Graph Theory, Prentice-Hall, Inc., 2000.

