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Abstract: For any integer k > 1, a minus k-dominating function is a function
f:V — {-1,0,1} satisfying ZwGN[v] f(w) > k for every v € V(G), where
N@w) ={u € V(@) | ww € E(G)} and N[v] = N(v) U {v}. The minimum of
the values of 3, cy/(g) f(v), taken over all minus k-dominating functions f, is

called the minus k-domination number and is denoted by ~, (G). In this paper,
we introduce the study of minus k-domination in graphs and present several
sharp lower bounds on the minus k-domination number for general graphs.
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1. Introduction

In this paper, all graphs are finite, simple, and undirected. Let G be a graph.
We let V(G) and E(G) denote the vertex set and the edge set of G, respectively.
The integers n = n(G) = |V(G)| and m = m(G) = |E(G)| are the order and the
size of the graph G, respectively. For a vertex v € V(G), the open neighborhood
of v, denoted by Ng(v) = N(v), is the set {u € V(G) : uwv € E(G)} and the
closed neighborhood of v, denoted by Ng[v] = NJv], is the set Ng(v) U {v}.
The degree of v € V(G), denoted by dg(v), is defined by dg(v) = |[Ng(v)|. The
minimum and maximum degrees of G are denoted by 6(G) = 6 and A(G) = A,
respectively. For a set S of vertices, we define the open neighborhood N(S) =
Upes N(v), and the closed neighborhood N[S] = N(S)U S. If X and Y are
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16 The minus k-domination numbers in graphs

sets of vertices of a graph G, we denote by E(X,Y) the set of edges with
one end in X and the other in Y. The complement of G is denoted by G.
We let P,, C, and K,, denote the path, the cycle and the complete graph of
order n, respectively. For a real-valued function f : V(G) — R the weight
of fisw(f) = > ,cy f(v), and for S C V, we define f(S) = >, .4 f(v), so
w(f) = f(V). Consult [8, 13] for notation and terminology that are not defined
here.

Let £ > 1 be an integer and G be a graph of minimum degree at least k — 1.
A function f : V(G) — {-1,1} is called a signed k-dominating function of
G if f(Ng[v]) > k for all v € V(G). The signed k-domination number of G,
denoted by vis(G), is the minimum weight of a signed k-dominating function
of G. The concept of signed k-domination number has been introduced in
[12]. This parameter has been extensively studied in the literature; see e.g.
[1, 11, 12] and the references therein. This parameter has also been studied in
[4]. In the special case k = 1, the signed 1-domination number is exactly the
signed domination number [2, 3, 6].

A minus k-dominating function (briefly MiDF) is a function of the form
f:V = {-1,0,1} such that the sum of its function values over any closed
neighborhood is at least k. The minus k-domination number of a graph G is
defined as

Y (G) = min{w(f) | f is a minus k-dominating function on G}.

As the assumption 6(G) > k — 1 is clearly necessary, we always assume that
when we discuss v, (G), all graphs involved satisfy 6(G) > k — 1 and thus
n(G) > k. A minus k-dominating function f : V(G) — {-1,0,1} can be
represented by the ordered partition (V_1,V1,V2) of V(G) where V; = Vif =
{v e V(G) | f(v) =i} for i = —1,0,1. In the special case k = 1, the minus
1-domination number is the usual minus domination number [5].

Clearly, a signed k-dominating function is a minus k-dominating function.
Hence, the signed k-domination and the minus k-domination number of a graph
are related as follows.

Observation 1. For a graph G, v, (G) < vis(G).

Our purpose in this paper is to initiate the study of minus k-domination num-
ber in graphs. In particular, we present some sharp bounds on the minus
k-domination number in graphs and we determine this parameter for some
classes of graphs.

We close this section by showing that the minus k-domination number can be
arbitrarily small. For this purpose, we need the following observation proved
by Henning [9].
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Observation 2. If k and n are integers with k < m, and n is even, then we can
construct a k-reqular graph on n vertices.

Figure 1. Graph G with v, (G) < -2

Proposition 1.  For an integer k > 2, there is a connected graph G such that
7, (G) < —k.

