TY - JOUR
ID - 14102
TI - On the extremal total irregularity index of n-vertex trees with fixed maximum degree
JO - Communications in Combinatorics and Optimization
JA - CCO
LA - en
SN - 2538-2128
AU - Adeel, Shamaila
AU - Bhatti, Akhlaq Ahmad
AD - Fast NUCES, Lahore, Pakistan.
Y1 - 2021
PY - 2021
VL - 6
IS - 1
SP - 113
EP - 121
KW - Irregularity
KW - total irregularity index
KW - maximal degree
KW - molecular trees
KW - integer linear programming problem
DO - 10.22049/cco.2020.26965.1168
N2 - In the extension of irregularity indices, Abdo et. al. {[H. Abdo, S. Brandt, D. Dimitrov, The total irregularity of a graph, Discrete Math. Theor. Comput. Sci. 16 (2014), 201--206]} defined the total irregularity of a graph $G = (V,E)$ as $irr_{t}(G)= frac{1}{2} sum_{u,vin V(G)} big|d_u - d_v big| $, where $d_u $ denotes the vertex degree of a vertex $u in V(G)$. In this paper, we investigate the total irregularity of trees with bounded maximal degree $Delta$ and state integer linear programming problem which gives standard information about extremal trees and it also calculates the index.
UR - http://comb-opt.azaruniv.ac.ir/article_14102.html
L1 - http://comb-opt.azaruniv.ac.ir/article_14102_142e6efb502f59a1a401d057893b27df.pdf
ER -