Proof. By Observation 2, there exists a (2k+1)-regular graph H on n = k(k+
1) vertices. Let V/(H) = {u1,us, ..., upx+1)} and G be the graph obtained from
H as follows. The vertex set of G is V(G) = V/(H) U {v1,v2, ..., Vkk42)}, and
the edge set of G is

B(G) = B(H){tipathin) sty | 1 1< k411 <J < k42,0 < s < k1),

Now define f : V(G) — {-1,0,1} by f(v) = 1if v € V(H), and f(v) = -1
otherwise. If v € V(H), then f(N[v]) = 1+2k+1—-k—2 = k and if
v € V(G) —V(H), then f(N[v]) = =1+ k+1=k. Thus f is a MKDF of G
with weight

w(f)=k(k+1)—k(k+2)=—k.

The proof is complete. O

2. Bounds on the Minus k-Domination Number

In this section, we provide some sharp bounds on the minus k-domination
number. We start with some preliminary results.
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Observation 3.  Let G be a graph of order n with §(G) > k — 1, and f =
(V-1, Vo, V1) be a vy (G)-function. Then

1. n=|V_1| + [Vi] + |Val.
2. w(f) = Wil = [Vl
Theorem 1. Let G be a connected graph of order n with mazimum degree A and
manimum degree 6. If f is a MkDF of G, then
(8) AEEVE] 2 SRV | + Vi,
®) (A+5+2)Vil+ 0+ D)|Vo] > (6 +k+ D)n.
(c) (6+Dw(f

) > (6 — A)|VA| + kn.
(d) w( > Z+A5+%n + |V1|

Proof.  (a) It follows from Observation 3-1 that

E(Vi] + Va1 + [Vo]) =nk
<> X fl&)= > (dev) +1)f(v)
veV z€N[v] veV
= g‘:/(dc( v)+1) - EEV: (dg(v) +1)

S(A+DVE| = (04 1)[Vyl.
This inequality chain yields to the desired bound in (a).

(b) Using Observation 3-1, and Part (a), we arrive at (b).
(¢) Applying Observation 3 and Part (b), we obtain Part (c) as follows

w(f) =2[Vi| = n+ Vo,

and
0+ Dw(f) =6+ 12V —n+|Vo])
=(A+5+2)|Vi|+ (0 — A)Vi| = (6 + D)n+ (6 + 1)V
> =AWV -0+)n+ (@ +k+1)n
= (0 — A)|Vi| + kn.

(d) The inequality chain in the proof of Part (a), and Observation 3-1 show
that
nk <(A+1)VUW| -0 +1)(n—|V1UW)
=(A+0+2)ViUVy|— (6 +1)n,



N. Dehgardi 19

and thus
S O+ k+1

TA+6+2

Using this inequality and Observation 3, we obtain

‘V1UVO| n.

w(f) = Vi —n+ViuVy| > SEEtLn —n 4 |1

T Ato+2
= Ao+ Nl
This is the bound in Part (d), and the proof is complete. O

Corollary 1. If G is a connected graph of order m, then

_ %— A+
> n.
W (&) 2 X"

Proof. If G is an r-regular graph, then result is an immediate consequence of
Theorem 1-(c). Hence let G be a non-regular graph. Multiplying both sides of
the inequality in Theorem 1-(d) by (A — §) and adding it to the inequality in
Theorem 1-(c), we obtain the desired lower bound. O

Theorem 2. Let G be a graph of order n and t a non-negative integer. If
0(G) > k+t—1, then v, (G) <n—t.

Proof. If t = 0, then the result is trivial. Let ¢ > 1 and A = {uy, ug,...,us}
be a set of vertices of G. Define the function g : V(G) — {—1,0,1} by g(u;) =0
for 1 <4 <t and g(z) = 1 otherwise. Obviously, g is a MkDF on G of weight
n—tand vy, (G) <n—t. O

Next result is an immediate consequence of Corollary 1 and Theorem 2.
Corollary 2. For two positive integers n > k, v, (Kn) = k.
Corollary 2 shows that the bound in Theorem 2 is sharp.

Theorem 3. Let G be a graph of order n and size m. Then

- 2k 2

> - - —
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Proof. Let f = (V_1,Vy,V1) be a v, (G)-function. Since for each v € V,
f(N[v]) > k, we have |[N(v) N V1| > k+ 1 for every v € V_q1, [IN(v) N V1| > k
for v € Vp, and |[N(v)NV_1| < |N(v)NVi|— (k—1) for each v € V;. It follows
that |[E(V1,V_1)| > (k+ 1)|V_4|, |[E(V1, Vo)| > k|Vp| and

|[E(V1, Vor)| < 2[E(Vy, V)| — (k= 1)[VAl.
Therefore

m = |[E(Vi, )|+ [E(V1, V)| + [E(V1, Vo)

k—l k-‘rl
> Vil + IVoi| + (b + 1)|[Voa| + k| Vol
k—l k-‘rl
E L B v+ .

\ \/

Hence, we have

k-1 2
- — — = — > P
W (G) =Vl = IVaal = n = @IVal + Vol) 2 nt fmgn = =gm

O

Proposition 2. Let G be a graph of order n. Then v, (G) = n if and only if for
each vertex v € V(G) there is a vertex u € N[v] such that da(u) < k — 1.

Proof.  One side is clear. Let v, (G) = n. If there is a vertex v such that
dg(u) > k for each u € N[v], then the function g : V(G) — {—1,0,1} defined
by g(v) = 0 and g(z) = 1 otherwise, is a MkDF on G of weight n — 1, a
contradiction. Thus for each vertex v € G, there is a vertex u € N[v] such that
de(u) <k —1, and the proof is complete. O

Dunbar et al. [5] showed that the minus domination number of a graph with
maximum degree at most five is non-negative. Next proposition generalizes
their result.

Proposition 3. Let k be a positive integer and G be a graph with A < 3k + 2.
Then 7y, (G) > 0.

Proof. Let f = (V_1,Vp,V1) be a v, (G)-function. If V_; = &, then we are
done. Assume V_; # &. For each v € V_y, it follows from f(N[v]) > k that
|N(v) N V1| > k + 1. This implies that

|E(V_y,Vi)| > (k+1)|V_4]. (1)
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Similarly, for each v € Vi, we have |[N(v) N Vi| > [N(v) N V_1|+ k — 1, and
3k+2>dg(w) > INw)NWV|+ |N@w)NV_q| > 2IN@w)NV_q1|+ k- 1.

Thus, k + 1 > |N(v) N V_q| for each v € V1, and

|E(V_1, V)| < (B +1)|V. (2)
Combining (1) and (2), we obtain v, (G) = [V1| — [V_1] > 0. O
Theorem 4. Let G be a connected graph of order n and minimum degree of

6>k—1. Then

Y (G) > =1+ /1 +4(k+1)n —n.

Proof. If v, (G) = n, the result is trivial. So we may assume that v, (G) < n.
Let f = (V_1,V, V1) be a v, (G)-function. Since f(N[v]) > k for each v € V,
each vertex in V_; has at least k + 1 neighbors in V;. We conclude from the

Pigeonhole Principle that at least one vertex v € V; has at least f%]
neighbors in V_;. It implies that

Voil(k+1
k< F(NP)) = IN@) VA = IN@) Ve 41 < (1] — 1) = BTy

Vil

and |Vi |2 —k|Vi|—|V_1|(k+1) > 0. Hence, we have |V;|?+|Vi|+ (k+1)(|Vo| —
n) > 0. Thus

—14+/1+4(k+1)(n - [Vo|)
2 b

Vil >

and

Ve (G) =2[Vi| + [Vol = n > =1+ /1 +4(k + 1)(n — [Vo]) + [Vo| — n.

Let g(z) = -1+ /1+4(k+ 1)z — z. Then ¢'(z) = \/% — 1, thus
¢'(z) <0 for x > k+ 1. Hence g(x) is a decreasing function when z > k + 1.
Furthermore, since |Vi| > k + 1, we have n — |Vy| = |[Vi| + |V_1| > k+ 1.
Therefore, g(n — |Vo|) > g(n). Consequently,

Y (G) > =1+ 1+ 4k +1)(n— Vo) + Vol =n > =14+ /1 +4(k + 1)n —n.

O
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A set S C V(G) is a 2-packing of G if N[u] N N[v] = @ for any two distinct
vertices u,v € S. The 2-packing number p(G) of G is defined as

p(G) = max{|S]| | S is a 2-packing of G}.

In the sequel, we present some bounds on the minus k-domination number in
terms of the order and the 2-packing number.

Theorem 5. Let k be an integer, and G be a connected graph of order m with
0(G) > k+ 1. Then the following hold.

(@) 77 (G) < n—20(G).
(b) 7741 (G) < n — p(G).

(¢) If V(G) = UsesNls|, then kp(G) < v, (G).

Proof. Let S be a 2-packing of G. To prove (a), define the function f :
V(G) — {-1,0,1} by f(x) = —1 for x € S and f(z) = 1 otherwise. Clearly
f is a minus k-dominating function of G of weight n — 2p(G), which implies
Y (G) < n —2p(G). To prove (b), define the function f : V(G) — {-1,0,1}
by f(x) =0 for z € S, and f(x) = 1 otherwise. Obviously f is a minus (k+1)-
dominating function of G' of weight n—p(G), which implies v, (G) < n—p(G).
Now we prove (c). Let f be a v, (G)-function. By definition, we have

=Y F(N[s]) = kp(G).

ses

Corollary 3. Forn >3, v, (Cy) = [2].

Proof.  Since 5 (Cy,) is an integer, it follows from Corollary 1 that v5 (Cy,) >
[22]. On the other hand, since p(C,) = [%], we conclude from Theorem 5
that 75 (Cn) < n—p(Cy) = [2], and 75 (Cy) = [E]. O

Applying Theorem 5 and the following result due to Favaron [7], we obtain
bounds on the cubic graphs.

Proposition 4. [7] If G is a connected cubic graph G of order n, then p(G) > n/8,
unless G is the Petersen graph which in this case p(G) = (n —2)/8 = 1.
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Corollary 4. IfG is a connected cubic graph of order n different from the Petersen
graph, then

(i) 2 <y (G) < 2.

(ii) 3 < 5 (G) < I, the upper bound satisfies if G is not the Petersen graph
which in this case v5 (G) = 9.

Now we present a so called Nordhaus-Gaddum type inequality for the minus
k-domination number of regular graphs.

Theorem 6. Let G be an r-reqular graph of order n wherer > k—1 andn—r > k.
Then
4kn : :
_ 25 §f mis odd
e (G . (G) > ntl
Ve (G) + 7 (G) > { 4k7(;:gl) i s ever.

Proof.  Since G is r-regular, the complement G is (n—r—1)-regular. It follows
from Corollary 1 that

_ _ = 1 1
W (C) 475 (@) 2 kil +

).

The conditions r > k—1 and n—7 > k imply that k —1 < r < n— k. Consider
the function f(z) = 5 + ;27 on the interval [k — 1,n — k] N Z. If n is odd,

n—x

then the function f gets its minimum at x = "771, and we have
— 1 1 2 2 4kn
L (G C(G) >k >k = .
Ve (G) + 7 (G) 2 n(r+1 n—r)_ n(n—&—lJrn—l—l) n+1

If n is even, then the function f gets its minimum at r = x = "7_2 orr=z=g,

since r is an integer. This implies that

1 1 2 2 . 4k(n+1)

r+1+n77’ = n+n+2)_ n+2 '

e (G) + 7 (G) = kn(
and the proof is complete. O

3. t-Partite Graphs

In this section, we present a lower bound on the minus k-domination number
of t-partite graphs. The proof of the following result can be found in [10].



24 The minus k-domination numbers in graphs

Proposition 5. For non-negative integers p1,pa,...,pe (t > 2),

\j 2+— Z szp]<§:pz

i=1 j=1i+1
The proof of the next result is essentially similar to the proof of Theorem 2 in

[10].

Theorem 7. Letk > 1,t > 2 and G = (V,E) be a t-partite graph of order
n > % with partite sets X1, Xa,...,X:. Then

(@) > G <_1+\/( . +4<t—1>n>_n+<k—1>t(1_ SN

(t—1) k+1)2 " t(k+1) t—1 2(k +1)

Proof. Let f be a v, (G)-function and

P = X;nVi, M; = XsnV_y, Qi = XsNVo,pi = |Pi|,ms = | M|, q5 = |Qil, i =1,...

Thus
¢ ¢ ¢
”:Zpi+zmi+ZQi- (3)
i=1 i=1 =1
Since for each v € V, f(N[v]) > k, we have |N(v) N V1| > k + 1 for every
veM;,i=1,...,t. So

t

BV, Vo) = (k+1))  ma. (4)

i=1

For each v € P;, we have [N(v) N V_1| < |[N(v) N Vi| — (k —1). Thus

|E(Vy, V- |*ZZ|N )NV

1=1veP;
i
<3 S (N@ AV - (k- 1))
i=1veP;

t
<sz Z p] (k—l)ZPz
i=1 Jj=1,5#1 =1
- t
:22 Z pip; — (k=1 _pi
i=1 j=i+1 i=1

t—1 t t—1 t
L) DD DR RN [CRE) S SR C)

i=1j=i+1 i=1 j=i+1



N. Dehgardi 25

Combining (4) and (5), we have

(k+1) Zm2<222p1p] \l(2+t_122pzpj (6)

i=1 j=i+1 i=1 j=i+1

Define the function

f(x):2x2—(k—1)\/(2—|—tzl)x—(k—Fl)Zmi,

where f(z) >0 and z = \/Zf;} Z;Ziﬂ pipj. We have

t—1
= 4 5

2 2
(k=D @2+ —) +4/ (k- )(2+i)+8(k+1)22 m;
- \/ \/ 1 !

T

and

2+( )7
:ﬁ (k:—1+\l(k—1)2+(k+1)4(t

By (3) and Proposition 5, we obtain

J2+H22plp]+zmz+th§n (8)

=1 j=141

Using (7) and (8), we have

Q(tt—l) (k—1+J(k—l)z-l-(k-l-l)‘l(tt—l)z_: )+Zml+2ql<n
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and

el CRERRCREUR AR S0 R SRETAN(D

Since 7y, (G) =n — 23", m; — YI_, i, using (9) we have

—Zmi. (11)

For notational convenience, we write

k1) | k-1, 4At-1)
“Tai-1) (k+1)2+t(k+1);m“

and define two functions

t-1 k=Dt (k-1 ‘- 1)
h(y) = 2 _ >
W) (k+1)ty +er2(t—1) 4(t—1)(k+1)’y—2(t_1)’
and
S U () AU TR
o - >
9(y) = Gried YT C) T ai— D)k YT 2D
t(k+1 t(k—1
" 2((t—1§ >y =z 2((1:—1;-
Since 3—5 <0 and % > 0, g(y) is monotonously decreasing for y > g((’:ig nd

h(y) is a monotonous increasing function if y > ;((II:B. By (10), we obtain

t=1 (k— 1)t (k—1)%t
MO =G Y oy oD S

Furthermore, we note that when

(k+1)t 4 4(t —1)
=501 <_1 * \/(k T1Z ik 1)”)
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it follows that h(yg) =n > max{h(’;((]zig), h(a)}. Thus

t(k+1) (k+ 1)t 4 4t —1)
aﬂz@_n”*<2@_n<_L+¢w+1y+tw+n">'

k— - k _
If |[V_1] = 0, then a = ;((tj%. We show that v, (G) > g(tz((:ig). Let v, (G) =

k. If t = k, then n > k + 1 and this is a contradiction.Hence ¢ > k£ + 1 and
% (G) =k > g(E). T 77 (G) > k+1, then 77 (G) > k+1 > g(Rt).
Now let [V_1| > 1. By the monotonicity of g(y) and (11),

Y (G) > g(a) > g(yo) = ((114111); (—1+\/(kf1)2 +f((;13n> -n
(k— 1)t k-1
=1 _2(k+1))'

The proof is complete. O

Corollary 5. If G is a bipartite graph of order n > 2(k + 1), then

_ E+1 (k—1)2
> k—3+44/14+ 2 —n— .
Y (G) > =k —3+44/1 g n P
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